Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Genet ; 18(6): e1010086, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35704633

RESUMO

Penicillium roqueforti is a major food-spoilage fungus known for its high resistance to the food preservative sorbic acid. Here, we demonstrate that the minimum inhibitory concentration of undissociated sorbic acid (MICu) ranges between 4.2 and 21.2 mM when 34 P. roqueforti strains were grown on malt extract broth. A genome-wide association study revealed that the six most resistant strains contained the 180 kbp gene cluster SORBUS, which was absent in the other 28 strains. In addition, a SNP analysis revealed five genes outside the SORBUS cluster that may be linked to sorbic acid resistance. A partial SORBUS knock-out (>100 of 180 kbp) in a resistant strain reduced sorbic acid resistance to similar levels as observed in the sensitive strains. Whole genome transcriptome analysis revealed a small set of genes present in both resistant and sensitive P. roqueforti strains that were differentially expressed in the presence of the weak acid. These genes could explain why P. roqueforti is more resistant to sorbic acid when compared to other fungi, even in the absence of the SORBUS cluster. Together, the MICu of 21.2 mM makes P. roqueforti among the most sorbic acid-resistant fungi, if not the most resistant fungus, which is mediated by the SORBUS gene cluster.


Assuntos
Penicillium , Sorbus , Fungos/genética , Estudo de Associação Genômica Ampla , Família Multigênica , Penicillium/genética , Ácido Sórbico/farmacologia , Sorbus/genética
2.
Fungal Genet Biol ; 172: 103894, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38657897

RESUMO

Inactivation of flbA in Aspergillus niger results in thinner cell walls, increased cell lysis, abolished sporulation, and an increased secretome complexity. A total of 36 transcription factor (TF) genes are differentially expressed in ΔflbA. Here, seven of these genes (abaA, aslA, aslB, azf1, htfA, nosA, and srbA) were inactivated. Inactivation of each of these genes affected sporulation and, with the exception of abaA, cell wall integrity and protein secretion. The impact on secretion was strongest in the case of ΔaslA and ΔaslB that showed increased pepsin, cellulase, and amylase activity. Biomass was reduced of agar cultures of ΔabaA, ΔaslA, ΔnosA, and ΔsrbA, while biomass was higher in liquid shaken cultures of ΔaslA and ΔaslB. The ΔaslA and ΔhtfA strains showed increased resistance to H2O2, while ΔaslB was more sensitive to this reactive oxygen species. Together, inactivation of the seven TF genes impacted biomass formation, sporulation, protein secretion, and stress resistance, and thereby these genes explain at least part of the pleiotropic phenotype of ΔflbA of A. niger.


Assuntos
Aspergillus niger , Parede Celular , Proteínas Fúngicas , Regulação Fúngica da Expressão Gênica , Fenótipo , Esporos Fúngicos , Fatores de Transcrição , Aspergillus niger/genética , Aspergillus niger/metabolismo , Aspergillus niger/crescimento & desenvolvimento , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica/genética , Esporos Fúngicos/genética , Esporos Fúngicos/crescimento & desenvolvimento , Parede Celular/metabolismo , Parede Celular/genética , Peróxido de Hidrogênio/farmacologia , Pleiotropia Genética
3.
Appl Microbiol Biotechnol ; 108(1): 202, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38349550

RESUMO

Aureobasidium is omnipresent and can be isolated from air, water bodies, soil, wood, and other plant materials, as well as inorganic materials such as rocks and marble. A total of 32 species of this fungal genus have been identified at the level of DNA, of which Aureobasidium pullulans is best known. Aureobasidium is of interest for a sustainable economy because it can be used to produce a wide variety of compounds, including enzymes, polysaccharides, and biosurfactants. Moreover, it can be used to promote plant growth and protect wood and crops. To this end, Aureobasidium cells adhere to wood or plants by producing extracellular polysaccharides, thereby forming a biofilm. This biofilm provides a sustainable alternative to petrol-based coatings and toxic chemicals. This and the fact that Aureobasidium biofilms have the potential of self-repair make them a potential engineered living material avant la lettre. KEY POINTS: •Aureobasidium produces products of interest to the industry •Aureobasidium can stimulate plant growth and protect crops •Biofinish of A. pullulans is a sustainable alternative to petrol-based coatings •Aureobasidium biofilms have the potential to function as engineered living materials.


Assuntos
Aureobasidium , Biofilmes , Carbonato de Cálcio , Produtos Agrícolas , Gasolina
4.
Appl Microbiol Biotechnol ; 108(1): 301, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38639797

RESUMO

Water bodies are increasingly contaminated with a diversity of organic micropollutants (OMPs). This impacts the quality of ecosystems due to their recalcitrant nature. In this study, we assessed the removal of OMPs by spent mushroom substrate (SMS) of the white button mushroom (Agaricus bisporus) and by its aqueous tea extract. Removal of acesulfame K, antipyrine, bentazon, caffeine, carbamazepine, chloridazon, clofibric acid, and N, N-diethyl-meta-toluamide (DEET) by SMS and its tea was between 10 and 90% and 0-26%, respectively, in a 7-day period. Sorption to SMS particles was between 0 and 29%, which can thus not explain the removal difference between SMS and its tea, the latter lacking these particles. Carbamazepine was removed most efficiently by both SMS and its tea. Removal of OMPs (except caffeine) by SMS tea was not affected by heat treatment. By contrast, heat-treatment of SMS reduced OMP removal to < 10% except for carbamazepine with a removal of 90%. These results indicate that OMP removal by SMS and its tea is mediated by both enzymatic and non-enzymatic activities. The presence of copper, manganese, and iron (0.03, 0.88, and 0.33 µg L-1, respectively) as well as H2O2 (1.5 µM) in SMS tea indicated that the Fenton reaction represents (part of) the non-enzymatic activity. Indeed, the in vitro reconstituted Fenton reaction removed OMPs > 50% better than the teas. From these data it is concluded that spent mushroom substrate of the white button mushroom, which is widely available as a waste-stream, can be used to purify water from OMPs.


Assuntos
Agaricus , Ecossistema , Cafeína , Peróxido de Hidrogênio , Água , Chá , Carbamazepina
5.
Antonie Van Leeuwenhoek ; 117(1): 58, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38502333

RESUMO

Genes flbA-E are involved in sporulation and vegetative growth in Aspergillus nidulans. Inactivation of either of these genes results in a fluffy phenotype with delayed or even abolished sporulation. Previously, a non-sporulating phenotype was obtained by inactivating flbA in Aspergillus niger, which was accompanied by lysis, thinner cell walls, and an increased secretome complexity. Here, we further studied the role of the flb genes of A. niger. Strains ΔflbA, ΔflbB and ΔflbE showed increased biomass formation, while inactivation of flbA-D reduced, or even abolished, formation of conidia. Strain ΔflbA was more sensitive to H2O2, DTT, and the cell wall integrity stress compounds SDS and Congo Red (CR). Also, ΔflbC was more sensitive to SDS, while ΔflbB, ΔflbD, and ΔflbE were more sensitive to CR. On the other hand, inactivation of flbE increased resistance to H2O2. Enzyme secretion was impacted when the Δflb strains were grown on xylose. Strain ΔflbE showed reduced xylanase, cellulase and amylase secretion. On the other hand, amylase secretion at the periphery of the ΔflbA colony was reduced but not in its center, while secretion of this enzyme was increased in the center of the ΔflbB colony but not at its periphery. Inactivation of flbC and flbD also impacted zonal cellulase and amylase activity. Together, the Flb protein family of A. niger function in biomass formation, sporulation, stress response, and protein secretion.


Assuntos
Aspergillus niger , Celulases , Animais , Aspergillus niger/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Peróxido de Hidrogênio/metabolismo , Estágios do Ciclo de Vida , Celulases/metabolismo , Amilases/metabolismo , Esporos Fúngicos
6.
Chemistry ; 29(1): e202202616, 2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36181715

RESUMO

Solid-state NMR (ssNMR) spectroscopy facilitates the non-destructive characterization of structurally heterogeneous biomolecules in their native setting, for example, comprising proteins, lipids and polysaccharides. Here we demonstrate the utility of high and ultra-high field 1 H-detected fast MAS ssNMR spectroscopy, which exhibits increased sensitivity and spectral resolution, to further elucidate the atomic-level composition and structural arrangement of the cell wall of Schizophyllum commune, a mushroom-forming fungus from the Basidiomycota phylum. These advancements allowed us to reveal that Cu(II) ions and the antifungal peptide Cathelicidin-2 mainly bind to cell wall proteins at low concentrations while glucans are targeted at high metal ion concentrations. In addition, our data suggest the presence of polysaccharides containing N-acetyl galactosamine (GalNAc) and proteins, including the hydrophobin proteins SC3, shedding more light on the molecular make-up of cells wall as well as the positioning of the polypeptide layer. Obtaining such information may be of critical relevance for future research into fungi in material science and biomedical contexts.


Assuntos
Peptídeos , Proteínas , Proteínas/química , Espectroscopia de Ressonância Magnética , Peptídeos/análise , Polissacarídeos/química , Parede Celular/química
7.
Antonie Van Leeuwenhoek ; 116(9): 867-882, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37316742

RESUMO

Aspergillus niger is widely used as a cell factory for the industrial production of enzymes. Previously, it was shown that deletion of α-1-3 glucan synthase genes results in smaller micro-colonies in liquid cultures of Aspergillus nidulans. Also, it has been shown that small wild-type Aspergillus niger micro-colonies secrete more protein than large mirco-colonies. We here assessed whether deletion of the agsC or agsE α-1-3 glucan synthase genes results in smaller A. niger micro-colonies and whether this is accompanied by a change in protein secretion. Biomass formation was not affected in the deletion strains but pH of the culture medium had changed from 5.2 in the case of the wild-type to 4.6 and 6.4 for ΔagsC and ΔagsE, respectively. The diameter of the ΔagsC micro-colonies was not affected in liquid cultures. In contrast, diameter of the ΔagsE micro-colonies was reduced from 3304 ± 338 µm to 1229 ± 113 µm. Moreover, the ΔagsE secretome was affected with 54 and 36 unique proteins with a predicted signal peptide in the culture medium of MA234.1 and the ΔagsE, respectively. Results show that these strains have complementary cellulase activity and thus may have complementary activity on plant biomass degradation. Together, α-1-3 glucan synthesis (in)directly impacts protein secretion in A. niger.


Assuntos
Aspergillus niger , Secretoma , Aspergillus niger/genética , Aspergillus niger/metabolismo , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
8.
Fungal Genet Biol ; 161: 103699, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35489527

RESUMO

Mycelia of saprotrophic basidiomycetes can cover large areas in nature that are typified by their heterogeneous nutrient availability. This heterogeneity is overcome by long distance transport of nutrients within the hyphal network to sites where they are needed. It is therefore key to be able to study nutrient transport and its underlying mechanisms. An IRDye-conjugate was used for the first time for imaging transport in fungi. A method was set up for time-lapse, high spatial resolution infrared imaging of IRDye-labelled deoxyglucose (IRDye-DG) in Schizophyllum commune and Agaricus bisporus. Scanning imaging visualised the tracer in individual hyphae as well as deeper tissues in mushrooms (mm-cm depth). The advantage of using fluorescence scanning imaging of IRDye in contrast to radiolabelled tracers studies, is that a higher spatial resolution and higher sensitivity (244 fg/ml) can be obtained. Moreover, it has a large field of view (25 × 25 cm) compared to microscopy (µm-mm range), allowing relatively fast and detailed imaging of large dimension samples.


Assuntos
Basidiomycota , Hifas , Microscopia , Micélio , Açúcares
9.
Antonie Van Leeuwenhoek ; 115(1): 103-110, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34800185

RESUMO

Penicillium roqueforti is used for the production of blue-veined cheeses but is a spoilage fungus as well. It reproduces asexually by forming conidia. Germination of these spores can start the spoilage process of food. Germination is typically characterized by the processes of activation, swelling and germ tube formation. Here, we studied nutrient requirements for germination of P. roqueforti conidia. To this end, > 300 conidia per condition were monitored in time using an oCelloScope imager and an asymmetric model was used to describe the germination process. Spores were incubated for 72 h in NaNO3, Na2HPO4/NaH2PO4, MgSO4 and KCl with 10 mM glucose or 10 mM of 1 out of the 20 proteogenic amino acids. In the case of glucose, the maximum number of spores (Pmax) that had formed germ tubes was 12.7%, while time needed to reach 0.5 Pmax (τ) was about 14 h. Arginine and alanine were the most inducing amino acids with a Pmax of germ tube formation of 21% and 13%, respectively, and a τ of up to 33.5 h. Contrary to the typical stages of germination of fungal conidia, data show that P. roqueforti conidia can start forming germ tubes without a detectable swelling stage.


Assuntos
Aminoácidos , Penicillium , Glucose , Esporos Fúngicos
10.
Antonie Van Leeuwenhoek ; 115(9): 1151-1164, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35857156

RESUMO

Aspergilli are among the most abundant fungi worldwide. They degrade organic material and can be pathogens of plants and animals. Aspergilli spread by forming high numbers of conidia. Germination of these stress resistant asexual spores is characterized by a swelling and a germ tube stage. Here, we show that conidia of Aspergillus niger, Aspergillus oryzae, Aspergillus clavatus, Aspergillus nidulans and Aspergillus terreus show different swelling and germ tube formation dynamics in pure water or in water supplemented with (in)organic nutrients. Apart from inter-species heterogeneity, intra-species heterogeneity was observed within spore populations of the aspergilli except for A. terreus. Sub-populations of conidia differing in size and/or contrast showed different swelling and germ tube formation dynamics. Together, data imply that aspergilli differ in their competitive potential depending on the substrate. Moreover, results suggest that intra-species heterogeneity provides a bet hedging mechanism to optimize survival of aspergilli.


Assuntos
Aspergillus niger , Água , Animais , Esporos Fúngicos/metabolismo
11.
Environ Microbiol ; 23(1): 224-238, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33140552

RESUMO

Wood and litter degrading fungi are the main decomposers of lignocellulose and thus play a key role in carbon cycling in nature. Here, we provide evidence for a novel lignocellulose degradation strategy employed by the litter degrading fungus Agaricus bisporus (known as the white button mushroom). Fusion of hyphae allows this fungus to synchronize the activity of its mycelium over large distances (50 cm). The synchronized activity has a 13-h interval that increases to 20 h before becoming irregular and it is associated with a 3.5-fold increase in respiration, while compost temperature increases up to 2°C. Transcriptomic analysis of this burst-like phenomenon supports a cyclic degradation of lignin, deconstruction of (hemi-) cellulose and microbial cell wall polymers, and uptake of degradation products during vegetative growth of A. bisporus. Cycling in expression of the ligninolytic system, of enzymes involved in saccharification, and of proteins involved in nutrient uptake is proposed to provide an efficient way for degradation of substrates such as litter.


Assuntos
Agaricus/metabolismo , Biodegradação Ambiental , Lignina/metabolismo , Compostos Orgânicos/metabolismo , Polímeros/metabolismo , Agaricus/enzimologia , Ciclo do Carbono , Celulose/metabolismo , Micélio/metabolismo , Nutrientes , Oxigênio/metabolismo , Madeira/metabolismo
12.
Proc Natl Acad Sci U S A ; 115(17): 4429-4434, 2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29643074

RESUMO

Many fungi are polykaryotic, containing multiple nuclei per cell. In the case of heterokaryons, there are different nuclear types within a single cell. It is unknown what the different nuclear types contribute in terms of mRNA expression levels in fungal heterokaryons. Each cell of the mushroom Agaricus bisporus contains two to 25 nuclei of two nuclear types originating from two parental strains. Using RNA-sequencing data, we assess the differential mRNA contribution of individual nuclear types and its functional impact. We studied differential expression between genes of the two nuclear types, P1 and P2, throughout mushroom development in various tissue types. P1 and P2 produced specific mRNA profiles that changed through mushroom development. Differential regulation occurred at the gene level, rather than at the locus, chromosomal, or nuclear level. P1 dominated mRNA production throughout development, and P2 showed more differentially up-regulated genes in important functional groups. In the vegetative mycelium, P2 up-regulated almost threefold more metabolism genes and carbohydrate active enzymes (cazymes) than P1, suggesting phenotypic differences in growth. We identified widespread transcriptomic variation between the nuclear types of A. bisporus Our method enables studying nucleus-specific expression, which likely influences the phenotype of a fungus in a polykaryotic stage. Our findings have a wider impact to better understand gene regulation in fungi in a heterokaryotic state. This work provides insight into the transcriptomic variation introduced by genomic nuclear separation.


Assuntos
Agaricus/metabolismo , Núcleo Celular/metabolismo , Regulação Fúngica da Expressão Gênica/fisiologia , RNA Fúngico/biossíntese , RNA Mensageiro/biossíntese , Regulação para Cima/fisiologia , Agaricus/genética , Núcleo Celular/genética , RNA Fúngico/genética , RNA Mensageiro/genética , Transcriptoma/fisiologia
13.
Environ Microbiol ; 22(1): 447-455, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31736205

RESUMO

Hyphae at the outer part of colonies of Aspergillus niger and Aspergillus oryzae are heterogeneous with respect to transcriptional and translational activity. This heterogeneity is maintained by Woronin body mediated closure of septal pores that block interhyphal mixing of cytoplasm. Indeed, heterogeneity between hyphae is abolished in ΔhexA strains that lack Woronin bodies. The subpopulation of hyphae with high transcriptional and translational activity secretes enzymes that degrade the substrate resulting in breakdown products that serve as nutrients. The role of hyphae with low transcriptional and translational activity was not yet known. Here, we show that this subpopulation is more resistant to environmental stress in A. oryzae, in particular to temperature stress, when compared to hyphae with high transcriptional and translational activity. Notably, all hyphae of the ΔhexA strain of A. oryzae were sensitive to heat stress explained by the reduced heterogeneity in this strain. Together, we show that different subpopulations of hypha secrete proteins and resist heat stress showing the complexity of a fungal mycelium.


Assuntos
Aspergillus niger/metabolismo , Aspergillus oryzae/metabolismo , Proteínas Fúngicas/metabolismo , Hifas/metabolismo , Estresse Fisiológico/fisiologia , Transporte Biológico , Citoplasma/metabolismo , Proteínas Fúngicas/genética , Proteínas de Fluorescência Verde , Resposta ao Choque Térmico/fisiologia , Biossíntese de Proteínas/genética , Transcrição Gênica/genética
14.
Antonie Van Leeuwenhoek ; 113(5): 697-706, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31919791

RESUMO

It was recently demonstrated that apical compartments of Aspergillus niger hyphae are self-sustaining in growth. This was shown by assessing the growth rate of individual hyphae before and after dissection of the second compartment. Using the same methodology, it is here demonstrated that single apical compartments of the septate fungi Penicillium chrysogenum and Schizophyllum commune as well as the 500-µm-apical region of the non-septate fungus Rhizopus stolonifer are also self-sustaining in growth. In contrast, single 2nd compartments (obtained by dissection of the first and third compartment) of the septate fungi or the region between 500 and 1000 µm from tips of R. stolonifer were severely impacted in their growth rate. In addition, it is shown that existing or newly formed branches originating from the 2nd compartments function as a backup system for hyphal growth when the apical part of the hypha of the three studied fungi is damaged. Together, it is concluded that the apical compartments/zones of the studied fungi are self-sustaining in growth. In contrast, the subapical region is not self-sustaining but functions as a backup once the apical zone is damaged. This back up system is relevant in nature because the apices of hyphae are the first to be exposed to (a)biotic stress conditions when entering an unexplored substrate.


Assuntos
Aspergillus niger/crescimento & desenvolvimento , Hifas/crescimento & desenvolvimento , Adaptação Fisiológica , Aspergillus niger/fisiologia , Compartimento Celular , Estresse Fisiológico
15.
Appl Environ Microbiol ; 85(9)2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30824432

RESUMO

There are limitations in establishing a direct link between fungal exposure and health effects due to the methodology used, among other reasons. Culture methods ignore the nonviable/uncultivable fraction of airborne fungi. Molecular methods allow for a better understanding of the environmental health impacts of microbial communities. However, there are challenges when applying these techniques to bioaerosols, particularly to fungal cells. This study reveals that there is a loss of fungal cells when samples are recovered from air using wet samplers and aimed to create and test an improved protocol for concentrating mold spores via filtration prior to DNA extraction. Results obtained using the new technique showed that up to 3 orders of magnitude more fungal DNA was retrieved from the samples using quantitative PCR. A sequencing approach with MiSeq revealed a different diversity profile depending on the methodology used. Specifically, 8 fungal families out of 19 families tested were highlighted to be differentially abundant in centrifuged and filtered samples. An experiment using laboratory settings showed the same spore loss during centrifugation for Aspergillus niger and Penicillium roquefortii strains. We believe that this work helped identify and address fungal cell loss during processing of air samples, including centrifugation steps, and propose an alternative method for a more accurate evaluation of fungal exposure and diversity.IMPORTANCE This work shed light on a significant issue regarding the loss of fungal spores when recovered from air samples using liquid medium and centrifugation to concentrate air particles before DNA extraction. We provide proof that the loss affects the overall fungal diversity of aerosols and that some taxa are differentially more affected than others. Furthermore, a laboratory experiment confirmed the environmental results obtained during field sampling. The filtration protocol described in this work offers a better description of the fungal diversity of aerosols and should be used in fungal aerosol studies.


Assuntos
Microbiologia do Ar , Poluição do Ar em Ambientes Fechados/análise , Aspergillus niger/isolamento & purificação , Monitoramento Ambiental/métodos , Penicillium/isolamento & purificação , Esporos Fúngicos/isolamento & purificação , Fungos/isolamento & purificação
16.
Appl Environ Microbiol ; 85(2)2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30413474

RESUMO

Proteins are secreted throughout the mycelium of Aspergillus niger except for the sporulating zone. A link between sporulation and repression of protein secretion was underlined by the finding that inactivation of the sporulation gene flbA results in mycelial colonies that secrete proteins throughout the colony. However, ΔflbA strain hyphae also lyse and have thinner cell walls. This pleiotropic phenotype is associated with differential expression of 36 predicted transcription factor genes, one of which, rpnR, was inactivated in this study. Sporulation, biomass, and secretome complexity were not affected in the ΔrpnR deletion strain of the fungus. In contrast, ribosomal subunit expression and protein secretion into the medium were reduced when A. niger was grown on xylose. Moreover, the ΔrpnR strain showed decreased resistance to H2O2 and the proteotoxic stress-inducing agent dithiothreitol. Taking the data together, RpnR is involved in proteotoxic stress resistance and impacts protein secretion when A. niger is grown on xylose.IMPORTANCEAspergillus niger secretes a large amount and diversity of industrially relevant enzymes into the culture medium. This makes the fungus a widely used industrial cell factory. For instance, carbohydrate-active enzymes of A. niger are used in biofuel production from lignocellulosic feedstock. These enzymes represent a major cost factor in this process. Higher production yields could substantially reduce these costs and therefore contribute to a more sustainable economy and less dependence on fossil fuels. Enzyme secretion is inhibited in A. niger by asexual reproduction. The sporulation protein FlbA is involved in this process by impacting the expression of 36 predicted transcription factor genes. Here, we show that one of these predicted transcriptional regulators, RpnR, regulates protein secretion and proteotoxic stress resistance. The gene is thus an interesting target to improve enzyme production in A. niger.


Assuntos
Aspergillus niger/fisiologia , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica/fisiologia , Estresse Fisiológico/genética , Xilose/metabolismo , Aspergillus niger/genética , Proteínas Fúngicas/biossíntese , Proteínas Fúngicas/metabolismo
17.
BMC Genomics ; 19(1): 534, 2018 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-30005605

RESUMO

BACKGROUND: Aspergillus fumigatus is the main causative agent of aspergillosis. Infections rarely occur in immunocompetent individuals, indicating efficient clearance of conidia by pulmonary defense mechanisms. Other aspergilli like Aspergillus niger also cause infections but to a much lesser extent. Our previous studies showed that A. fumigatus and A. niger have different behavior in the presence of type II alveolar A549 epithelial cells. A. fumigatus conidia are more efficiently internalized by these cells and germination is delayed when compared to A. niger. In addition, hyphae that have escaped the epithelial cells grow parallel to the epithelium, while A. niger grows away from this cell layer. RESULTS: Here it is shown that global gene expression of A. fumigatus and A. niger is markedly different upon contact with A549 cells. A total of 545 and 473 genes of A. fumigatus and A. niger, respectively, were differentially expressed when compared to growth in the absence of A549 cells. Notably, only 53 genes (approximately 10%) were shared in these gene sets. The different response was also illustrated by the fact that only 4 out of 75 GO terms were shared that were enriched in the differentially expressed gene sets. The orthologues of A. fumigatus genes involved in hypoxia regulation and heat shock were also up-regulated in A. niger, whereas thioredoxin reductase and allergen genes were found up-regulated in A. fumigatus but down-regulated in A. niger. Infection with A. fumigatus resulted in only 62 up and 47 down-regulated genes in A549. These numbers were 17 and 34 in the case of A. niger. GO terms related with immune response were down-regulated upon exposure to A. fumigatus but not in the case of A. niger. This indicates that A. fumigatus reprograms A549 to be less immunologically alert. CONCLUSIONS: Our dual transcriptomic analysis supports earlier observations of a marked difference in life style between A. fumigatus and A. niger when grown in the presence of type II epithelial cells. The results indicate important differences in gene expression, amongst others down regulation of immune response genes in lung epithelial cells by A. fumigatus but not by A niger.


Assuntos
Aspergillus fumigatus/patogenicidade , Aspergillus niger/patogenicidade , Células A549 , Regulação para Baixo , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Perfilação da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Humanos , Interleucina-8/genética , Interleucina-8/metabolismo , RNA/química , RNA/isolamento & purificação , RNA/metabolismo , Análise de Sequência de RNA , Regulação para Cima
18.
BMC Microbiol ; 18(1): 118, 2018 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-30223790

RESUMO

BACKGROUND: Aspergillus fumigatus is a ubiquitous saprotrophic fungus and an opportunistic pathogen of humans and animals. Humans and animals can inhale hundreds of A. fumigatus spores daily. Normally this is harmless for humans, but in case of immunodeficiency, invasive pulmonary aspergillosis (IPA) can develop with a high mortality rate. A. fumigatus also causes non-invasive mycoses like sino-nasal aspergillosis (SNA) in dogs. RESULTS: In this study we compared A. fumigatus isolates from humans with suspected IPA, dogs with SNA, and a set of environmental isolates. Phylogenetic inference based on calmodulin (CaM) and beta-tubulin (benA) sequences did not reveal A. fumigatus sub-groups linked to the origin of the isolates. Genotyping and microsatellite analysis showed that each dog was infected by one A. fumigatus genotype, whereas human patients had mixed infections. Azole resistance was determined by antifungal susceptibility testing and sequencing of the cyp51A gene. A total of 12 out of 29 human isolates and 1 out of 27 environmental isolates were azole resistant. Of the azole resistant strains, 11 human isolates showed TR34/L98H (n = 6) or TR46/Y121F/T289A (n = 5). Phenotypically, isolates from dogs were more variable in growth speed and morphology when compared to those isolated from human and the environment. CONCLUSIONS: 1. A. fumigatus from dogs with SNA are phenotypically very diverse in contrast to their environmental and human counterparts. 2. Phenotypic variability can be induced during the chronic infection process in the sinus of the dogs. The basis of this heterogeneity might be due to genomic differences and/or epigenetic variations. 3. Differences in dogs is a could be a result of within-host adaption and might be triggered by environmental factors in the sinus, however this hypothesis still needs to be tested.


Assuntos
Aspergilose/microbiologia , Aspergilose/veterinária , Aspergillus fumigatus/isolamento & purificação , Doenças do Cão/microbiologia , Animais , Antifúngicos/farmacologia , Aspergillus fumigatus/classificação , Aspergillus fumigatus/efeitos dos fármacos , Aspergillus fumigatus/genética , Azóis/farmacologia , Cães , Microbiologia Ambiental , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genótipo , Humanos , Testes de Sensibilidade Microbiana , Fenótipo , Filogenia
19.
Appl Microbiol Biotechnol ; 102(18): 7795-7803, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30027491

RESUMO

Commercial mushrooms are produced on lignocellulose such as straw, saw dust, and wood chips. As such, mushroom-forming fungi convert low-quality waste streams into high-quality food. Spent mushroom substrate (SMS) is usually considered a waste product. This review discusses the applications of SMS to promote the transition to a circular economy. SMS can be used as compost, as a substrate for other mushroom-forming fungi, as animal feed, to promote health of animals, and to produce packaging and construction materials, biofuels, and enzymes. This range of applications can make agricultural production more sustainable and efficient, especially if the CO2 emission and heat from mushroom cultivation can be used to promote plant growth in greenhouses.


Assuntos
Agaricales/crescimento & desenvolvimento , Agricultura/economia , Lignina/economia , Agaricales/metabolismo , Agricultura/instrumentação , Meios de Cultura/análise , Meios de Cultura/economia , Meios de Cultura/metabolismo , Lignina/análise , Lignina/metabolismo , Resíduos/análise , Resíduos/economia
20.
Antonie Van Leeuwenhoek ; 111(3): 311-322, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28965153

RESUMO

Aspergillus niger secretes proteins throughout the colony except for the zone that forms asexual spores called conidia. Inactivation of flbA that encodes a regulator of G-protein signaling results in colonies that are unable to reproduce asexually and that secrete proteins throughout the mycelium. In addition, the ΔflbA strain shows cell lysis and has thinner cell walls. Expression analysis showed that 38 predicted transcription factor genes are differentially expressed in strain ΔflbA. Here, the most down-regulated predicted transcription factor gene, called fum21, was inactivated. Growth, conidiation, and protein secretion were not affected in strain Δfum21. Whole genome expression analysis revealed that 63 and 11 genes were down- and up-regulated in Δfum21, respectively, when compared to the wild-type strain. Notably, 24 genes predicted to be involved in secondary metabolism were down-regulated in Δfum21, including 10 out of 12 genes of the fumonisin cluster. This was accompanied by absence of fumonisin production in the deletion strain and a 25% reduction in production of pyranonigrin A. Together, these results link FlbA-mediated sporulation-inhibited secretion with mycotoxin production.


Assuntos
Aspergillus niger/genética , Aspergillus niger/metabolismo , Fumonisinas/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Fatores de Transcrição/metabolismo , Perfilação da Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA