Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Lancet Oncol ; 24(9): 1042-1052, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37657463

RESUMO

BACKGROUND: High-grade gliomas have a poor prognosis and do not respond well to treatment. Effective cancer immune responses depend on functional immune cells, which are typically absent from the brain. This study aimed to evaluate the safety and activity of two adenoviral vectors expressing HSV1-TK (Ad-hCMV-TK) and Flt3L (Ad-hCMV-Flt3L) in patients with high-grade glioma. METHODS: In this dose-finding, first-in-human trial, treatment-naive adults aged 18-75 years with newly identified high-grade glioma that was evaluated per immunotherapy response assessment in neuro-oncology criteria, and a Karnofsky Performance Status score of 70 or more, underwent maximal safe resection followed by injections of adenoviral vectors expressing HSV1-TK and Flt3L into the tumour bed. The study was conducted at the University of Michigan Medical School, Michigan Medicine (Ann Arbor, MI, USA). The study included six escalating doses of viral particles with starting doses of 1×1010 Ad-hCMV-TK viral particles and 1×109 Ad-hCMV-Flt3L viral particles (cohort A), and then 1×1011 Ad-hCMV-TK viral particles and 1×109 Ad-hCMV-Flt3L viral particles (cohort B), 1×1010 Ad-hCMV-TK viral particles and 1×1010 Ad-hCMV-Flt3L viral particles (cohort C), 1×1011 Ad-hCMV-TK viral particles and 1×1010 Ad-hCMV-Flt3L viral particles (cohort D), 1×1010 Ad-hCMV-TK viral particles and 1×1011 Ad-hCMV-Flt3L viral particles (cohort E), and 1×1011 Ad-hCMV-TK viral particles and 1×1011 Ad-hCMV-Flt3L viral particles (cohort F) following a 3+3 design. Two 1 mL tuberculin syringes were used to deliver freehand a mix of Ad-hCMV-TK and Ad-hCMV-Flt3L vectors into the walls of the resection cavity with a total injection of 2 mL distributed as 0·1 mL per site across 20 locations. Subsequently, patients received two 14-day courses of valacyclovir (2 g orally, three times per day) at 1-3 days and 10-12 weeks after vector administration and standad upfront chemoradiotherapy. The primary endpoint was the maximum tolerated dose of Ad-hCMV-Flt3L and Ad-hCMV-TK. Overall survival was a secondary endpoint. Recruitment is complete and the trial is finished. The trial is registered with ClinicalTrials.gov, NCT01811992. FINDINGS: Between April 8, 2014, and March 13, 2019, 21 patients were assessed for eligibility and 18 patients with high-grade glioma were enrolled and included in the analysis (three patients in each of the six dose cohorts); eight patients were female and ten were male. Neuropathological examination identified 14 (78%) patients with glioblastoma, three (17%) with gliosarcoma, and one (6%) with anaplastic ependymoma. The treatment was well-tolerated, and no dose-limiting toxicity was observed. The maximum tolerated dose was not reached. The most common serious grade 3-4 adverse events across all treatment groups were wound infection (four events in two patients) and thromboembolic events (five events in four patients). One death due to an adverse event (respiratory failure) occurred but was not related to study treatment. No treatment-related deaths occurred during the study. Median overall survival was 21·3 months (95% CI 11·1-26·1). INTERPRETATION: The combination of two adenoviral vectors demonstrated safety and feasibility in patients with high-grade glioma and warrants further investigation in a phase 1b/2 clinical trial. FUNDING: Funded in part by Phase One Foundation, Los Angeles, CA, The Board of Governors at Cedars-Sinai Medical Center, Los Angeles, CA, and The Rogel Cancer Center at The University of Michigan.


Assuntos
Antineoplásicos , Glioblastoma , Glioma , Adulto , Feminino , Humanos , Masculino , Quimiorradioterapia , Terapia Genética , Glioblastoma/genética , Glioblastoma/terapia , Glioma/genética , Glioma/terapia , Adolescente , Pessoa de Meia-Idade , Idoso
2.
Trends Biochem Sci ; 44(12): 991-993, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31699584

RESUMO

Senescence is engaged in response to oncogenes to suppress proliferation. Cancers rewire metabolism to facilitate proliferation; however, it is not well appreciated how this enables senescence bypass. Recent work by Buj et al. demonstrates that loss of the tumor suppressor p16 engages a mTORC1-dependent increase in nucleotide pools to override senescence.


Assuntos
Senescência Celular , Neoplasias/genética , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Nucleotídeos , Oncogenes
3.
Int J Mol Sci ; 23(3)2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35163841

RESUMO

Metabolic reprogramming is a hallmark of cancer. Cancer cells rewire one-carbon metabolism, a central metabolic pathway, to turn nutritional inputs into essential biomolecules required for cancer cell growth and maintenance. Radiation therapy, a common cancer therapy, also interacts and alters one-carbon metabolism. This review discusses the interactions between radiation therapy, one-carbon metabolism and its component metabolic pathways.


Assuntos
Carbono/metabolismo , Redes e Vias Metabólicas/efeitos da radiação , Neoplasias/radioterapia , Ácido Fólico/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Humanos , Metionina/metabolismo , Neoplasias/metabolismo
4.
Hum Mol Genet ; 27(2): 295-306, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29145636

RESUMO

ABCA4 is a member of the superfamily of ATP-binding cassette (ABC) proteins that transports N-retinylidene-phosphatidylethanolamine (N-Ret-PE) across outer segment disc membranes thereby facilitating the removal of potentially toxic retinoid compounds from photoreceptor cells. Mutations in the gene encoding ABCA4 are responsible for Stargardt disease (STGD1), an autosomal recessive retinal degenerative disease that causes severe vision loss. To define the molecular basis for STGD1 associated with the p.Asn965Ser (N965S) mutation in the Walker A motif of nucleotide binding domain 1 (NBD1), we generated a p.Asn965Ser knockin mouse and compared the subcellular localization and molecular properties of the disease variant with wild-type (WT) ABCA4. Here, we show that the p.Asn965Ser ABCA4 variant expresses at half the level of WT ABCA4, partially mislocalizes to the endoplasmic reticulum (ER) of photoreceptors, is devoid of N-Ret-PE activated ATPase activity, and causes an increase in autofluorescence and the bisretinoid A2E associated with lipofuscin deposits in retinal pigment epithelial cells as found in Stargardt patients and Abca4 knockout mice. We also show for the first time that a significant fraction of WT ABCA4 is retained in the inner segment of photoreceptors. On the basis of these studies we conclude that loss in substrate-dependent ATPase activity and protein misfolding are mechanisms underlying STGD1 associated with the p.Asn965Ser mutation in ABCA4. Functional and molecular modeling studies further suggest that similar pathogenic mechanisms are responsible for Tangiers disease associated with the p.Asn935Ser (N935S) mutation in the NBD1 Walker A motif of ABCA1.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Degeneração Macular/congênito , Animais , Transporte Biológico , Técnicas de Introdução de Genes , Variação Genética , Degeneração Macular/genética , Degeneração Macular/metabolismo , Camundongos , Mutação , Células Fotorreceptoras/metabolismo , Células Fotorreceptoras de Vertebrados/metabolismo , Retina/metabolismo , Doença de Stargardt
5.
J Stroke Cerebrovasc Dis ; 29(8): 104863, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32689634

RESUMO

BACKGROUND: High arteriovenous malformation (AVM) obliteration rates have been reported with stereotactic radiosurgery (SRS), and multiple factors have been found to be associated with AVM obliteration. These predictors have been inconsistent throughout studies. We aimed to analyze our experience with linear accelerator (LINAC)-based SRS for brain AVMs, evaluate outcomes, assess factors associated with AVM obliteration and review the various reported predictors of AVM obliteration. METHODS: Electronic medical records were retrospectively reviewed to identify consecutive patients with brain AVMs treated with SRS over a 27-year period with at least 2 years of follow-up. Logistic regression analysis was performed to identify factors associated with AVM obliteration. RESULTS: One hundred twenty-eight patients with 142 brain AVMs treated with SRS were included. Mean age was 34.4 years. Fifty-two percent of AVMs were associated with a hemorrhage before SRS, and 14.8% were previously embolized. Mean clinical and angiographic follow-up times were 67.8 months and 58.6 months, respectively. The median Spetzler-Martin grade was 3. Mean maximal AVM diameter was 2.8 cm and mean AVM target volume was 7.4 cm3 with a median radiation dose of 16 Gy. Complete AVM obliteration was achieved in 80.3%. Radiation-related signs and symptoms were encountered in 32.4%, only 4.9% of which consisted of a permanent deficit. Post-SRS AVM-related hemorrhage occurred in 6.3% of cases. In multivariate analysis, factors associated with AVM obliteration included younger patient age (P = .019), male gender (P = .008), smaller AVM diameter (P = .04), smaller AVM target volume (P = .009), smaller isodose surface volume (P = .005), a higher delivered radiation dose (P = .013), and having only one major draining vein (P = .04). CONCLUSIONS: AVM obliteration with LINAC-based radiosurgery was safe and effective and achieved complete AVM obliteration in about 80% of cases. The most prominent predictors of AVM success included AVM size, AVM volume, radiation dose, number of draining veins and patient age.


Assuntos
Fístula Arteriovenosa/radioterapia , Malformações Arteriovenosas Intracranianas/radioterapia , Radiocirurgia , Adolescente , Adulto , Idoso , Fístula Arteriovenosa/diagnóstico por imagem , Fístula Arteriovenosa/fisiopatologia , Criança , Pré-Escolar , Registros Eletrônicos de Saúde , Feminino , Humanos , Malformações Arteriovenosas Intracranianas/diagnóstico por imagem , Malformações Arteriovenosas Intracranianas/fisiopatologia , Masculino , Pessoa de Meia-Idade , Doses de Radiação , Radiocirurgia/efeitos adversos , Estudos Retrospectivos , Medição de Risco , Fatores de Risco , Fatores de Tempo , Resultado do Tratamento , Adulto Jovem
6.
J Neurooncol ; 143(2): 313-319, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30977058

RESUMO

BACKGROUND AND PURPOSE: We evaluated whether dose-intensified chemoradiation alters patterns of failure and is associated with favorable survival in the temozolomide era. MATERIALS AND METHODS: Between 2003 and 2015, 82 patients with newly diagnosed glioblastoma were treated with 66-81 Gy in 30 fractions using conventional magnetic resonance imaging. Progression-free (PFS) and overall survival (OS) were calculated using Kaplan-Meier methods. Factors associated with improved PFS, OS, and time to progression were assessed using multivariate Cox model and linear regression. RESULTS: Median follow-up was 23 months (95% CI 4-124 months). Sixty-one percent of patients underwent subtotal resection or biopsy, and 38% (10/26) of patients with available data had MGMT promoter methylation. Median PFS was 8.4 months (95% CI 7.3-11.0) and OS was 18.7 months (95% CI 13.1-25.3). Only 30 patients (44%) experienced central recurrence, 6 (9%) in-field, 16 (23.5%) marginal and 16 (23.5%) distant. On multivariate analysis, younger age (HR 0.95, 95% CI 0.93-0.97, p = 0.0001), higher performance status (HR 0.39, 95% CI 0.16-0.95, p = 0.04), gross total resection (GTR) versus biopsy (HR 0.37, 95% CI 0.16-0.85, p = 0.02) and MGMT methylation (HR 0.25, 95% CI 0.09-0.71, p = 0.009) were associated with improved OS. Only distant versus central recurrence (p = 0.03) and GTR (p = 0.02) were associated with longer time to progression. Late grade 3 neurologic toxicity was rare (6%) in patients experiencing long-term survival. CONCLUSION: Dose-escalated chemoRT resulted in lower rates of central recurrence and prolonged time to progression compared to historical controls, although a significant number of central recurrences were still observed. Advanced imaging and correlative molecular studies may enable targeted treatment advances that reduce rates of in- and out-of-field progression.


Assuntos
Neoplasias Encefálicas/mortalidade , Quimiorradioterapia/mortalidade , Glioblastoma/mortalidade , Terapia de Salvação , Temozolomida/uso terapêutico , Adulto , Idoso , Antineoplásicos Alquilantes/uso terapêutico , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/terapia , Ensaios Clínicos Fase I como Assunto , Ensaios Clínicos Fase II como Assunto , Feminino , Seguimentos , Glioblastoma/diagnóstico , Glioblastoma/terapia , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Estudos Retrospectivos , Taxa de Sobrevida , Adulto Jovem
7.
Opt Lett ; 43(20): 5162-5165, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30320845

RESUMO

Optical coherence tomography (OCT) has emerged as a powerful imaging instrument and technology in biomedicine. OCT imaging is predominantly performed using wavelengths in the near infrared; however, visible light (VIS) has been recently employed in OCT systems with encouraging results for high-resolution retinal imaging. Using a broadband supercontinuum VIS source, we present a sensorless adaptive optics (SAO) multimodal imaging system driven by VIS-OCT for volumetric retinal structural imaging, followed by the acquisition of fluorescence emission. The coherence-gated, depth-resolved VIS-OCT images used for image-guided SAO aberration correction enable high-resolution structural and fluorescence imaging.

8.
Exp Eye Res ; 172: 86-93, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29604280

RESUMO

For in vivo mouse retinal imaging, especially with Adaptive Optics instruments, application of a contact lens is desirable, as it allows maintenance of cornea hydration and helps to prevent cataract formation during lengthy imaging sessions. However, since the refractive elements of the eye (cornea and lens) serve as the objective for most in vivo retinal imaging systems, the use of a contact lens, even with 0 Dpt. refractive power, can alter the system's optical properties. In this investigation we examined the effective focal length change and the aberrations that arise from use of a contact lens. First, focal length changes were simulated with a Zemax mouse eye model. Then ocular aberrations with and without a 0 Dpt. contact lens were measured with a Shack-Hartmann wavefront sensor (SHWS) in a customized AO-SLO system. Total RMS wavefront errors were measured for two groups of mice (14-month, and 2.5-month-old), decomposed into 66 Zernike aberration terms, and compared. These data revealed that vertical coma and spherical aberrations were increased with use of a contact lens in our system. Based on the ocular wavefront data we evaluated the effect of the contact lens on the imaging system performance as a function of the pupil size. Both RMS error and Strehl ratios were quantified for the two groups of mice, with and without contact lenses, and for different input beam sizes. These results provide information for determining optimum pupil size for retinal imaging without adaptive optics, and raise critical issues for design of mouse optical imaging systems that incorporate contact lenses.


Assuntos
Lentes de Contato , Córnea/fisiopatologia , Aberrações de Frente de Onda da Córnea/fisiopatologia , Refração Ocular/fisiologia , Retina/diagnóstico por imagem , Aberrometria , Animais , Camundongos , Camundongos Endogâmicos C57BL , Oftalmoscópios , Pupila/fisiologia
9.
J Neurooncol ; 138(1): 155-162, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29388034

RESUMO

We hypothesized elderly patients with good Karnofsky Performance Status (KPS) treated with standard dose or dose-escalated radiation therapy (SDRT/DERT) and concurrent temozolomide (TMZ) would have favorable overall survival (OS) compared to historical elderly patients treated with hypofractionated RT (HFRT). From 2004 to 2015, 66 patients age ≥ 60 with newly diagnosed, pathologically proven glioblastoma were treated with SDRT/DERT over 30 fractions with concurrent/adjuvant TMZ at a single institution. Kaplan-Meier methods and the log-rank test were used to assess OS and progression-free survival (PFS). Multivariate analysis (MVA) was performed using Cox Proportional-Hazards. Median follow-up was 12.6 months. Doses ranged from 60 to 81 Gy (median 66). Median KPS was 90 (range 60-100) and median age was 67 years (range 60-81), with 29 patients ≥ 70 years old. 32% underwent gross total resection (GTR). MGMT status was known in 28%, 42% of whom were methylated. Median PFS was 8.3 months (95% CI 6.9-11.0) and OS was 12.7 months (95% CI 9.7-14.1). Patients age ≥ 70 with KPS ≥ 90 had a median OS of 12.4 months. Median OS was 27.1 months for MGMT methylated patients. On MVA controlling for age, dose, KPS, MGMT, GTR, and adjuvant TMZ, younger age (HR 0.9, 95% CI 0.8-0.9, p < 0.01), MGMT methylation (HR:0.2, 95% CI 0.1-0.7, p = 0.01), and GTR (HR:0.5, 95% CI 0.3-0.9, p = 0.01) were associated with improved OS. Our findings do not support routine use of a standard 6-week course of radiation therapy in elderly patients with glioblastoma. However, a select group of elderly patients with excellent performance status and MGMT methylation or GTR may experience favorable survival with a standard 6-week course of treatment.


Assuntos
Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/radioterapia , Glioblastoma/mortalidade , Glioblastoma/radioterapia , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Antineoplásicos Alquilantes/uso terapêutico , Neoplasias Encefálicas/diagnóstico por imagem , Relação Dose-Resposta à Radiação , Feminino , Seguimentos , Glioblastoma/diagnóstico por imagem , Humanos , Avaliação de Estado de Karnofsky , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Intervalo Livre de Progressão , Estudos Retrospectivos , Temozolomida/uso terapêutico
10.
Radiology ; 283(2): 460-468, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28045603

RESUMO

Purpose To assess the cost-effectiveness of stereotactic body radiation therapy (SBRT) versus radiofrequency ablation (RFA) for patients with inoperable localized hepatocellular carcinoma (HCC) who are eligible for both SBRT and RFA. Materials and Methods A decision-analytic Markov model was developed for patients with inoperable, localized HCC who were eligible for both RFA and SBRT to evaluate the cost-effectiveness of the following treatment strategies: (a) SBRT as initial treatment followed by SBRT for local progression (SBRT-SBRT), (b) RFA followed by RFA for local progression (RFA-RFA), (c) SBRT followed by RFA for local progression (SBRT-RFA), and (d) RFA followed by SBRT for local progression (RFA-SBRT). Probabilities of disease progression, treatment characteristics, and mortality were derived from published studies. Outcomes included health benefits expressed as discounted quality-adjusted life years (QALYs), costs in U.S. dollars, and cost-effectiveness expressed as an incremental cost-effectiveness ratio. Deterministic and probabilistic sensitivity analysis was performed to assess the robustness of the findings. Results In the base case, SBRT-SBRT yielded the most QALYs (1.565) and cost $197 557. RFA-SBRT yielded 1.558 QALYs and cost $193 288. SBRT-SBRT was not cost-effective, at $558 679 per QALY gained relative to RFA-SBRT. RFA-SBRT was the preferred strategy, because RFA-RFA and SBRT-RFA were less effective and more costly. In all evaluated scenarios, SBRT was preferred as salvage therapy for local progression after RFA. Probabilistic sensitivity analysis showed that at a willingness-to-pay threshold of $100 000 per QALY gained, RFA-SBRT was preferred in 65.8% of simulations. Conclusion SBRT for initial treatment of localized, inoperable HCC is not cost-effective. However, SBRT is the preferred salvage therapy for local progression after RFA. © RSNA, 2017 Online supplemental material is available for this article.


Assuntos
Carcinoma Hepatocelular/economia , Carcinoma Hepatocelular/mortalidade , Ablação por Cateter/economia , Neoplasias Hepáticas/economia , Neoplasias Hepáticas/mortalidade , Radiocirurgia/economia , Ablação por Cateter/mortalidade , Ablação por Cateter/estatística & dados numéricos , Simulação por Computador , Análise Custo-Benefício/economia , Custos de Cuidados de Saúde/estatística & dados numéricos , Humanos , Cadeias de Markov , Modelos Econômicos , Complicações Pós-Operatórias/economia , Complicações Pós-Operatórias/mortalidade , Prevalência , Prognóstico , Modelos de Riscos Proporcionais , Lesões por Radiação/economia , Lesões por Radiação/mortalidade , Radiocirurgia/mortalidade , Radiocirurgia/estatística & dados numéricos , Reprodutibilidade dos Testes , Medição de Risco/métodos , Sensibilidade e Especificidade , Taxa de Sobrevida , Estados Unidos/epidemiologia
11.
Opt Lett ; 42(7): 1365-1368, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28362770

RESUMO

Adaptive Optics (AO) for scanning laser ophthalmoscopy enables high-resolution retinal imaging that can be used for preclinical research of diseases causing vision loss. Pupil Segmentation (PS) is an approach to wavefront-sensorless AO that acquires images within subregions across the imaging pupil to measure the wavefront slopes at the corresponding locations of the beam. We present PS-AO as an approach to correct ocular aberrations in ∼7 s, implemented to minimize respiratory motion from an anesthetized mouse. We demonstrated an improvement in resolution and an image intensity increase of ∼25% across all results using PS-AO for in vivo fluorescence retinal imaging in mice using a MEMS-based segmented deformable mirror.

12.
Immunol Rev ; 249(1): 104-15, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22889218

RESUMO

For several decades, it has been known that T-cell activation in vitro leads to increased glycolytic metabolism that fuels proliferation and effector function. Recently, this simple model has been complicated by the observation that different T-cell subsets differentially regulate fundamental metabolic pathways under the control of distinct molecular regulators. Although the majority of these data have been generated in vitro, several recent studies have documented the metabolism of T cells activated in vivo. Here, we review the recent data surrounding the differential regulation of metabolism by distinct T-cell subsets in vitro and in vivo and discuss how differential metabolic regulation might facilitate T-cell function vis-à-vis proliferation, survival, and energy production. We further discuss the important therapeutic implications of differential metabolism across T-cell subsets and review recent successes in exploiting lymphocyte metabolism to treat immune-mediated diseases.


Assuntos
Imunomodulação , Ativação Linfocitária , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Animais , Diferenciação Celular , Proliferação de Células , Metabolismo Energético , Glicólise , Humanos , Mitocôndrias/metabolismo , Fosforilação Oxidativa , Espécies Reativas de Oxigênio/metabolismo
13.
J Pharmacol Exp Ther ; 351(2): 298-307, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25125579

RESUMO

T-cell activation requires increased ATP and biosynthesis to support proliferation and effector function. Most models of T-cell activation are based on in vitro culture systems and posit that aerobic glycolysis is employed to meet increased energetic and biosynthetic demands. By contrast, T cells activated in vivo by alloantigens in graft-versus-host disease (GVHD) increase mitochondrial oxygen consumption, fatty acid uptake, and oxidation, with small increases of glucose uptake and aerobic glycolysis. Here we show that these differences are not a consequence of alloactivation, because T cells activated in vitro either in a mixed lymphocyte reaction to the same alloantigens used in vivo or with agonistic anti-CD3/anti-CD28 antibodies increased aerobic glycolysis. Using targeted metabolic (13)C tracer fate associations, we elucidated the metabolic pathway(s) employed by alloreactive T cells in vivo that support this phenotype. We find that glutamine (Gln)-dependent tricarboxylic acid cycle anaplerosis is increased in alloreactive T cells and that Gln carbon contributes to ribose biosynthesis. Pharmacological modulation of oxidative phosphorylation rapidly reduces anaplerosis in alloreactive T cells and improves GVHD. On the basis of these data, we propose a model of T-cell metabolism that is relevant to activated lymphocytes in vivo, with implications for the discovery of new drugs for immune disorders.


Assuntos
Doença Enxerto-Hospedeiro/imunologia , Isoantígenos/imunologia , Ativação Linfocitária/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Animais , Antígenos CD28/imunologia , Complexo CD3/imunologia , Ciclo do Ácido Cítrico/imunologia , Feminino , Glutamina/metabolismo , Glicólise/imunologia , Doença Enxerto-Hospedeiro/metabolismo , Camundongos , Fosforilação Oxidativa , Ribose/biossíntese
14.
Chin Clin Oncol ; 13(Suppl 1): AB036, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39295354

RESUMO

BACKGROUND: Glioblastoma cells preferentially use de-novo purine synthesis pathway, whereas normal brain prefers salvage pathway. Mycophenolate mofetil (MMF), a commonly used oral immunosuppressant that inhibits inosine-5'-monophosphate dehydrogenase (IMPDH), a key enzyme in the de-novo purine pathway. Pre-clinical suggested MMF can improve radiation and temozolomide efficacy in glioblastoma which led to this phase 0/1 trial (NCT04477200) to assess MMF's tolerability with chemoradiation in glioblastoma, mycophenolic acid accumulation, and purine synthesis inhibition in tumor. METHODS: In the phase 0 study, eight recurrent glioblastoma patients received MMF at doses ranging 500-2,000 mg BID for 1-week before surgery. The tissues were analyzed using mass spectrometry for drug accumulation and purine synthesis inhibition. In the phase 1 study, adult patients were given MMF starting at 1,000 mg orally (PO) twice daily (BID), with the possible dose ranging 500-2,000 PO BID. Nineteen recurrent glioblastoma patients (target N=30) received MMF 1-week prior to and concurrently with re-irradiation (40.5 Gy). Thirty newly diagnosed glioblastoma patients received MMF 1-week prior to and concurrently with chemoradiation, followed by MMF 1-day before and during 5 days of each adjuvant temozolomide cycle. RESULTS: Both enhancing and non-enhancing tumors from phase 0 subjects yielded >1 µM active drug metabolite, and the guanosine triphosphate: inosine monophosphate ratio was decreased by 75% in enhancing tumors in MMF-treated patients compared to untreated controls (P=0.009), indicating effective target engagement and inhibition of purine synthesis. In the phase 1 study, no dose-limiting toxicities (DLTs) were observed at the interim analysis at MMF 1,000-1,500 mg BID combined with chemoradiation. At 2,000 mg BID, there was no DLT combined with temozolomide alone, however, there were four DLTs noted (hemiparesis, cognitive disturbance, fatigue, thrombocytopenia) when combined with radiotherapy and temozolomide together, though all were reversible. Interim median overall survival in recurrent phase 1 is 15.6 months, and not reached yet in newly diagnosed phase 1. CONCLUSIONS: MMF with chemoradiation has been reasonably well tolerated and showed promising evidence of brain tumor target engagement and drug accumulation. This study led to a recommended phase 2 dose of MMF 1,500 mg BID and will provide a preliminary efficacy estimate for a randomized phase 2/3 trial through the Alliance for Clinical Trials in Oncology.


Assuntos
Quimiorradioterapia , Glioblastoma , Purinas , Humanos , Glioblastoma/tratamento farmacológico , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Quimiorradioterapia/métodos , Purinas/farmacologia , Purinas/uso terapêutico , Idoso , Recidiva Local de Neoplasia , Neoplasias Encefálicas/tratamento farmacológico
15.
bioRxiv ; 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39253432

RESUMO

Background: Radiotherapy (RT) is the primary treatment for diffuse midline glioma (DMG), a lethal pediatric malignancy defined by histone H3 lysine 27-to-methionine (H3K27M) mutation. Based on the loss of H3K27 trimethylation producing broad epigenomic alterations, we hypothesized that H3K27M causes a functional double-strand break (DSB) repair defect that could be leveraged therapeutically with PARP inhibitor and RT for selective radiosensitization and antitumor immune responses. Methods: H3K27M isogenic DMG cells and orthotopic brainstem DMG tumors in immune deficient and syngeneic, immune competent mice were used to evaluate the efficacy and mechanisms of PARP1/2 inhibition by olaparib or PARP1 inhibition by AZD9574 with concurrent RT. Results: H3K27M mutation caused an HRR defect characterized by impaired RT-induced K63-linked polyubiquitination of histone H1 and inhibition of HRR protein recruitment. H3K27M DMG cells were selectively radiosensitized by olaparib in comparison to isogenic controls, and this effect translated to efficacy in H3K27M orthotopic brainstem tumors. Olaparib and RT induced an innate immune response and induction of NK cell (NKG2D) activating ligands leading to increased NK cell-mediated lysis of DMG tumor cells. In immunocompetent syngeneic orthotopic DMG tumors, either olaparib or AZD9574 in combination with RT enhanced intratumoral NK cell infiltration and activity in association with NK cell-mediated therapeutic responses and favorable activity of AZD9574. Conclusions: The HRR deficiency in H3K27M DMG can be therapeutically leveraged with PARP inhibitors to radiosensitize and induce an NK cell-mediated antitumor immune response selectively in H3K27M DMG, supporting the clinical investigation of best-in-class PARP inhibitors with RT in DMG patients. Key points: H3K27M DMG are HRR defective and selectively radiosensitized by PARP inhibitor.PARP inhibitor with RT enhances NKG2D ligand expression and NK cell-mediated lysis.NK cells are required for the therapeutic efficacy of PARP inhibitor and RT. Importance of the Study: Radiotherapy is the cornerstone of H3K27M-mutant diffuse midline glioma treatment, but almost all patients succumb to tumor recurrence with poor overall survival, underscoring the need for RT-based precision combination therapy. Here, we reveal HRR deficiency as an H3K27M-mediated vulnerability and identify a novel mechanism linking impaired RT-induced histone H1 polyubiquitination and the subsequent RNF168/BRCA1/RAD51 recruitment in H3K27M DMG. This model is supported by selective radiosensitization of H3K27M DMG by PARP inhibitor. Notably, the combination treatment results in NKG2D ligand expression that confers susceptibility to NK cell killing in H3K27M DMG. We also show that the novel brain penetrant, PARP1-selective inhibitor AZD9574 compares favorably to olaparib when combined with RT, prolonging survival in a syngeneic orthotopic model of H3K27M DMG. This study highlights the ability of PARP1 inhibition to radiosensitize and induce an NK cell-mediated antitumor immunity in H3K27M DMG and supports future clinical investigation.

16.
JCI Insight ; 9(6)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38376927

RESUMO

Radiotherapy induces a type I interferon-mediated (T1IFN-mediated) antitumoral immune response that we hypothesized could be potentiated by a first-in-class ataxia telangiectasia mutated (ATM) inhibitor, leading to enhanced innate immune signaling, T1IFN expression, and sensitization to immunotherapy in pancreatic cancer. We evaluated the effects of AZD1390 or a structurally related compound, AZD0156, on innate immune signaling and found that both inhibitors enhanced radiation-induced T1IFN expression via the POLIII/RIG-I/MAVS pathway. In immunocompetent syngeneic mouse models of pancreatic cancer, ATM inhibitor enhanced radiation-induced antitumoral immune responses and sensitized tumors to anti-PD-L1, producing immunogenic memory and durable tumor control. Therapeutic responses were associated with increased intratumoral CD8+ T cell frequency and effector function. Tumor control was dependent on CD8+ T cells, as therapeutic efficacy was blunted in CD8+ T cell-depleted mice. Adaptive immune responses to combination therapy provided systemic control of contralateral tumors outside of the radiation field. Taken together, we show that a clinical candidate ATM inhibitor enhances radiation-induced T1IFN, leading to both innate and subsequent adaptive antitumoral immune responses and sensitization of otherwise resistant pancreatic cancer to immunotherapy.


Assuntos
Ataxia Telangiectasia , Interferon Tipo I , Neoplasias Pancreáticas , Piridinas , Quinolonas , Animais , Camundongos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/radioterapia , Neoplasias Pancreáticas/patologia , Imunidade
17.
Cancer Metab ; 12(1): 11, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594734

RESUMO

BACKGROUND: Diffuse midline gliomas (DMG), including diffuse intrinsic pontine gliomas (DIPGs), are a fatal form of brain cancer. These tumors often carry a driver mutation on histone H3 converting lysine 27 to methionine (H3K27M). DMG-H3K27M are characterized by altered metabolism and resistance to standard of care radiation (RT) but how the H3K27M mediates the metabolic response to radiation and consequent treatment resistance is uncertain. METHODS: We performed metabolomics on irradiated and untreated H3K27M isogenic DMG cell lines and observed an H3K27M-specific enrichment for purine synthesis pathways. We profiled the expression of purine synthesis enzymes in publicly available patient data and our models, quantified purine synthesis using stable isotope tracing, and characterized the in vitro and in vivo response to de novo and salvage purine synthesis inhibition in combination with RT. RESULTS: DMG-H3K27M cells activate purine metabolism in an H3K27M-specific fashion. In the absence of genotoxic treatment, H3K27M-expressing cells have higher relative activity of de novo synthesis and apparent lower activity of purine salvage demonstrated via stable isotope tracing of key metabolites in purine synthesis and by lower expression of hypoxanthine-guanine phosphoribosyltransferase (HGPRT), the rate-limiting enzyme of purine salvage into IMP and GMP. Inhibition of de novo guanylate synthesis radiosensitized DMG-H3K27M cells in vitro and in vivo. Irradiated H3K27M cells upregulated HGPRT expression and hypoxanthine-derived guanylate salvage but maintained high levels of guanine-derived salvage. Exogenous guanine supplementation decreased radiosensitization in cells treated with combination RT and de novo purine synthesis inhibition. Silencing HGPRT combined with RT markedly suppressed DMG-H3K27M tumor growth in vivo. CONCLUSIONS: Our results indicate that DMG-H3K27M cells rely on highly active purine synthesis, both from the de novo and salvage synthesis pathways. However, highly active salvage of free purine bases into mature guanylates can bypass inhibition of the de novo synthetic pathway. We conclude that inhibiting purine salvage may be a promising strategy to overcome treatment resistance in DMG-H3K27M tumors.

18.
bioRxiv ; 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39091833

RESUMO

Sex differences in immune responses impact cancer outcomes and treatment response, including in glioblastoma (GBM). However, host factors underlying sex specific immune-cancer interactions are poorly understood. Here, we identify the neurotransmitter γ-aminobutyric acid (GABA) as a driver of GBM-promoting immune response in females. We demonstrated that GABA receptor B (GABBR) signaling enhances L-Arginine metabolism and nitric oxide synthase 2 (NOS2) expression in female granulocytic myeloid-derived suppressor cells (gMDSCs). GABBR agonist and GABA analog promoted GBM growth in females in an immune-dependent manner, while GABBR inhibition reduces gMDSC NOS2 production and extends survival only in females. Furthermore, female GBM patients have enriched GABA transcriptional signatures compared to males, and the use of GABA analogs in GBM patients is associated with worse short-term outcomes only in females. Collectively, these results highlight that GABA modulates anti-tumor immune response in a sex-specific manner, supporting future assessment of GABA pathway inhibitors as part of immunotherapy approaches.

19.
JCI Insight ; 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39287988

RESUMO

End stage liver disease is marked by portal hypertension, systemic elevations in ammonia, and development of hepatocellular carcinoma (HCC). While these clinical consequences of cirrhosis are well described, it remains poorly understood whether hepatic insufficiency and the accompanying elevations in ammonia contribute to HCC carcinogenesis. Using preclinical models, we discovered that ammonia entered the cell through the transporter SLC4A11 and served as a nitrogen source for amino acid and nucleotide biosynthesis. Elevated ammonia promoted cancer stem cell properties in vitro and tumor initiation in vivo. Enhancing ammonia clearance reduced HCC stemness and tumor growth. In patients, elevations in serum ammonia were associated with an increased incidence of HCC. Taken together, this study forms the foundation for clinical investigations using ammonia lowering agents as potential therapies to mitigate HCC incidence and aggressiveness.

20.
Cancer Discov ; 14(1): 158-175, 2024 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-37902550

RESUMO

How cell metabolism regulates DNA repair is incompletely understood. Here, we define a GTP-mediated signaling cascade that links metabolism to DNA repair and has significant therapeutic implications. GTP, but not other nucleotides, regulates the activity of Rac1, a guanine nucleotide-binding protein, which promotes the dephosphorylation of serine 323 on Abl-interactor 1 (Abi-1) by protein phosphatase 5 (PP5). Dephosphorylated Abi-1, a protein previously not known to activate DNA repair, promotes nonhomologous end joining. In patients and mouse models of glioblastoma, Rac1 and dephosphorylated Abi-1 mediate DNA repair and resistance to standard-of-care genotoxic treatments. The GTP-Rac1-PP5-Abi-1 signaling axis is not limited to brain cancer, as GTP supplementation promotes DNA repair and Abi-1-S323 dephosphorylation in nonmalignant cells and protects mouse tissues from genotoxic insult. This unexpected ability of GTP to regulate DNA repair independently of deoxynucleotide pools has important implications for normal physiology and cancer treatment. SIGNIFICANCE: A newly described GTP-dependent signaling axis is an unexpected link between nucleotide metabolism and DNA repair. Disrupting this pathway can overcome cancer resistance to genotoxic therapy while augmenting it can mitigate genotoxic injury of normal tissues. This article is featured in Selected Articles from This Issue, p. 5.


Assuntos
Glioblastoma , Transdução de Sinais , Humanos , Camundongos , Animais , Transdução de Sinais/genética , Reparo do DNA , Dano ao DNA , Guanosina Trifosfato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA