Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Anal Biochem ; 672: 115171, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37142196

RESUMO

2'-Deoxynucleoside 5'-monophosphate N-glycosidase 1 (DNPH1) hydrolyzes the epigenetically modified nucleotide 5-hydroxymethyl 2'-deoxyuridine 5'-monophosphate (hmdUMP) derived from DNA metabolism. Published assays of DNPH1 activity are low throughput, use high concentrations of DNPH1, and have not incorporated or characterized reactivity with the natural substrate. We describe the enzymatic synthesis of hmdUMP from commercially available materials and define its steady-state kinetics with DNPH1 using a sensitive, two-pathway enzyme coupled assay. This continuous absorbance-based assay works in 96-well plate format using nearly 500-fold less DNPH1 than previous methods. With a Z prime value of 0.92, the assay is suitable for high-throughput assays, screening of DNPH1 inhibitors, or characterization of other deoxynucleotide monophosphate hydrolases.


Assuntos
Hidrolases , N-Glicosil Hidrolases , Hidrólise , N-Glicosil Hidrolases/química , N-Glicosil Hidrolases/genética , N-Glicosil Hidrolases/metabolismo , Hidrolases/metabolismo , Cinética
2.
Biochemistry ; 61(11): 1022-1028, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34941260

RESUMO

Hedgehog (Hh) signaling ligands undergo carboxy terminal sterylation through specialized autoprocessing, called cholesterolysis. Sterylation is brought about intramolecularly in a single turnover by an adjacent enzymatic domain, called HhC, which is found in precursor Hh proteins only. Previous attempts to identify antagonists of the intramolecular activity of HhC have yielded inhibitors that bind HhC irreversibly through covalent mechanisms, as is common for protein autoprocessing inhibitors. Here, we report an exception to the "irreversibility rule" for autoprocessing inhibition. Using a fluorescence resonance energy transfer-based activity assay for HhC, we screened a focused library of sterol-like analogues for noncovalent inhibitors and identified and validated four structurally related molecules, which were then used for structure-activity relationship studies. The most effective derivative, tBT-HBT, inhibits HhC noncovalently with an IC50 of 300 nM. An allosteric binding site for tBT-HBT, encompassing residues from the two subdomains of HhC, is suggested by kinetic analysis, mutagenesis studies, and photoaffinity labeling. The inhibitors described here resemble a family of noncovalent, allosteric inducers of HhC paracatalysis which we have described previously. The inhibition and the induction appear to be mediated by a shared allosteric site on HhC.


Assuntos
Proteínas Hedgehog , Esteróis , Sítios de Ligação , Cinética , Ligantes , Esteróis/química
3.
Biochemistry ; 59(38): 3517-3522, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32931253

RESUMO

We define paracatalysis as the acceleration of a reaction that appears abnormal or nonphysiological. With the high specificity of enzymes, side reactivity of this kind is typically negligible. However, enzyme paracatalysis can be amplified to levels that are biologically significant through interactions with a special class of small molecule "antagonist", here termed a paracatalytic inducer. Compounds with this unusual mode of action tend to be natural products, identified by chance through phenotypic screens. In this Perspective, we suggest two general types of paracatalytic inducer. The first type promotes substrate ambiguity, where the enzyme's ground state selectivity is compromised, enabling the transformation of non-native substrates. The second type involves transition state ambiguity, where the paracatalytic inducer changes the enzyme's interactions with the activated substrate, giving rise to non-native bond making. Although they are unusual, small molecules that induce paracatalysis have established value as hypothesis-generating probes and a few substances, i.e., aspirin and the aminoglycosides, have proven to be translatable as medicines.


Assuntos
Biocatálise/efeitos dos fármacos , Ativadores de Enzimas/farmacologia , Inibidores Enzimáticos/farmacologia , Enzimas/efeitos dos fármacos , Especificidade por Substrato/efeitos dos fármacos
4.
Biochemistry ; 59(6): 736-741, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32013401

RESUMO

Hedgehog proteins, a family of vital cell signaling factors, are expressed in precursor form, which requires specialized autoprocessing, called cholesterolysis, for full biological activity. Cholesterolysis occurs in cis through the action of the precursor's C-terminal enzymatic domain, HhC. In this work, we describe HhC activator compounds (HACs), a novel class of noncovalent modulators that induce autoprocessing infidelity, diminishing native cholesterolysis in favor of precursor autoproteolysis, an otherwise minor and apparently nonphysiological side reaction. HAC-induced autoproteolysis generates hedgehog protein that is cholesterol free and hence signaling deficient. The most effective HAC has an AC50 of 9 µM, accelerates HhC autoproteolytic activity by 225-fold, and functions in the presence and absence of cholesterol, the native substrate. HACs join a rare class of "antagonists" that suppress native enzymatic activity by subverting mechanistic fidelity.


Assuntos
Colesterol/biossíntese , Proteínas de Drosophila/biossíntese , Proteínas Hedgehog/biossíntese , Catálise , Colesterol/genética , Proteínas de Drosophila/genética , Variação Genética/fisiologia , Proteínas Hedgehog/genética , Proteólise
5.
J Am Chem Soc ; 141(46): 18380-18384, 2019 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-31682419

RESUMO

Hedgehog (Hh) autoprocessing converts Hh precursor protein to cholesterylated Hh ligand for downstream signaling. A conserved active-site aspartate residue, D46, plays a key catalytic role in Hh autoprocessing by serving as a general base to activate substrate cholesterol. Here we report that a charge-altering Asp-to-His mutant (D46H) expands native cholesterylation activity and retains active-site conformation. Native activity toward cholesterol was established for D46H in vitro using a continuous FRET-based autoprocessing assay and in cellulo with stable expression in human 293T cells. The catalytic efficiency of cholesterylation with D46H is similar to that with wild type (WT), with kmax/KM = 2.1 × 103 and 3.7 × 103 M-1 s-1, respectively, and an identical pKa = 5.8 is obtained for both residues by NMR. To our knowledge this is the first example where a general base substitution of an Asp for His preserves both the structure and activity as a general base. Surprisingly, D46H exhibits increased catalytic efficiency toward non-native substrates, especially coprostanol (>200-fold) and epicoprostanol (>300-fold). Expanded substrate tolerance is likely due to stabilization by H46 of the negatively charged tetrahedral intermediate using electrostatic interactions, which are less constrained by geometry than H-bond stabilization by D46. In addition to providing fundamental insights into Hh autoprocessing, our findings have important implications for protein engineering and enzyme design.


Assuntos
Colesterol/metabolismo , Proteínas Hedgehog/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Domínio Catalítico , Colestanol/metabolismo , Células HEK293 , Proteínas Hedgehog/química , Proteínas Hedgehog/genética , Humanos , Modelos Moleculares , Transdução de Sinais , Especificidade por Substrato
6.
Chem Commun (Camb) ; 55(12): 1829-1832, 2019 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-30672911

RESUMO

Cholesterolysis of Hedgehog family proteins couples endoproteolysis to protein C-terminal sterylation. The transformation is self-catalyzed by HhC, a partially characterized enzymatic domain found in precursor forms of Hedgehog. Here we explore spatial ambiguity in sterol recognition by HhC, using a trio of derivatives where the sterol A-ring is contracted, fused, or distorted. Sterylation assays indicate that these geometric variants react as substrates with relative activity: cholesterol, 1.000 > A-ring contracted, 0.100 > A-ring fused, 0.020 > A-ring distorted, 0.005. Experimental results and computational sterol docking into the first HhC homology model suggest a partially unstructured binding site with substrate recognition governed in large part by hydrophobic interactions.


Assuntos
Proteínas Hedgehog/metabolismo , Esteróis/química , Sítios de Ligação , Colesterol/química , Colesterol/metabolismo , Transferência Ressonante de Energia de Fluorescência , Proteínas Hedgehog/química , Humanos , Cinética , Estrutura Terciária de Proteína , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA