Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Bioorg Med Chem Lett ; 29(4): 560-562, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30616904

RESUMO

Fluorination of metabolic hotspots in a molecule is a common medicinal chemistry strategy to improve in vivo half-life and exposure and, generally, this strategy offers significant benefits. Here, we report the application of this strategy to a series of poly-ADP ribose glycohydrolase (PARG) inhibitors, resulting in unexpected in vivo toxicity which was attributed to this single-atom modification.


Assuntos
Ciclopropanos/farmacologia , Glicosídeo Hidrolases/toxicidade , Microssomos Hepáticos/efeitos dos fármacos , Administração Oral , Animais , Ciclopropanos/administração & dosagem , Ciclopropanos/química , Ciclopropanos/farmacocinética , Glicosídeo Hidrolases/administração & dosagem , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/farmacocinética , Meia-Vida , Humanos , Camundongos , Microssomos Hepáticos/metabolismo
2.
Anal Biochem ; 503: 58-64, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27036617

RESUMO

Poly(ADP-ribose) (PAR) polymers are transient post-translational modifications, and their formation is catalyzed by poly(ADP-ribose) polymerase (PARP) enzymes. A number of PARP inhibitors are in advanced clinical development for BRCA-mutated breast cancer, and olaparib has recently been approved for BRCA-mutant ovarian cancer; however, there has already been evidence of developed resistance mechanisms. Poly(ADP-ribose) glycohydrolase (PARG) catalyzes the hydrolysis of the endo- and exo-glycosidic bonds within the PAR polymers. As an alternative strategy, PARG is a potentially attractive therapeutic target. There is only one PARG gene, compared with 17 known PARP family members, and therefore a PARG inhibitor may have wider application with fewer compensatory mechanisms. Prior to the initiation of this project, there were no known existing cell-permeable small molecule PARG inhibitors for use as tool compounds to assess these hypotheses and no suitable high-throughput screening (HTS)-compatible biochemical assays available to identify start points for a drug discovery project. The development of this newly described high-throughput homogeneous time-resolved fluorescence (HTRF) assay has allowed HTS to proceed and, from this, the identification and advancement of multiple validated series of tool compounds for PARG inhibition.


Assuntos
Fluorescência , Glicosídeo Hidrolases/metabolismo , Ensaios de Triagem em Larga Escala/métodos , Medições Luminescentes/métodos , Linhagem Celular , Inibidores Enzimáticos/farmacologia , Glicosídeo Hidrolases/análise , Glicosídeo Hidrolases/antagonistas & inibidores , Humanos , Relação Estrutura-Atividade , Fatores de Tempo
3.
Bioorg Med Chem Lett ; 26(11): 2724-9, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27086121

RESUMO

We have previously reported a series of anilinoquinazoline derivatives as potent and selective biochemical inhibitors of the RET kinase domain. However, these derivatives displayed diminished cellular potency. Herein we describe further optimisation of the series through modification of their physicochemical properties, delivering improvements in cell potency. However, whilst cellular selectivity against key targets could be maintained, combining cell potency and acceptable pharmacokinetics proved challenging.


Assuntos
Compostos de Anilina/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-ret/antagonistas & inibidores , Quinazolinas/farmacologia , Compostos de Anilina/síntese química , Compostos de Anilina/química , Relação Dose-Resposta a Droga , Humanos , Modelos Moleculares , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Proteínas Proto-Oncogênicas c-ret/metabolismo , Quinazolinas/síntese química , Quinazolinas/química , Relação Estrutura-Atividade
4.
Anal Biochem ; 440(1): 1-5, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23688965

RESUMO

Tyrosyl-DNA phosphodiesterase 1 (Tdp1) catalyzes the hydrolysis of phosphodiester bonds between the DNA 3'-phosphate and tyrosine residues and plays a major role in the repair of stalled topoisomerase I-DNA covalent complexes. Given this role, Tdp1 is of interest as a potential target for anticancer therapy. Inhibiting Tdp1 in combination with clinically used Top1 inhibitors may potentiate the effects of the latter and help to overcome some of the chemoresistance issues currently observed. In addition, Tdp1 can function during DNA repair to remove a variety of other 3' adducts from DNA such as phosphoglycolates and abasic or apurinic/apyrimidinic (AP) sites. Here we describe a new mix-and-read homogeneous fluorogenic assay for the measurement of the AP-site cleavage activity of Tdp1 that is compatible with high-throughput screening. The application of such an assay will open up further avenues for the discovery of novel Tdp1 inhibitors.


Assuntos
Clivagem do DNA , Reparo do DNA , Ensaios Enzimáticos/métodos , Fluorescência , Ensaios de Triagem em Larga Escala/métodos , Diester Fosfórico Hidrolases/química , Humanos , Purinas/química , Pirimidinas/química
5.
Sci Rep ; 10(1): 3836, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-32123273

RESUMO

There is mounting evidence of androgen receptor signaling inducing genome instability and changing DNA repair capacity in prostate cancer cells. Expression of genes associated with base excision repair (BER) is increased with prostate cancer progression and correlates with poor prognosis. Poly(ADP-ribose) polymerase (PARP) and poly(ADP-ribose) glycohydrolase (PARG) are key enzymes in BER that elongate and degrade PAR polymers on target proteins. While PARP inhibitors have been tested in clinical trials and are a promising therapy for prostate cancer patients with TMPRSS2-ERG fusions and mutations in DNA repair genes, PARG inhibitors have not been evaluated. We show that PARG is a direct androgen receptor (AR) target gene. AR is recruited to the PARG locus and induces PARG expression. Androgen ablation combined with PARG inhibition synergistically reduces BER capacity in independently derived LNCaP and LAPC4 prostate cancer cell lines. A combination of PARG inhibition with androgen ablation or with the DNA damaging drug, temozolomide, significantly reduces cellular proliferation and increases DNA damage. PARG inhibition alters AR transcriptional output without changing AR protein levels. Thus, AR and PARG are engaged in reciprocal regulation suggesting that the success of androgen ablation therapy can be enhanced by PARG inhibition in prostate cancer patients.


Assuntos
Inibidores de Glicosídeo Hidrolases/farmacologia , Glicosídeo Hidrolases/antagonistas & inibidores , Neoplasias da Próstata/patologia , Receptores Androgênicos/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Sinergismo Farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glicosídeo Hidrolases/metabolismo , Humanos , Masculino , Terapia de Alvo Molecular
6.
Nat Struct Mol Biol ; 27(12): 1152-1164, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33046907

RESUMO

The synthesis of poly(ADP-ribose) (PAR) reconfigures the local chromatin environment and recruits DNA-repair complexes to damaged chromatin. PAR degradation by poly(ADP-ribose) glycohydrolase (PARG) is essential for progression and completion of DNA repair. Here, we show that inhibition of PARG disrupts homology-directed repair (HDR) mechanisms that underpin alternative lengthening of telomeres (ALT). Proteomic analyses uncover a new role for poly(ADP-ribosyl)ation (PARylation) in regulating the chromatin-assembly factor HIRA in ALT cancer cells. We show that HIRA is enriched at telomeres during the G2 phase and is required for histone H3.3 deposition and telomere DNA synthesis. Depletion of HIRA elicits systemic death of ALT cancer cells that is mitigated by re-expression of ATRX, a protein that is frequently inactivated in ALT tumors. We propose that PARylation enables HIRA to fulfill its essential role in the adaptive response to ATRX deficiency that pervades ALT cancers.


Assuntos
DNA de Neoplasias/genética , Regulação Neoplásica da Expressão Gênica , Glicosídeo Hidrolases/genética , Poli(ADP-Ribose) Polimerases/genética , Processamento de Proteína Pós-Traducional , Reparo de DNA por Recombinação , Telômero/metabolismo , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Cromatina/metabolismo , Cromatina/ultraestrutura , Dano ao DNA , DNA de Neoplasias/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Fase G2 , Glicosídeo Hidrolases/metabolismo , Células HeLa , Chaperonas de Histonas/antagonistas & inibidores , Chaperonas de Histonas/genética , Chaperonas de Histonas/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Poli ADP Ribosilação , Poli Adenosina Difosfato Ribose/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Telômero/ultraestrutura , Homeostase do Telômero , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteína Nuclear Ligada ao X/genética , Proteína Nuclear Ligada ao X/metabolismo
8.
ACS Chem Biol ; 14(10): 2148-2154, 2019 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-31525021

RESUMO

The Fanconi anemia pathway orchestrates the repair of DNA interstrand cross-links and stalled replication forks. A key step in this pathway is UBE2T and FANCL-dependent monoubiquitylation of the FANCD2-FANCI complex. The Fanconi anemia pathway represents an attractive therapeutic target, because activation of this pathway has been linked to chemotherapy resistance in several cancers. However, to date, very few selective inhibitors of ubiquitin conjugation pathways are known. By using a high-throughput screen-compatible assay, we have identified a small-molecule inhibitor of UBE2T/FANCL-mediated FANCD2 monoubiquitylation that sensitizes cells to the DNA cross-linking agent, carboplatin.


Assuntos
Proteína do Grupo de Complementação L da Anemia de Fanconi/antagonistas & inibidores , Anemia de Fanconi/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Enzimas de Conjugação de Ubiquitina/antagonistas & inibidores , Linhagem Celular Tumoral , Proteína do Grupo de Complementação L da Anemia de Fanconi/metabolismo , Ensaios de Triagem em Larga Escala , Humanos , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitinação
9.
Cancer Res ; 79(17): 4491-4502, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31273064

RESUMO

Patients with metastatic pancreatic ductal adenocarcinoma (PDAC) have an average survival of less than 1 year, underscoring the importance of evaluating novel targets with matched targeted agents. We recently identified that poly (ADP) ribose glycohydrolase (PARG) is a strong candidate target due to its dependence on the pro-oncogenic mRNA stability factor HuR (ELAVL1). Here, we evaluated PARG as a target in PDAC models using both genetic silencing of PARG and established small-molecule PARG inhibitors (PARGi), PDDX-01/04. Homologous repair-deficient cells compared with homologous repair-proficient cells were more sensitive to PARGi in vitro. In vivo, silencing of PARG significantly decreased tumor growth. PARGi synergized with DNA-damaging agents (i.e., oxaliplatin and 5-fluorouracil), but not with PARPi therapy. Mechanistically, combined PARGi and oxaliplatin treatment led to persistence of detrimental PARylation, increased expression of cleaved caspase-3, and increased γH2AX foci. In summary, these data validate PARG as a relevant target in PDAC and establish current therapies that synergize with PARGi. SIGNIFICANCE: PARG is a potential target in pancreatic cancer as a single-agent anticancer therapy or in combination with current standard of care.


Assuntos
Carcinoma Ductal Pancreático/tratamento farmacológico , Glicosídeo Hidrolases/antagonistas & inibidores , Neoplasias Pancreáticas/tratamento farmacológico , Animais , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Dano ao DNA , Inibidores Enzimáticos/farmacologia , Feminino , Inativação Gênica , Glicosídeo Hidrolases/genética , Humanos , Camundongos Nus , Terapia de Alvo Molecular , Oxaliplatina/farmacologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Reparo de DNA por Recombinação , Bibliotecas de Moléculas Pequenas/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
10.
J Med Chem ; 61(23): 10767-10792, 2018 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-30403352

RESUMO

DNA damage repair enzymes are promising targets in the development of new therapeutic agents for a wide range of cancers and potentially other diseases. The enzyme poly(ADP-ribose) glycohydrolase (PARG) plays a pivotal role in the regulation of DNA repair mechanisms; however, the lack of potent drug-like inhibitors for use in cellular and in vivo models has limited the investigation of its potential as a novel therapeutic target. Using the crystal structure of human PARG in complex with the weakly active and cytotoxic anthraquinone 8a, novel quinazolinedione sulfonamides PARG inhibitors have been identified by means of structure-based virtual screening and library design. 1-Oxetan-3-ylmethyl derivatives 33d and 35d were selected for preliminary investigations in vivo. X-ray crystal structures help rationalize the observed structure-activity relationships of these novel inhibitors.


Assuntos
Reparo do DNA , Desenho de Fármacos , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/farmacologia , Glicosídeo Hidrolases/antagonistas & inibidores , Quinazolinonas/química , Quinazolinonas/farmacologia , Administração Oral , Animais , Disponibilidade Biológica , Domínio Catalítico , Inibidores de Glicosídeo Hidrolases/administração & dosagem , Inibidores de Glicosídeo Hidrolases/farmacocinética , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/metabolismo , Células HeLa , Humanos , Masculino , Camundongos , Modelos Moleculares , Quinazolinonas/administração & dosagem , Quinazolinonas/farmacocinética , Relação Estrutura-Atividade
11.
Methods Mol Biol ; 1608: 415-430, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28695524

RESUMO

Protein ADP-ribosylation is a conserved posttranslational modification that regulates many major cellular functions, such as DNA repair, transcription, translation, signal transduction, stress response, cell division, aging, and cell death. Protein ADP-ribosyl transferases catalyze the transfer of an ADP-ribose (ADPr) group from the ß-nicotinamide adenine dinucleotide (ß-NAD+) cofactor onto a specific target protein with the subsequent release of nicotinamide. ADP-ribosylation leads to changes in protein structure, function, stability, and localization, thus defining the appropriate cellular response. Signaling processes that are mediated by modifications need to be finely tuned and eventually silenced and one of the ways to achieve this is through the action of enzymes that remove (reverse) protein ADP-ribosylation in a timely fashion such as PARG, TARG1, MACROD1, and MACROD2. Here, we describe several basic methods used to study the enzymatic activity of de-ADP-ribosylating enzymes.


Assuntos
ADP-Ribosilação/fisiologia , Poli(ADP-Ribose) Polimerases/metabolismo , ADP-Ribosilação/genética , Adenosina Difosfato Ribose/metabolismo , Animais , Reparo do DNA/genética , Reparo do DNA/fisiologia , Glicosilação , Humanos , Poli(ADP-Ribose) Polimerases/genética , Processamento de Proteína Pós-Traducional/genética , Processamento de Proteína Pós-Traducional/fisiologia
12.
F1000Res ; 5: 962, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27703665

RESUMO

We present IncucyteDRC, an R package for the analysis of data from live cell imaging cell proliferation experiments carried out on the Essen Biosciences IncuCyte ZOOM instrument. The package provides a simple workflow for summarising data into a form that can be used to calculate dose response curves and EC50 values for small molecule inhibitors. Data from different cell lines, or cell lines grown under different conditions, can be normalised as to their doubling time. A simple graphical web interface, implemented using shiny, is provided for the benefit of non-R users. The software is potentially useful to any research group studying the impact of small molecule inhibitors on cell proliferation using the IncuCyte ZOOM.

13.
F1000Res ; 5: 736, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27610220

RESUMO

After a DNA damage signal multiple polymers of ADP ribose attached to poly(ADP) ribose (PAR) polymerases (PARPs) are broken down by the enzyme poly(ADP) ribose glycohydrolase (PARG). Inhibition of PARG leads to a failure of DNA repair and small molecule inhibition of PARG has been a goal for many years. To determine whether biochemical inhibitors of PARG are active in cells we have designed an immunofluorescence assay to detect nuclear PAR after DNA damage. This 384-well assay is suitable for medium throughput high-content screening and can detect cell-permeable inhibitors of PARG from nM to µM potency. In addition, the assay has been shown to work in murine cells and in a variety of human cancer cells. Furthermore, the assay is suitable for detecting the DNA damage response induced by treatment with temozolomide and methylmethane sulfonate (MMS). Lastly, the assay has been shown to be robust over a period of several years.

14.
F1000Res ; 5: 1005, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27429741

RESUMO

RET (REarranged during Transfection) is a receptor tyrosine kinase, which plays pivotal roles in regulating cell survival, differentiation, proliferation, migration and chemotaxis. Activation of RET is a mechanism of oncogenesis in medullary thyroid carcinomas where both germline and sporadic activating somatic mutations are prevalent. At present, there are no known specific RET inhibitors in clinical development, although many potent inhibitors of RET have been opportunistically identified through selectivity profiling of compounds initially designed to target other tyrosine kinases. Vandetanib and cabozantinib, both multi-kinase inhibitors with RET activity, are approved for use in medullary thyroid carcinoma, but additional pharmacological activities, most notably inhibition of vascular endothelial growth factor - VEGFR2 (KDR), lead to dose-limiting toxicity. The recent identification of RET fusions present in ~1% of lung adenocarcinoma patients has renewed interest in the identification and development of more selective RET inhibitors lacking the toxicities associated with the current treatments. In an earlier publication [Newton et al, 2016; 1] we reported the discovery of a series of 2-substituted phenol quinazolines as potent and selective RET kinase inhibitors. Here we describe the development of the robust screening cascade which allowed the identification and advancement of this chemical series.  Furthermore we have profiled a panel of RET-active clinical compounds both to validate the cascade and to confirm that none display a RET-selective target profile.

15.
ACS Chem Biol ; 11(11): 3179-3190, 2016 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-27689388

RESUMO

The enzyme poly(ADP-ribose) glycohydrolase (PARG) performs a critical role in the repair of DNA single strand breaks (SSBs). However, a detailed understanding of its mechanism of action has been hampered by a lack of credible, cell-active chemical probes. Herein, we demonstrate inhibition of PARG with a small molecule, leading to poly(ADP-ribose) (PAR) chain persistence in intact cells. Moreover, we describe two advanced, and chemically distinct, cell-active tool compounds with convincing on-target pharmacology and selectivity. Using one of these tool compounds, we demonstrate pharmacology consistent with PARG inhibition. Further, while the roles of PARG and poly(ADP-ribose) polymerase (PARP) are closely intertwined, we demonstrate that the pharmacology of a PARG inhibitor differs from that observed with the more thoroughly studied PARP inhibitor olaparib. We believe that these tools will facilitate a wider understanding of this important component of DNA repair and may enable the development of novel therapeutic agents exploiting the critical dependence of tumors on the DNA damage response (DDR).


Assuntos
Reparo do DNA , Glicosídeo Hidrolases/química , Sondas Moleculares/química , Ftalazinas/farmacologia , Piperazinas/farmacologia , Inibidores Enzimáticos/farmacologia , Glicosídeo Hidrolases/antagonistas & inibidores , Células HeLa , Humanos , Ressonância de Plasmônio de Superfície
16.
Eur J Med Chem ; 112: 20-32, 2016 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-26874741

RESUMO

Deregulation of the receptor tyrosine kinase RET has been implicated in medullary thyroid cancer, a small percentage of lung adenocarcinomas, endocrine-resistant breast cancer and pancreatic cancer. There are several clinically approved multi-kinase inhibitors that target RET as a secondary pharmacology but additional activities, most notably inhibition of KDR, lead to dose-limiting toxicities. There is, therefore, a clinical need for more specific RET kinase inhibitors. Herein we report our efforts towards identifying a potent and selective RET inhibitor using vandetanib 1 as the starting point for structure-based drug design. Phenolic anilinoquinazolines exemplified by 6 showed improved affinities towards RET but, unsurprisingly, suffered from high metabolic clearance. Efforts to mitigate the metabolic liability of the phenol led to the discovery that a flanking substituent not only improved the hepatocyte stability, but could also impart a significant gain in selectivity. This culminated in the identification of 36; a potent RET inhibitor with much improved selectivity against KDR.


Assuntos
Piperidinas/química , Piperidinas/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-ret/antagonistas & inibidores , Quinazolinas/química , Quinazolinas/farmacologia , Animais , Linhagem Celular , Desenho de Fármacos , Humanos , Camundongos , Simulação de Acoplamento Molecular , Piperidinas/farmacocinética , Inibidores de Proteínas Quinases/farmacocinética , Proteínas Proto-Oncogênicas c-ret/metabolismo , Quinazolinas/farmacocinética
17.
Diabetes ; 53(3): 535-41, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-14988235

RESUMO

Glucokinase (GK) has a major role in the control of blood glucose homeostasis and is a strong potential target for the pharmacological treatment of type 2 diabetes. We report here the mechanism of action of two novel and potent direct activators of GK: 6-[(3-isobutoxy-5-isopropoxybenzoyl)amino]nicotinic acid(GKA1) and 5-([3-isopropoxy-5-[2-(3-thienyl)ethoxy]benzoyl]amino)-1,3,4-thiadiazole-2-carboxylic acid(GKA2), which increase the affinity of GK for glucose by 4- and 11-fold, respectively. GKA1 increased the affinity of GK for the competitive inhibitor mannoheptulose but did not affect the affinity for the inhibitors palmitoyl-CoA and the endogenous 68-kDa regulator (GK regulatory protein [GKRP]), which bind to allosteric sites or to N-acetylglucosamine, which binds to the catalytic site. In hepatocytes, GKA1 and GKA2 stimulated glucose phosphorylation, glycolysis, and glycogen synthesis to a similar extent as sorbitol, a precursor of fructose 1-phosphate, which indirectly activates GK through promoting its dissociation from GKRP. Consistent with their effects on isolated GK, these compounds also increased the affinity of hepatocyte metabolism for glucose. GKA1 and GKA2 caused translocation of GK from the nucleus to the cytoplasm. This effect was additive with the effect of sorbitol and is best explained by a "glucose-like" effect of the GK activators in translocating GK to the cytoplasm. In conclusion, GK activators are potential antihyperglycemic agents for the treatment of type 2 diabetes through the stimulation of hepatic glucose metabolism by a mechanism independent of GKRP.


Assuntos
Glucoquinase/metabolismo , Glucose/metabolismo , Hepatócitos/enzimologia , Fígado/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas de Transporte/metabolismo , Clonagem Molecular , DNA Complementar/metabolismo , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/metabolismo , Escherichia coli/enzimologia , Escherichia coli/metabolismo , Glucoquinase/antagonistas & inibidores , Glucose/farmacologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Cinética , Fígado/enzimologia , Masculino , Reação em Cadeia da Polimerase , Ratos , Ratos Wistar , Sorbitol/farmacologia
18.
J Mol Endocrinol ; 35(1): 13-25, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16087718

RESUMO

The beta-cell failure that characterises type 2 diabetes is likely to involve altered expression of many genes. We aimed to identify global changes in gene expression underlying beta-cell dysfunction in pre-diabetic Zucker Diabetic Fatty rat islets, followed by functional studies to verify our findings. Gene expression profiles in islets from 6-week-old Zucker Diabetic Fatty rats and Zucker Fatty rat controls were analysed using Affymetrix microarrays. Totally 977 genes were found to be differentially regulated, comprising large groups of membrane and structural proteins, kinases, channels, receptors, transporters, growth factors and transcription factors. We are particularly interested in transcription factors, which can have profound effects on cellular function. Thus a subset of those with no role yet defined in the beta-cell was selected for further study namely the immediate-early gene Egr-1, PAG608, rCGR19 and mSin3b. Tissue specificity of these factors varied but interestingly Egr-1 expression was highly enriched in the pancreatic islet. To determine a possible role of Egr-1 in the beta-cell, Egr-1 expression in INS-1 cells was silenced using RNA interference (RNAi). Glucose-stimulated insulin secretion in these cells was then measured using ELISA and cell proliferation was measured by [(3)H]thymidine incorporation. Small interfering RNA (siRNA)-mediated silencing of the Egr-1 gene inhibited its induction by glucose but had no observable effect on glucose-stimulated insulin secretion. However, Egr-1 gene silencing did inhibit proliferation of INS-1 cells in a glucose-independent manner. Our studies have revealed a role for Egr-1 and suggest that reduced Egr-1 gene expression may contribute to decreased beta-cell proliferation and the consequent beta-cell failure observed in the later stages of type 2 diabetes.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas Imediatamente Precoces/genética , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/metabolismo , Fatores de Transcrição/genética , Animais , Sequência de Bases , Proliferação de Células , DNA Complementar/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Proteína 1 de Resposta de Crescimento Precoce , Expressão Gênica/efeitos dos fármacos , Perfilação da Expressão Gênica , Genes Precoces , Glucose/farmacologia , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Estado Pré-Diabético/genética , Estado Pré-Diabético/metabolismo , Estado Pré-Diabético/patologia , Interferência de RNA , RNA Interferente Pequeno/genética , Ratos , Ratos Zucker
19.
Int J Oncol ; 27(4): 1105-11, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16142329

RESUMO

A novel proteoglycan, proteolysis inducing factor (PIF), is capable of inducing muscle proteolysis during the process of cancer cachexia, and of inducing an acute phase response in human hepatocytes. We investigated whether PIF is able to activate pro-inflammatory pathways in human Kupffer cells, the resident macrophages of the liver, and in monocytes, resulting in the production of pro-inflammatory cytokines. Normal liver tissue was obtained from patients undergoing partial hepatectomy and Kupffer cells were isolated. Monocytes were isolated from peripheral blood. Following exposure to native PIF, pro-inflammatory cytokine production from Kupffer cells and monocytes was measured and the NF-kappaB and STAT3 transcriptional pathways were investigated using electrophoretic mobility shift assays. We demonstrate that PIF is able to activate the transcription factor NF-kappaB and NF-kappaB-inducible genes in human Kupffer cells, and in monocytes, resulting in the production of pro-inflammatory cytokines such as TNF-alpha, IL-8 and IL-6. PIF enhances the expression of the cell surface molecules LFA-1 and CD14 on macrophages. PIF also activates the transcription factor STAT3 in Kupffer cells. The pro-inflammatory effects of PIF, mediated via NF-kappaB and STAT3, are important in macrophage behaviour and may contribute to the inflammatory pro-cachectic process in the liver.


Assuntos
Proteínas Sanguíneas/fisiologia , Caquexia/patologia , Células de Kupffer/citologia , Monócitos/química , NF-kappa B/metabolismo , Fator de Transcrição STAT3/metabolismo , Reação de Fase Aguda , Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Citocinas/metabolismo , Citoplasma/metabolismo , Citometria de Fluxo , Humanos , Inflamação , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Receptores de Lipopolissacarídeos/biossíntese , Lipopolissacarídeos/metabolismo , Fígado/metabolismo , Macrófagos/metabolismo , Monócitos/citologia , Monócitos/metabolismo , Proteoglicanas , Fatores de Tempo , Transcrição Gênica , Fator de Necrose Tumoral alfa/metabolismo
20.
FASEB J ; 17(9): 1048-57, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12773487

RESUMO

In some inflammatory diseases, TNF-alpha is thought to stimulate muscle catabolism via an NF-kappaB-dependent process that increases ubiquitin conjugation to muscle proteins. The transcriptional mechanism of this response has not been determined. Here we studied the potential role of UbcH2, a ubiquitin carrier protein and homologue of murine E220k. We find that UbcH2 is constitutively expressed by human skeletal and cardiac muscles, murine limb muscle, and cultured myotubes. TNF-alpha stimulates UbcH2 expression in mouse limb muscles in vivo and in cultured myotubes. The UbcH2 promoter region contains a functional NF-kappaB binding site; NF-kappaB binding to this sequence is increased by TNF-alpha stimulation. A dominant negative inhibitor of NF-kappaB activation blocks both UbcH2 up-regulation and the increase in ubiquitin-conjugating activity stimulated by TNF-alpha. In extracts from TNF-alpha-treated myotubes, ubiquitin-conjugating activity is limited by UbcH2 availability; activity is inhibited by an antiserum to UbcH2 or a dominant negative mutant of UbcH2 and is enhanced by wild-type UbcH2. Thus, UbcH2 up-regulation is a novel response to TNF-alpha/NF-kappaB signaling in skeletal muscle that appears to be essential for the increased ubiquitin conjugation induced by this cytokine.


Assuntos
Ligases/metabolismo , Músculo Esquelético/enzimologia , Fator de Necrose Tumoral alfa/farmacologia , Enzimas de Conjugação de Ubiquitina , Ubiquitinas/metabolismo , Animais , Linhagem Celular , Células Cultivadas , Indução Enzimática , Humanos , Ligases/genética , Ligases/fisiologia , Camundongos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , NF-kappa B/metabolismo , Ratos , Transdução de Sinais , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA