Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Physiol ; 597(22): 5385-5397, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31448407

RESUMO

KEY POINTS: Precapillary gas exchange for oxygen has been documented in both humans and animals. It has been suggested that, if precapillary gas exchange occurs to a greater extent for inert gases than for oxygen, shunt and its effects on arterial oxygenation may be underestimated by the multiple inert gas elimination technique (MIGET). We evaluated fractional precapillary gas exchange in canines for O2 and two inert gases, sulphur hexafluoride and ethane, by measuring these gases in the proximal pulmonary artery, distal pulmonary artery (1 cm proximal to the wedge position) and systemic artery. Some 12-19% of pulmonary gas exchange occurred within small (1.7 mm in diameter or larger) pulmonary arteries and this was quantitatively similar for oxygen, sulphur hexafluoride and ethane. Under these experimental conditions, this suggests only minor effects of precapillary gas exchange on the magnitude of calculated shunt and the associated effect on pulmonary gas exchange estimated by MIGET. ABSTRACT: Some pulmonary gas exchange is known to occur proximal to the pulmonary capillary, although the magnitude of this gas exchange is uncertain, and it is unclear whether oxygen and inert gases are similarly affected. This has implications for measuring shunt and associated gas exchange consequences. By measuring respiratory and inert gas levels in the proximal pulmonary artery (P), a distal pulmonary artery 1 cm proximal to the wedge position (using a 5-F catheter) (D) and a systemic artery (A), we evaluated precapillary gas exchange in 27 paired samples from seven anaesthetized, ventilated canines. Fractional precapillary gas exchange (F) was quantified for each gas as F = (P - D)/(P - A). The lowest solubility inert gases, sulphur hexafluoride (SF6 ) and ethane were used because, with higher solubility gases, the P-A difference is sufficiently small that experimental error prevents accurate assessment of F. Distal samples (n = 12) with oxygen (O2 ) saturation values that were (within experimental error) equal to or above systemic arterial values, suggestive of retrograde capillary blood aspiration, were discarded, leaving 15 for analysis. D was significantly lower than P for SF6 (D/P = 88.6 ± 18.1%; P = 0.03) and ethane (D/P = 90.6 ± 16.0%; P = 0.04), indicating partial excretion of inert gas across small pulmonary arteries. Distal pulmonary arterial O2 saturation was significantly higher than proximal (74.1 ± 6.8% vs. 69.0 ± 4.9%; P = 0.03). Fractional precapillary gas exchange was similar for SF6 , ethane and O2 (0.12 ± 0.19, 0.12 ± 0.20 and 0.19 ± 0.26, respectively; P = 0.54). Under these experimental conditions, 12-19% of pulmonary gas exchange occurs within the small pulmonary arteries and the extent is similar between oxygen and inert gases.


Assuntos
Pulmão/metabolismo , Pulmão/fisiologia , Gases Nobres/metabolismo , Oxigênio/metabolismo , Troca Gasosa Pulmonar/fisiologia , Animais , Cães , Circulação Pulmonar/fisiologia
2.
J Physiol ; 597(22): 5365-5384, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31429918

RESUMO

KEY POINTS: Imaging techniques such as contrast echocardiography suggest that anatomical intra-pulmonary arteriovenous anastomoses (IPAVAs) are present at rest and are recruited to a greater extent in conditions such as exercise. IPAVAs have the potential to act as a shunt, although gas exchange methods have not demonstrated significant shunt in the normal lung. To evaluate this discrepancy, we compared anatomical shunt with 25-µm microspheres to contrast echocardiography, and gas exchange shunt measured by the multiple inert gas elimination technique (MIGET). Intra-pulmonary shunt measured by 25-µm microspheres was not significantly different from gas exchange shunt determined by MIGET, suggesting that MIGET does not underestimate the gas exchange consequences of anatomical shunt. A positive agitated saline contrast echocardiography score was associated with anatomical shunt measured by microspheres. Agitated saline contrast echocardiography had high sensitivity but low specificity to detect a ≥1% anatomical shunt, frequently detecting small shunts inconsequential for gas exchange. ABSTRACT: The echocardiographic visualization of transpulmonary agitated saline microbubbles suggests that anatomical intra-pulmonary arteriovenous anastomoses are recruited during exercise, in hypoxia, and when cardiac output is increased pharmacologically. However, the multiple inert gas elimination technique (MIGET) shows insignificant right-to-left gas exchange shunt in normal humans and canines. To evaluate this discrepancy, we measured anatomical shunt with 25-µm microspheres and compared the results to contrast echocardiography and MIGET-determined gas exchange shunt in nine anaesthetized, ventilated canines. Data were acquired under the following conditions: (1) at baseline, (2) 2 µg kg-1  min-1 i.v. dopamine, (3) 10 µg kg-1  min-1 i.v. dobutamine, and (4) following creation of an intra-atrial shunt (in four animals). Right to left anatomical shunt was quantified by the number of 25-µm microspheres recovered in systemic arterial blood. Ventilation-perfusion mismatch and gas exchange shunt were quantified by MIGET and cardiac output by direct Fick. Left ventricular contrast scores were assessed by agitated saline bubble counts, and separately by appearance of 25-µm microspheres. Across all conditions, anatomical shunt measured by 25-µm microspheres was not different from gas exchange shunt measured by MIGET (microspheres: 2.3 ± 7.4%; MIGET: 2.6 ± 6.1%, P = 0.64). Saline contrast bubble score was associated with microsphere shunt (ρ = 0.60, P < 0.001). Agitated saline contrast score had high sensitivity (100%) to detect a ≥1% shunt, but low specificity (22-48%). Gas exchange shunt by MIGET does not underestimate anatomical shunt measured using 25-µm microspheres. Contrast echocardiography is extremely sensitive, but not specific, often detecting small anatomical shunts which are inconsequential for gas exchange.


Assuntos
Anastomose Arteriovenosa/fisiologia , Troca Gasosa Pulmonar/fisiologia , Animais , Anastomose Arteriovenosa/metabolismo , Cães , Ecocardiografia/métodos , Ventrículos do Coração/metabolismo , Ventrículos do Coração/fisiopatologia , Hipóxia/metabolismo , Hipóxia/fisiopatologia , Pulmão/metabolismo , Pulmão/fisiologia , Microesferas , Oxigênio/metabolismo , Circulação Pulmonar/fisiologia , Respiração , Relação Ventilação-Perfusão/fisiologia
3.
J Cell Physiol ; 231(2): 505-11, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26201683

RESUMO

Exercise is dependent on adequate oxygen supply for mitochondrial respiration in both cardiac and locomotor muscle. To determine whether skeletal myofiber VEGF is critical for regulating exercise capacity, independent of VEGF function in the heart, ablation of the VEGF gene was targeted to skeletal myofibers (skmVEGF-/-) during embryogenesis (∼ E9.5), leaving intact VEGF expression by all other cells in muscle. In adult mice, VEGF levels were decreased in the soleus (by 65%), plantaris (94%), gastrocnemius (74%), EDL (99%) and diaphragm (64%) (P < 0.0001, each muscle). VEGF levels were unchanged in the heart. Treadmill speed (WT 86 ± 4 cm/sec, skmVEGF-/- 70 ± 5 cm/sec, P = 0.006) and endurance (WT 78 ± 24 min, skmVEGF-/- 18 ± 4 min, P = 0.0004) were severely limited in skmVEGF-/- mice in contrast to minor effect of conditional skmVEGF gene deletion in the adult. Body weight was also reduced (WT 22.8 ± 1.6 g, skmVEGF-/-, 21.1 ± 1.5, P = 0.02), but the muscle mass/body weight ratio was unchanged. The capillary/fiber ratio was lower in skmVEGF-/- plantaris (WT 1.51 ± 0.12, skmVEGF-/- 1.16 ± 0.20, P = 0.01), gastrocnemius (WT 1.61 ± 0.08, skmVEGF-/- 1.39 ± 0.08, P = 0.01), EDL (WT 1.36 ± 0.07, skmVEGF-/- 1.14 ± 0.13, P = 0.03) and diaphragm (WT 1.39 ± 0.18, skmVEGF-/- 0.79 ± 0.16, P = 0.0001) but, not in soleus. Cardiac function (heart rate, maximal pressure, maximal dP/dt, minimal dP/dt,) in response to dobutamine was not impaired in anesthetized skmVEGF-/- mice. Isolated soleus and EDL fatigue times were 16% and 20% (P < 0.02) longer, respectively, in skmVEGF-/- mice than the WT group. These data suggest that skeletal myofiber VEGF expressed during development is necessary to establish capillary networks that allow maximal exercise capacity.


Assuntos
Fibras Musculares Esqueléticas/fisiologia , Esforço Físico/fisiologia , Fator A de Crescimento do Endotélio Vascular/deficiência , Animais , Capilares/crescimento & desenvolvimento , Capilares/fisiologia , Teste de Esforço , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Camundongos Knockout , Fadiga Muscular/genética , Fadiga Muscular/fisiologia , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/crescimento & desenvolvimento , Músculo Esquelético/fisiologia , Esforço Físico/genética , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/fisiologia
4.
BMC Pulm Med ; 14: 106, 2014 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-24975928

RESUMO

BACKGROUND: There is still limited information on systemic inflammation in alpha-1-antitrypsin-deficient (AATD) COPD patients and what effect alpha-1-antitrypsin augmentation therapy and/or exercise might have on circulating inflammatory cytokines. We hypothesized that AATD COPD patients on augmentation therapy (AATD + AUG) would have lower circulating and skeletal muscle inflammatory cytokines compared to AATD COPD patients not receiving augmentation therapy (AATD-AUG) and/or the typical non-AATD (COPD) patient. We also hypothesized that cytokine response to exercise would be lower in AATD + AUG compared to AATD-AUG or COPD subjects. METHODS: Arterial and femoral venous concentration and skeletal muscle expression of TNFα, IL-6, IL-1ß and CRP were measured at rest, during and up to 4-hours after 50% maximal 1-hour knee extensor exercise in all COPD patient groups, including 2 additional groups (i.e. AATD with normal lung function, and healthy age-/activity-matched controls). RESULTS: Circulating CRP was higher in AATD + AUG (4.7 ± 1.6 mg/dL) and AATD-AUG (3.3 ± 1.2 mg/dL) compared to healthy controls (1.5 ± 0.3 mg/dL, p < 0.05), but lower in AATD compared to non-AATD-COPD patients (6.1 ± 2.6 mg/dL, p < 0.05). TNFα, IL-6 and IL-1ß were significantly increased by 1.7-, 1.7-, and 4.7-fold, respectively, in non-AATD COPD compared to AATD COPD (p < 0.05), and 1.3-, 1.7-, and 2.2-fold, respectively, compared to healthy subjects (p < 0.05). Skeletal muscle TNFα was on average 3-4 fold greater in AATD-AUG compared to the other groups (p < 0.05). Exercise showed no effect on these cytokines in any of our patient groups. CONCLUSION: These data show that AATD COPD patients do not experience the same chronic systemic inflammation and exhibit reduced inflammation compared to non-AATD COPD patients. Augmentation therapy may help to improve muscle efflux of TNFα and reduce muscle TNFα concentration, but showed no effect on IL-6, IL-1ß or CRP.


Assuntos
Citocinas/sangue , Exercício Físico/fisiologia , Músculo Esquelético/metabolismo , Doença Pulmonar Obstrutiva Crônica/sangue , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Deficiência de alfa 1-Antitripsina/sangue , Deficiência de alfa 1-Antitripsina/tratamento farmacológico , Idoso , Análise de Variância , Proteína C-Reativa/análise , Estudos de Casos e Controles , Estudos de Coortes , Sinergismo Farmacológico , Teste de Esforço/métodos , Feminino , Seguimentos , Humanos , Interleucina-1beta/sangue , Interleucina-6/sangue , Masculino , Pessoa de Meia-Idade , Doença Pulmonar Obstrutiva Crônica/complicações , Valores de Referência , Testes de Função Respiratória , Índice de Gravidade de Doença , Estatísticas não Paramétricas , Resultado do Tratamento , Fator de Necrose Tumoral alfa/sangue , Deficiência de alfa 1-Antitripsina/complicações , Deficiência de alfa 1-Antitripsina/diagnóstico
5.
Eur Respir J ; 41(2): 295-301, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22556019

RESUMO

In healthy humans, cerebral oxygen desaturation during exercise affects motor unit recruitment, while oxygen supplementation enhances cerebral oxygenation and work capacity. It remains unknown whether in patients with chronic obstructive pulmonary disease (COPD), the well-documented improvement in exercise tolerance with oxygen supplementation may also be partly due to the increase in cerebral oxygenation. Using near infrared spectroscopy, we measured both frontal cerebral cortex blood flow (CBF) using indocyanine green dye and cerebrovascular oxygen saturation (S(t,O(2))) in 12 COPD patients during constant-load exercise to exhaustion at 75% of peak capacity. Subjects exercised while breathing air, 100% oxygen or normoxic heliox, the latter two in balanced order. Time to exhaustion while breathing air was less than for either oxygen or heliox (mean±sem 394±35 versus 670±43 and 637±46 s, respectively). Under each condition, CBF increased from rest to exhaustion. At exhaustion, CBF was higher while breathing air and heliox than oxygen (30.9±2.3 and 31.3±3.5 versus 26.6±3.2 mL·min(-1) per 100 g, respectively), compensating for the lower arterial oxygen content (C(a,O(2))) in air and heliox, and leading to similar cerebral cortex oxygen delivery (CQ(O(2)) for air was 5.3±0.4, for oxygen was 5.5±0.6 and for heliox was 5.6±1.0 mL O(2) per min per 100 g). In contrast, end-exercise S(t,O(2)) was greater while breathing oxygen compared with air or heliox (67±4 versus 57±3 and 53±3%, respectively), reflecting C(a,O(2)) rather than CQ(O(2)). Prolonged time to exhaustion by breathing oxygen and heliox, despite these having a similar CQ(O(2)) to air, a lower S(t,O(2)) with heliox than oxygen, and yet similar endurance time and similar S(t,O(2)) in air and heliox despite greater endurance with heliox, do not support the hypothesis that an improvement in cerebral cortex oxygen availability plays a contributing role in increasing exercise capacity with oxygen or heliox in patients with COPD.


Assuntos
Córtex Cerebral/fisiologia , Tolerância ao Exercício/fisiologia , Exercício Físico/fisiologia , Oxigênio/fisiologia , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Idoso , Gasometria , Débito Cardíaco , Circulação Cerebrovascular , Hélio/farmacologia , Hemodinâmica , Humanos , Concentração de Íons de Hidrogênio , Pessoa de Meia-Idade , Oximetria , Oxigênio/farmacologia , Espectroscopia de Luz Próxima ao Infravermelho
6.
J Appl Physiol (1985) ; 134(1): 36-49, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36417198

RESUMO

In chronic mountain sickness (CMS), increased blood oxygen (O2)-carrying capacity due to excessive erythrocytosis (EE, [Hb] ≥ 21 g/dL) could be offset, especially during exercise by both impaired cardiac output (Q̇t) and O2 diffusion limitation in lungs and muscle. We hypothesized that EE results in reduced peak V̇o2 despite increased blood O2-carrying capacity, and that isovolumic hemodilution (IVHD) improves exercise capacity. In 14 male residents of Cerro de Pasco, Peru (4,340 m), six with and eight without EE, we measured peak cycle-exercise capacity, V̇o2, Q̇t, arterial blood gas parameters, and (resting) blood volume. This was repeated for participants with EE after IVHD, reducing hematocrit by 20% (from 67% to 53%). From these data, we quantified the major O2 transport pathway components (ventilation, pulmonary alveolar-capillary diffusion, Q̇t, and blood-muscle mitochondria diffusion). Participants with EE had similar peak V̇o2, systemic O2 delivery, and O2 extraction as non-EE controls, however, with lower Q̇t and higher arterial [O2]. After IVHD, peak V̇o2 was preserved (but not enhanced), with lower O2 delivery (despite higher Q̇t) balanced by greater O2 extraction. The considerable variance in exercise capacity across the 14 individuals was explained essentially completely by differences in both pulmonary and muscle O2 diffusional conductances and not by any differences in ventilation, [Hb], nor Q̇t. In conclusion, EE does not result in lower peak V̇o2 in Andean males, and IVHD maintains, but does not enhance, exercise capacity.NEW & NOTEWORTHY Male Andean highlanders with and without excessive erythrocytosis (EE) have similar peak V̇o2 at 4,340 m, with higher arterial [O2] in EE and lower cardiac output (Q̇t), thus maintaining similar O2 delivery. Peak V̇o2 in participants with EE was unaffected by isovolumic hemodilution (hematocrit reduced from 67% to 53%), with lower O2 delivery balanced by slightly increased Q̇t and greater O2 extraction. Differences in lung and muscle diffusing capacity, and not hematocrit variation, accounted for essentially all interindividual variance in peak V̇o2.


Assuntos
Doença da Altitude , Policitemia , Humanos , Masculino , Altitude , Tolerância ao Exercício , Hemodiluição , Oxigênio/metabolismo , Consumo de Oxigênio
7.
J Physiol ; 589(Pt 16): 4027-39, 2011 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-21727220

RESUMO

During maximal hypoxic exercise, a reduction in cerebral oxygen delivery may constitute a signal to the central nervous system to terminate exercise. We investigated whether the rate of increase in frontal cerebral cortex oxygen delivery is limited in hypoxic compared to normoxic exercise. We assessed frontal cerebral cortex blood flow using near-infrared spectroscopy and the light-absorbing tracer indocyanine green dye, as well as frontal cortex oxygen saturation (S(tO2)%) in 11 trained cyclists during graded incremental exercise to the limit of tolerance (maximal work rate, WRmax) in normoxia and acute hypoxia (inspired O2 fraction (F(IO2)), 0.12). In normoxia, frontal cortex blood flow and oxygen delivery increased (P < 0.05) from baseline to sub-maximal exercise, reaching peak values at near-maximal exercise (80% WRmax: 287 ± 9 W; 81 ± 23% and 75 ± 22% increase relative to baseline, respectively), both leveling off thereafter up to WRmax (382 ± 10 W). Frontal cortex S(tO2)% did not change from baseline (66 ± 3%) throughout graded exercise. During hypoxic exercise, frontal cortex blood flow increased (P = 0.016) from baseline to sub-maximal exercise, peaking at 80% WRmax (213 ± 6 W; 60 ± 15% relative increase) before declining towards baseline at WRmax (289 ± 5 W). Despite this, frontal cortex oxygen delivery remained unchanged from baseline throughout graded exercise, being at WRmax lower than at comparable loads (287 ± 9 W) in normoxia (by 58 ± 12%; P = 0.01). Frontal cortex S(tO2)% fell from baseline (58 ± 2%) on light and moderate exercise in parallel with arterial oxygen saturation, but then remained unchanged to exhaustion (47 ± 1%). Thus, during maximal, but not light to moderate, exercise frontal cortex oxygen delivery is limited in hypoxia compared to normoxia. This limitation could potentially constitute the signal to limit maximal exercise capacity in hypoxia.


Assuntos
Atletas , Córtex Cerebral/irrigação sanguínea , Córtex Cerebral/metabolismo , Exercício Físico/fisiologia , Hipóxia/metabolismo , Consumo de Oxigênio/fisiologia , Adulto , Velocidade do Fluxo Sanguíneo/fisiologia , Circulação Cerebrovascular/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade
8.
Am J Physiol Regul Integr Comp Physiol ; 300(6): R1549-59, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21411767

RESUMO

Emerging evidence indicates that, besides dyspnea relief, an improvement in locomotor muscle oxygen delivery may also contribute to enhanced exercise tolerance following normoxic heliox (replacement of inspired nitrogen by helium) administration in patients with chronic obstructive pulmonary disease (COPD). Whether blood flow redistribution from intercostal to locomotor muscles contributes to this improvement currently remains unknown. Accordingly, the objective of this study was to investigate whether such redistribution plays a role in improving locomotor muscle oxygen delivery while breathing heliox at near-maximal [75% peak work rate (WR(peak))], maximal (100%WR(peak)), and supramaximal (115%WR(peak)) exercise in COPD. Intercostal and vastus lateralis muscle perfusion was measured in 10 COPD patients (FEV(1) = 50.5 ± 5.5% predicted) by near-infrared spectroscopy using indocyanine green dye. Patients undertook exercise tests at 75 and 100%WR(peak) breathing either air or heliox and at 115%WR(peak) breathing heliox only. Patients did not exhibit exercise-induced hyperinflation. Normoxic heliox reduced respiratory muscle work and relieved dyspnea across all exercise intensities. During near-maximal exercise, quadriceps and intercostal muscle blood flows were greater, while breathing normoxic heliox compared with air (35.8 ± 7.0 vs. 29.0 ± 6.5 and 6.0 ± 1.3 vs. 4.9 ± 1.2 ml·min(-1)·100 g(-1), respectively; P < 0.05; mean ± SE). In addition, compared with air, normoxic heliox administration increased arterial oxygen content, as well as oxygen delivery to quadriceps and intercostal muscles (from 47 ± 9 to 60 ± 12, and from 8 ± 1 to 13 ± 3 mlO(2)·min(-1)·100 g(-1), respectively; P < 0.05). In contrast, normoxic heliox had neither an effect on systemic nor an effect on quadriceps or intercostal muscle blood flow and oxygen delivery during maximal or supramaximal exercise. Since intercostal muscle blood flow did not decrease by normoxic heliox administration, blood flow redistribution from intercostal to locomotor muscles does not represent a likely mechanism of improvement in locomotor muscle oxygen delivery. Our findings might not be applicable to patients who hyperinflate during exercise.


Assuntos
Exercício Físico/fisiologia , Hélio/farmacologia , Oxigênio/farmacologia , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Fluxo Sanguíneo Regional/efeitos dos fármacos , Músculos Respiratórios/irrigação sanguínea , Administração por Inalação , Feminino , Hélio/administração & dosagem , Humanos , Perna (Membro)/irrigação sanguínea , Masculino , Pessoa de Meia-Idade , Oxigênio/administração & dosagem , Oxigênio/metabolismo , Troca Gasosa Pulmonar/fisiologia , Fluxo Sanguíneo Regional/fisiologia
9.
Am J Respir Crit Care Med ; 182(9): 1105-13, 2010 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-20622032

RESUMO

RATIONALE: It has been hypothesized that, because of the high work of breathing sustained by patients with chronic obstructive pulmonary disease (COPD) during exercise, blood flow may increase in favor of the respiratory muscles, thereby compromising locomotor muscle blood flow. OBJECTIVES: To test this hypothesis by investigating whether, at the same work of breathing, intercostal muscle blood flow during exercise is as high as during resting isocapnic hyperpnea when respiratory and locomotor muscles do not compete for the available blood flow. METHODS: Intercostal and vastus lateralis muscle perfusion was measured simultaneously in 10 patients with COPD (FEV1 = 50.5 ± 5.5% predicted) by near-infrared spectroscopy using indocyanine green dye. MEASUREMENTS AND MAIN RESULTS: Measurements were made at several exercise intensities up to peak work rate (WRpeak) and subsequently during resting hyperpnea at minute ventilation levels up to those at WRpeak. During resting hyperpnea, intercostal muscle blood flow increased with the power of breathing to 11.4 ± 1.6 ml/min per 100 g at the same ventilation recorded at WRpeak. Conversely, during graded exercise, intercostal muscle blood flow remained unchanged from rest up to 50% WRpeak (6.8 ± 1.3 ml/min per 100 g) and then fell to 4.5 ± 0.8 ml/min per 100 g at WRpeak (P = 0.003). Cardiac output plateaued above 50% WRpeak (8.4 ± 0.1 l/min), whereas vastus lateralis muscle blood flow increased progressively, reaching 39.8 ± 7.1 ml/min per 100 g at WRpeak. CONCLUSIONS: During intense exercise in COPD, restriction of intercostal muscle perfusion but preservation of quadriceps muscle blood flow along with attainment of a plateau in cardiac output represents the inability of the circulatory system to satisfy the energy demands of locomotor and respiratory muscles.


Assuntos
Exercício Físico/fisiologia , Músculos Intercostais/irrigação sanguínea , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Músculo Quadríceps/irrigação sanguínea , Trabalho Respiratório/fisiologia , Idoso , Corantes , Feminino , Hemodinâmica/fisiologia , Humanos , Verde de Indocianina , Músculos Intercostais/fisiopatologia , Masculino , Pessoa de Meia-Idade , Músculo Quadríceps/fisiopatologia , Fluxo Sanguíneo Regional , Testes de Função Respiratória , Espectroscopia de Luz Próxima ao Infravermelho
11.
Artigo em Inglês | MEDLINE | ID: mdl-20363353

RESUMO

Previous work has shown remarkable differences in the pressure-flow relations of the pulmonary circulation between birds and mammals. For example several studies suggest that the avian pulmonary blood vessels behave like rigid tubes, very different from the situation in mammalian lung. We therefore speculated that birds would develop high pulmonary artery pressures when the cardiac output was substantially increased during heavy exercise, for example during flight. However because of the technical difficulties of measuring pulmonary artery pressures in flight, the metabolic rate and cardiac output in anesthetized chickens were increased by infusing 2,4 Dinitrophenol (DNP) and the mean pressure was measured by means of a catheter in the pulmonary artery. Although the pulmonary artery pressure rose steadily as cardiac output increased, it remained below the high levels predicted from the previous studies for similar changes in pulmonary blood flow. Furthermore the increase in pressure was less than in mammals where recruitment and distension of pulmonary capillaries are known to occur. The reasons for this unexpected result are not clear.


Assuntos
Pressão Sanguínea/fisiologia , Débito Cardíaco/fisiologia , Galinhas/fisiologia , Artéria Pulmonar/fisiologia , Animais , Consumo de Oxigênio/fisiologia , Condicionamento Físico Animal/fisiologia , Circulação Pulmonar/fisiologia
12.
Physiol Rep ; 8(13): e14488, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32638530

RESUMO

Proton magnetic resonance (MR) imaging to quantify regional ventilation-perfusion ( V˙A/Q˙ ) ratios combines specific ventilation imaging (SVI) and separate proton density and perfusion measures into a composite map. Specific ventilation imaging exploits the paramagnetic properties of O2 , which alters the local MR signal intensity, in an FI O2 -dependent manner. Specific ventilation imaging data are acquired during five wash-in/wash-out cycles of breathing 21% O2 alternating with 100% O2 over ~20 min. This technique assumes that alternating FI O2 does not affect V˙A/Q˙ heterogeneity, but this is unproven. We tested the hypothesis that alternating FI O2 exposure increases V˙A/Q˙ mismatch in nine patients with abnormal pulmonary gas exchange and increased V˙A/Q˙ mismatch using the multiple inert gas elimination technique (MIGET).The following data were acquired (a) breathing air (baseline), (b) breathing alternating air/100% O2 during an emulated-SVI protocol (eSVI), and (c) 20 min after ambient air breathing (recovery). MIGET heterogeneity indices of shunt, deadspace, ventilation versus V˙A/Q˙ ratio, LogSD V˙ , and perfusion versus V˙A/Q˙ ratio, LogSD Q˙ were calculated. LogSD V˙ was not different between eSVI and baseline (1.04 ± 0.39 baseline, 1.05 ± 0.38 eSVI, p = .84); but was reduced compared to baseline during recovery (0.97 ± 0.39, p = .04). There was no significant difference in LogSD Q˙ across conditions (0.81 ± 0.30 baseline, 0.79 ± 0.15 eSVI, 0.79 ± 0.20 recovery; p = .54); Deadspace was not significantly different (p = .54) but shunt showed a borderline increase during eSVI (1.0% ± 1.0 baseline, 2.6% ± 2.9 eSVI; p = .052) likely from altered hypoxic pulmonary vasoconstriction and/or absorption atelectasis. Intermittent breathing of 100% O2 does not substantially alter V˙A/Q˙ matching and if SVI measurements are made after perfusion measurements, any potential effects will be minimized.


Assuntos
Hiperóxia/fisiopatologia , Respiração com Pressão Positiva Intermitente/métodos , Imageamento por Ressonância Magnética/métodos , Relação Ventilação-Perfusão , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Gases Nobres
13.
J Physiol ; 587(Pt 14): 3665-77, 2009 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-19451206

RESUMO

We investigated whether, during maximal exercise, intercostal muscle blood flow is as high as during resting hyperpnoea at the same work of breathing. We hypothesized that during exercise, intercostal muscle blood flow would be limited by competition from the locomotor muscles. Intercostal (probe over the 7th intercostal space) and vastus lateralis muscle perfusion were measured simultaneously in ten trained cyclists by near-infrared spectroscopy using indocyanine green dye. Measurements were made at several exercise intensities up to maximal (WRmax) and subsequently during resting isocapnic hyperpnoea at minute ventilation levels up to those at WRmax. During resting hyperpnoea, intercostal muscle blood flow increased linearly with the work of breathing (R2 = 0.94) to 73.0 +/- 8.8 ml min-1 (100 g)-1 at the ventilation seen at WRmax (work of breathing approximately 550-600 J min-1), but during exercise it peaked at 80% WRmax (53.4 +/- 10.3 ml min-1 (100 g)-1), significantly falling to 24.7 +/- 5.3 ml min-1 (100 g)-1 at WRmax. At maximal ventilation intercostal muscle vascular conductance was significantly lower during exercise (0.22 +/- 0.05 ml min-1 (100 g)-1 mmHg-1) compared to isocapnic hyperpnoea (0.77 +/- 0.13 ml min-1 (100 g)-1 mmHg-1). During exercise, both cardiac output and vastus lateralis muscle blood flow also plateaued at about 80% WRmax (the latter at 95.4 +/- 11.8 ml min-1 (100 g)-1). In conclusion, during exercise above 80% WRmax in trained subjects, intercostal muscle blood flow and vascular conductance are less than during resting hyperpnoea at the same minute ventilation. This suggests that the circulatory system is unable to meet the demands of both locomotor and intercostal muscles during heavy exercise, requiring greater O2 extraction and likely contributing to respiratory muscle fatigue.


Assuntos
Velocidade do Fluxo Sanguíneo/fisiologia , Débito Cardíaco/fisiologia , Músculos Intercostais/irrigação sanguínea , Músculos Intercostais/fisiologia , Resistência Física/fisiologia , Esforço Físico/fisiologia , Esportes/fisiologia , Adulto , Retroalimentação/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
14.
J Appl Physiol (1985) ; 106(6): 1819-25, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18420720

RESUMO

Untrained rats selectively bred for either high (HCR) or low (LCR) treadmill running capacity previously demonstrated divergent physiological traits as early as the seventh generation (G7). We asked whether continued selective breeding to generation 15 (G15) would further increase the divergence in skeletal muscle capillarity, morphometry, and oxidative capacity seen previously at G7. At G15, mean body weight was significantly lower (P < 0.001) in the HCR rats (n = 11; 194 +/- 3 g) than in LCR (n = 12; 259 +/- 9 g) while relative medial gastrocnemius muscle mass was not different (0.23 +/- 0.01 vs. 0.22 +/- 0.01% total body weight). Normoxic (Fi(O(2)) = 0.21) Vo(2max) was 50% greater (P < 0.001) in HCR despite the lower absolute muscle mass, and skeletal muscle O(2) conductance (measured in hypoxia; Fi(O(2)) = 0.10) was 49% higher in HCR (P < 0.001). Muscle oxidative enzyme activities were significantly higher in HCR (citrate synthase: 16.4 +/- 0.4 vs. 14.0 +/- 0.6; beta-hydroxyacyl-CoA dehydrogenase: 5.2 +/- 0.2 vs. 4.2 +/- 0.2 mmol.kg(-1).min(-1)). HCR rats had approximately 36% more total muscle fibers and also 36% more capillaries in the medial gastrocnemius. Because average muscle fiber area was 35% smaller, capillary density was 36% higher in HCR, but capillary-to-fiber ratio was the same. Compared with G7, G15 HCR animals showed 38% greater total fiber number with an additional 25% decrease in mean fiber area. These data suggest that many of the skeletal muscle structural and functional adaptations enabling greater O(2) utilization in HCR at G7 continue to progress following additional selective breeding for endurance capacity. However, the largest changes at G15 relate to O(2) delivery to skeletal muscle and not to the capacity of skeletal muscle to use O(2).


Assuntos
Tolerância ao Exercício/genética , Consumo de Oxigênio/genética , Oxigênio/metabolismo , Corrida/fisiologia , Seleção Genética , 3-Hidroxiacil-CoA Desidrogenases/metabolismo , Adaptação Fisiológica , Animais , Transporte Biológico/genética , Peso Corporal/genética , Cruzamento , Capilares/anatomia & histologia , Teste de Esforço , Feminino , Hipóxia/sangue , Modelos Genéticos , Fibras Musculares Esqueléticas/citologia , Músculo Esquelético/anatomia & histologia , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/enzimologia , Tamanho do Órgão/genética , Ratos
15.
J Appl Physiol (1985) ; 106(6): 1810-8, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19299574

RESUMO

Previous studies found that selection for endurance running in untrained rats produced distinct high (HCR) and low (LCR) capacity runners. Furthermore, despite weighing 14% less, 7th generation HCR rats achieved the same absolute maximal oxygen consumption (Vo(2max)) as LCR due to muscle adaptations that improved oxygen extraction and use. However, there were no differences in cardiopulmonary function after seven generations of selection. If selection for increased endurance capacity continued, we hypothesized that due to the serial nature of oxygen delivery enhanced cardiopulmonary function would be required. In the present study, generation 15 rats selected for high and low endurance running capacity showed differences in pulmonary function. HCR, now 25% lighter than LCR, reached a 12% higher absolute Vo(2max) than LCR, P < 0.05 (49% higher Vo(2max)/kg). Despite the 25% difference in body size, both lung volume (at 20 cmH(2)O airway pressure) and exercise diffusing capacity were similar in HCR and LCR. Lung volume of LCR lay on published mammalian allometrical relationships while that of HCR lay above that line. Alveolar ventilation at Vo(2max) was 30% higher, P < 0.05 (78% higher, per kg), arterial Pco(2) was 4.5 mmHg (17%) lower, P < 0.05, while total pulmonary vascular resistance was (insignificantly) 5% lower (30% lower, per kg) in HCR. The smaller mass of HCR animals was due mostly to a smaller body frame rather than to a lower fat mass. These findings show that by generation 15, lung size in smaller HCR rats is not reduced in concert with their smaller body size, but has remained similar to that of LCR, supporting the hypothesis that continued selection for increased endurance capacity requires relatively larger lungs, supporting greater ventilation, gas exchange, and pulmonary vascular conductance.


Assuntos
Tolerância ao Exercício/genética , Pulmão/fisiologia , Consumo de Oxigênio/genética , Troca Gasosa Pulmonar/genética , Corrida/fisiologia , Seleção Genética , Animais , Cruzamento , Teste de Esforço , Feminino , Pulmão/anatomia & histologia , Masculino , Modelos Genéticos , Músculo Esquelético/metabolismo , Tamanho do Órgão/genética , Oxigênio/metabolismo , Ratos
16.
Clin Respir J ; 13(4): 222-231, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30724023

RESUMO

INTRODUCTION: Impedance cardiography (IC) derived from morphological analysis of the thoracic impedance signal is now commonly used for noninvasive assessment of cardiac output (CO) at rest and during exercise. However, in Chronic Obstructive Pulmonary Disease (COPD), conflicting findings put its accuracy into question. OBJECTIVES: We therefore compared concurrent CO measurements captured by IC (PhysioFlow: COIC ) and by the indocyanine green dye dilution method (CODD ) in patients with COPD. METHODS: Fifty paired CO measurements were concurrently obtained using the two methods from 10 patients (FEV1 : 50.5 ± 17.5% predicted) at rest and during cycling at 25%, 50%, 75% and 100% peak work rate. RESULTS: From rest to peak exercise COIC and CODD were strongly correlated (r = 0.986, P < 0.001). The mean absolute and percentage differences between COIC and CODD were 1.08 L/min (limits of agreement (LoA): 0.05-2.11 L/min) and 18 ± 2%, respectively, with IC yielding systematically higher values. Bland-Altman analysis indicated that during exercise only 7 of the 50 paired measurements differed by more than 20%. When data were expressed as changes from rest, correlations and agreement between the two methods remained strong over the entire exercise range (r = 0.974, P < 0.001, with no significant difference: 0.19 L/min; LoA: -0.76 to 1.15 L/min). Oxygen uptake (VO2 ) and CODD were linearly related: r = 0.893 (P < 0.001), CODD = 5.94 × VO2 + 2.27 L/min. Similar results were obtained for VO2 and COIC (r = 0.885, P < 0.001, COIC = 6.00 × VO2 + 3.30 L/min). CONCLUSIONS: These findings suggest that IC provides an acceptable CO measurement from rest to peak cycling exercise in patients with COPD.


Assuntos
Débito Cardíaco/fisiologia , Cardiografia de Impedância/métodos , Teste de Esforço/métodos , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Idoso , Técnica de Diluição de Corante/instrumentação , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Consumo de Oxigênio/fisiologia
17.
J Physiol ; 586(9): 2381-91, 2008 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-18339692

RESUMO

Exercise is well known to cause arterial PO2 to fall and the alveolar-arterial PO2 difference(Aa PO2 ) to increase. Until recently, the physiological basis for this was considered to be mostly ventilation/perfusion ((.)VA/(.)Q) inequality and alveolar-capillary diffusion limitation. Recently, arterio-venous shunting through dilated pulmonary blood vessels has been proposed to explain a significant part of the Aa PO2 during exercise. To test this hypothesis we determined venous admixture during 5 min of near-maximal, constant-load, exercise in hypoxia (in inspired O2 fraction, FIO2 , 0.13), normoxia (FIO2 , 0.21) and hyperoxia (FIO2 , 1.0) undertaken in balanced order on the same day in seven fit cyclists ((.)VO2max, 61.3 +/- 2.4 ml kg(-1) min(-1); mean +/- S.E.M.). Venous admixture reflects three causes of hypoxaemia combined: true shunt, diffusion limitation and ((.)VA/(.)Q) inequality. In hypoxia, venous admixture was 22.8 +/- 2.5% of the cardiac output; in normoxia it was 3.5 +/- 0.5%; in hyperoxia it was 0.5 +/- 0.2%. Since only true shunt accounts for venous admixture while breathing 100% O2, the present study suggests that shunt accounts for only a very small portion of the observed venous admixture, Aa PO2 and hypoxaemia during heavy exercise.


Assuntos
Oxigênio/metabolismo , Resistência Física/fisiologia , Esforço Físico/fisiologia , Alvéolos Pulmonares/fisiologia , Artéria Pulmonar/fisiologia , Troca Gasosa Pulmonar/fisiologia
18.
J Physiol ; 586(22): 5575-87, 2008 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-18832419

RESUMO

We investigated whether the greater degree of exercise-induced diaphragmatic fatigue previously reported in highly trained athletes in hypoxia (compared with normoxia) could have a contribution from limited respiratory muscle blood flow. Seven trained cyclists completed three constant load 5 min exercise tests at inspired O(2) fractions (FIO2) of 0.13, 0.21 and 1.00 in balanced order. Work rates were selected to produce the same tidal volume, breathing frequency and respiratory muscle load at each FIO2 (63 +/- 1, 78 +/- 1 and 87 +/- 1% of normoxic maximal work rate, respectively). Intercostals and quadriceps muscle blood flow (IMBF and QMBF, respectively) were measured by near-infrared spectroscopy over the left 7th intercostal space and the left vastus lateralis muscle, respectively, using indocyanine green dye. The mean pressure time product of the diaphragm and the work of breathing did not differ across the three exercise tests. After hypoxic exercise, twitch transdiaphragmatic pressure fell by 33.3 +/- 4.8%, significantly (P < 0.05) more than after both normoxic (25.6 +/- 3.5% reduction) and hyperoxic (26.6 +/- 3.3% reduction) exercise, confirming greater fatigue in hypoxia. Despite lower leg power output in hypoxia, neither cardiac output nor QMBF (27.6 +/- 1.2 l min(-1) and 100.4 +/- 8.7 ml (100 ml)(-1) min(-1), respectively) were significantly different compared with normoxia (28.4 +/- 1.9 l min(-1) and 94.4 +/- 5.2 ml (100 ml)(-1) min(-1), respectively) and hyperoxia (27.8 +/- 1.6 l min(-1) and 95.1 +/- 7.8 ml (100 ml)(-1) min(-1), respectively). Neither IMBF was different across hypoxia, normoxia and hyperoxia (53.6 +/- 8.5, 49.9 +/- 5.9 and 52.9 +/- 5.9 ml (100 ml)(-1) min(-1), respectively). We conclude that when respiratory muscle energy requirement is not different between normoxia and hypoxia, diaphragmatic fatigue is greater in hypoxia as intercostal muscle blood flow is not increased (compared with normoxia) to compensate for the reduction in PaO2, thus further compromising O(2) supply to the respiratory muscles.


Assuntos
Ciclismo/fisiologia , Diafragma/fisiologia , Fadiga Muscular/fisiologia , Músculos Respiratórios/irrigação sanguínea , Músculos Respiratórios/fisiologia , Acidose/fisiopatologia , Adulto , Débito Cardíaco , Teste de Esforço , Humanos , Hipóxia/fisiopatologia , Masculino
19.
J Appl Physiol (1985) ; 104(4): 1069-79, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18258800

RESUMO

We previously found that, following surgical resection of approximately 58% of lung units by right pneumonectomy (PNX) in adult canines, oxygen-diffusing capacity (Dl(O(2))) fell sufficiently to become a major factor limiting exercise capacity, although the decline was mitigated by recruitment, remodeling, and growth of the remaining lung units. To determine whether an upper limit of compensation is reached following the loss of even more lung units, we measured pulmonary gas exchange, hemodynamics, and ventilatory power requirements in adult canines during treadmill exercise following two-stage resection of approximately 70% of lung units in the presence or absence of mediastinal distortion. Results were compared with that in control animals following right PNX or thoracotomy without resection (Sham). Following 70% lung resection, peak O(2) uptake was 45% below normal. Ventilation-perfusion mismatch developed, and pulmonary arterial pressure and ventilatory power requirements became markedly elevated. In contrast, the relationship of Dl(O(2)) to cardiac output remained normal, indicating preservation of Dl(O(2))-to-cardiac output ratio and alveolar-capillary recruitment up to peak exercise. The impairment in airway and vascular function exceeded the impairment in gas exchange and imposed the major limitation to exercise following 70% resection. Mediastinal distortion further reduced air and blood flow conductance, resulting in CO(2) retention. Results suggest that adaptation of extra-acinar airways and blood vessels lagged behind that of acinar tissue. As more lung units were lost, functional compensation became limited by the disproportionately reduced convective conductance rather than by alveolar diffusion disequilibrium.


Assuntos
Pulmão/fisiologia , Pulmão/cirurgia , Pneumonectomia/efeitos adversos , Testes de Função Respiratória , Limiar Anaeróbio , Animais , Capilares/fisiologia , Débito Cardíaco/fisiologia , Artérias Carótidas/fisiologia , Difusão , Cães , Gases Nobres , Oxigênio/sangue , Consumo de Oxigênio/fisiologia , Condicionamento Físico Animal/fisiologia , Alvéolos Pulmonares/fisiologia , Circulação Pulmonar/fisiologia , Capacidade de Difusão Pulmonar/fisiologia , Troca Gasosa Pulmonar/fisiologia , Pressão Propulsora Pulmonar/fisiologia , Músculos Respiratórios/fisiologia , Tomografia Computadorizada por Raios X , Trabalho Respiratório/fisiologia
20.
J Appl Physiol (1985) ; 105(5): 1441-7, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18719238

RESUMO

Although lung diffusing capacity for carbon monoxide (DL(CO)) is a widely used test of diffusive O2 transfer, few studies have directly related DL(CO) to O2-diffusing capacity (DL(O2)); none has used the components of Dl(CO), i.e., conductance of alveolar membrane and capillary blood, to predict DL(O2) from rest to exercise. To understand the relationship between DL(CO) and DL(O2) at matched levels of cardiac output, we analyzed cumulative data from rest to heavy exercise in 43 adult dogs, with normal lungs or reduced lung capacity following lung resection, that were studied by two techniques. 1) A rebreathing (RB) technique was used to measure Dl(CO) and pulmonary blood flow at two O2 tensions, independent of O2 exchange. DL(CO) was partitioned into CO-diffusing capacity of alveolar membrane and pulmonary capillary blood volume using the Roughton-Forster equation and converted into an equivalent DL(O2), [DL(O2)(RB)]. 2) A multiple inert-gas elimination technique (MIGET) was used to measure ventilation-perfusion distributions, O2 and CO2 exchange under hypoxia, to derive DL(O2) [DL(O2)(MIGET)] by the Lilienthal-Riley technique and Bohr integration. For direct comparisons, DL(O2)(RB) was interpolated to the cardiac output measured by the Fick principle corresponding to DL(O2)(MIGET). The DL(O2)-to-DL(CO) ratio averaged 1.61. Correlation between DL(O2)(RB) and DL(O2)(MIGET) was similar in normal and post-resection groups. Overall, DL(O2)(MIGET) = 0.975 DL(O2)(RB); mean difference between the two techniques was under 5% for both animal groups. We conclude that, despite various uncertainties inherent in these two disparate methods, the Roughton-Forster equation adequately predicts diffusive O2 transfer from rest to heavy exercise in canines with normal, as well as reduced, lung capacities.


Assuntos
Oxigênio/metabolismo , Esforço Físico , Alvéolos Pulmonares/metabolismo , Capacidade de Difusão Pulmonar , Animais , Dióxido de Carbono/sangue , Dióxido de Carbono/metabolismo , Débito Cardíaco , Cães , Hipóxia/metabolismo , Hipóxia/fisiopatologia , Medidas de Volume Pulmonar , Masculino , Microcirculação , Modelos Biológicos , Oxigênio/sangue , Pneumonectomia , Alvéolos Pulmonares/irrigação sanguínea , Alvéolos Pulmonares/cirurgia , Circulação Pulmonar , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA