Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Mol Cell Proteomics ; 17(7): 1392-1409, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29610270

RESUMO

Periodontal diseases are among the most prevalent worldwide, but largely silent, chronic diseases. They affect the tooth-supporting tissues with multiple ramifications on life quality. Their early diagnosis is still challenging, due to lack of appropriate molecular diagnostic methods. Saliva offers a non-invasively collectable reservoir of clinically relevant biomarkers, which, if utilized efficiently, could facilitate early diagnosis and monitoring of ongoing disease. Despite several novel protein markers being recently enlisted by discovery proteomics, their routine diagnostic application is hampered by the lack of validation platforms that allow for rapid, accurate and simultaneous quantification of multiple proteins in large cohorts. Here we carried out a pipeline of two proteomic platforms; firstly, we applied open ended label-free quantitative (LFQ) proteomics for discovery in saliva (n = 67, including individuals with health, gingivitis, and periodontitis), followed by selected-reaction monitoring (SRM)-targeted proteomics for validation in an independent cohort (n = 82). The LFQ platform led to the discovery of 119 proteins with at least 2-fold significant difference between health and disease. The 65 proteins chosen for the subsequent SRM platform included 50 functionally related proteins derived from the significantly enriched processes of the LFQ data, 11 from literature-mining, and four house-keeping ones. Among those, 60 were reproducibly quantifiable proteins (92% success rate), represented by a total of 143 peptides. Machine-learning modeling led to a narrowed-down panel of five proteins of high predictive value for periodontal diseases with maximum area under the receiver operating curve >0.97 (higher in disease: Matrix metalloproteinase-9, Ras-related protein-1, Actin-related protein 2/3 complex subunit 5; lower in disease: Clusterin, Deleted in Malignant Brain Tumors 1). This panel enriches the pool of credible clinical biomarker candidates for diagnostic assay development. Yet, the quantum leap brought into the field of periodontal diagnostics by this study is the application of the biomarker discovery-through-verification pipeline, which can be used for validation in further cohorts.


Assuntos
Doenças Periodontais/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Saliva/metabolismo , Proteínas e Peptídeos Salivares/metabolismo , Adulto , Área Sob a Curva , Biomarcadores/metabolismo , Humanos , Pessoa de Meia-Idade , Mapas de Interação de Proteínas , Reprodutibilidade dos Testes , Coloração e Rotulagem , Adulto Jovem
2.
Mol Cell Proteomics ; 16(3): 407-427, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28062797

RESUMO

Targeted proteomic methods can accelerate the verification of multiple tumor marker candidates in large series of patient samples. We utilized the targeted approach known as selected/multiple reaction monitoring (S/MRM) to verify potential protein markers of colorectal adenoma identified by our group in previous transcriptomic and quantitative shotgun proteomic studies of a large cohort of precancerous colorectal lesions. We developed SRM assays to reproducibly detect and quantify 25 (62.5%) of the 40 selected proteins in an independent series of precancerous and cancerous tissue samples (19 adenoma/normal mucosa pairs; 17 adenocarcinoma/normal mucosa pairs). Twenty-three proteins were significantly up-regulated (n = 17) or downregulated (n = 6) in adenomas and/or adenocarcinomas, as compared with normal mucosa (linear fold changes ≥ ±1.3, adjusted p value <0.05). Most changes were observed in both tumor types (up-regulation of ANP32A, ANXA3, SORD, LDHA, LCN2, NCL, S100A11, SERPINB5, CDV3, OLFM4, and REG4; downregulation of ARF6 and PGM5), and a five-protein biomarker signature distinguished neoplastic tissue from normal mucosa with a maximum area under the receiver operating curve greater than 0.83. Other changes were specific for adenomas (PPA1 and PPA2 up-regulation; KCTD12 downregulation) or adenocarcinoma (ANP32B, G6PD, RCN1, and SET up-regulation; downregulated AKR1B1, APEX1, and PPA1). Some changes significantly correlated with a few patient- or tumor-related phenotypes. Twenty-two (96%) of the 23 proteins have a potential to be released from the tumors into the bloodstream, and their detectability in plasma has been previously reported. The proteins identified in this study expand the pool of biomarker candidates that can be used to develop a standardized precolonoscopy blood test for the early detection of colorectal tumors.


Assuntos
Adenoma/metabolismo , Biomarcadores Tumorais/metabolismo , Neoplasias Colorretais/metabolismo , Proteômica/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/sangue , Cromatografia Líquida , Bases de Dados Genéticas , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Curva ROC , Espectrometria de Massas em Tandem
3.
Mol Cell ; 40(5): 787-97, 2010 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-21145486

RESUMO

Endoplasmic reticulum (ER) oxidation 1 (ERO1) transfers disulfides to protein disulfide isomerase (PDI) and is essential for oxidative protein folding in simple eukaryotes such as yeast and worms. Surprisingly, ERO1-deficient mammalian cells exhibit only a modest delay in disulfide bond formation. To identify ERO1-independent pathways to disulfide bond formation, we purified PDI oxidants with a trapping mutant of PDI. Peroxiredoxin IV (PRDX4) stood out in this list, as the related cytosolic peroxiredoxins are known to form disulfides in the presence of hydroperoxides. Mouse embryo fibroblasts lacking ERO1 were intolerant of PRDX4 knockdown. Introduction of wild-type mammalian PRDX4 into the ER rescued the temperature-sensitive phenotype of an ero1 yeast mutation. In the presence of an H(2)O(2)-generating system, purified PRDX4 oxidized PDI and reconstituted oxidative folding of RNase A. These observations implicate ER-localized PRDX4 in a previously unanticipated, parallel, ERO1-independent pathway that couples hydroperoxide production to oxidative protein folding in mammalian cells.


Assuntos
Retículo Endoplasmático/metabolismo , Peroxirredoxinas/química , Animais , Domínio Catalítico , Peróxido de Hidrogênio/metabolismo , Camundongos , Oxirredução , Peroxirredoxinas/metabolismo , Isomerases de Dissulfetos de Proteínas/química , Isomerases de Dissulfetos de Proteínas/metabolismo , Dobramento de Proteína
4.
Proc Natl Acad Sci U S A ; 111(27): 9929-34, 2014 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-24958876

RESUMO

Shigella flexneri proliferate in infected human epithelial cells at exceptionally high rates. This vigorous growth has important consequences for rapid progression to life-threatening bloody diarrhea, but the underlying metabolic mechanisms remain poorly understood. Here, we used metabolomics, proteomics, and genetic experiments to determine host and Shigella metabolism during infection in a cell culture model. The data suggest that infected host cells maintain largely normal fluxes through glycolytic pathways, but the entire output of these pathways is captured by Shigella, most likely in the form of pyruvate. This striking strategy provides Shigella with an abundant favorable energy source, while preserving host cell ATP generation, energy charge maintenance, and survival, despite ongoing vigorous exploitation. Shigella uses a simple three-step pathway to metabolize pyruvate at high rates with acetate as an excreted waste product. The crucial role of this pathway for Shigella intracellular growth suggests targets for antimicrobial chemotherapy of this devastating disease.


Assuntos
Divisão Celular , Shigella/fisiologia , Acetatos/metabolismo , Carbono/metabolismo , Citosol/metabolismo , Genoma Bacteriano , Células HeLa , Humanos , Metabolômica , Ressonância Magnética Nuclear Biomolecular , Oxigênio/metabolismo , Ácido Pirúvico/metabolismo , Shigella/genética , Shigella/metabolismo
5.
Proteomics ; 16(15-16): 2183-92, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27130639

RESUMO

Quantitative mass spectrometry is a rapidly evolving methodology applied in a large number of omics-type research projects. During the past years, new designs of mass spectrometers have been developed and launched as commercial systems while in parallel new data acquisition schemes and data analysis paradigms have been introduced. Core facilities provide access to such technologies, but also actively support the researchers in finding and applying the best-suited analytical approach. In order to implement a solid fundament for this decision making process, core facilities need to constantly compare and benchmark the various approaches. In this article we compare the quantitative accuracy and precision of current state of the art targeted proteomics approaches single reaction monitoring (SRM), parallel reaction monitoring (PRM) and data independent acquisition (DIA) across multiple liquid chromatography mass spectrometry (LC-MS) platforms, using a readily available commercial standard sample. All workflows are able to reproducibly generate accurate quantitative data. However, SRM and PRM workflows show higher accuracy and precision compared to DIA approaches, especially when analyzing low concentrated analytes.


Assuntos
Cromatografia Líquida/métodos , Espectrometria de Massas/métodos , Proteômica/métodos
6.
Mol Cell Proteomics ; 12(9): 2623-39, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23689285

RESUMO

Multiple reaction monitoring (MRM) mass spectrometry coupled with stable isotope dilution (SID) and liquid chromatography (LC) is increasingly used in biological and clinical studies for precise and reproducible quantification of peptides and proteins in complex sample matrices. Robust LC-SID-MRM-MS-based assays that can be replicated across laboratories and ultimately in clinical laboratory settings require standardized protocols to demonstrate that the analysis platforms are performing adequately. We developed a system suitability protocol (SSP), which employs a predigested mixture of six proteins, to facilitate performance evaluation of LC-SID-MRM-MS instrument platforms, configured with nanoflow-LC systems interfaced to triple quadrupole mass spectrometers. The SSP was designed for use with low multiplex analyses as well as high multiplex approaches when software-driven scheduling of data acquisition is required. Performance was assessed by monitoring of a range of chromatographic and mass spectrometric metrics including peak width, chromatographic resolution, peak capacity, and the variability in peak area and analyte retention time (RT) stability. The SSP, which was evaluated in 11 laboratories on a total of 15 different instruments, enabled early diagnoses of LC and MS anomalies that indicated suboptimal LC-MRM-MS performance. The observed range in variation of each of the metrics scrutinized serves to define the criteria for optimized LC-SID-MRM-MS platforms for routine use, with pass/fail criteria for system suitability performance measures defined as peak area coefficient of variation <0.15, peak width coefficient of variation <0.15, standard deviation of RT <0.15 min (9 s), and the RT drift <0.5min (30 s). The deleterious effect of a marginally performing LC-SID-MRM-MS system on the limit of quantification (LOQ) in targeted quantitative assays illustrates the use and need for a SSP to establish robust and reliable system performance. Use of a SSP helps to ensure that analyte quantification measurements can be replicated with good precision within and across multiple laboratories and should facilitate more widespread use of MRM-MS technology by the basic biomedical and clinical laboratory research communities.


Assuntos
Cromatografia Líquida/instrumentação , Cromatografia Líquida/métodos , Espectrometria de Massas/instrumentação , Espectrometria de Massas/métodos , Sequência de Aminoácidos , Animais , Bovinos , Limite de Detecção , Dados de Sequência Molecular , Peptídeos/química , Peptídeos/metabolismo , Padrões de Referência , Software , Fatores de Tempo
7.
J Proteome Res ; 12(2): 657-78, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23244068

RESUMO

We investigated the sequential protein expression in gingival crevicular fluid samples during the induction (I) and resolution (R) of experimental gingivitis. Periodontally and systemically healthy volunteers (n = 20) participated in a three-week experimental gingivitis protocol, followed by debridement and two weeks of regular plaque control. Gingival crevicular fluid (GCF) samples were collected at baseline, Day 7, 14, and 21 (induction; I-phase), and at Day 21, 25, 30, and 35 (resolution; R-phase). Liquid chromatography-tandem mass spectrometry (LC-MS/MS) for label-free quantitative proteomics was applied. A total of 287 proteins were identified including 254 human, 14 bacterial, 12 fungal, and 7 yeast proteins. Ontology analysis revealed proteins primarily involved in cytoskeletal rearrangements, immune response, antimicrobial function, protein degradation, and DNA binding. There was considerable variation in the number of proteins identified, both among subjects and within subjects across time points. After pooling of samples between subjects at each time point, the levels of 59 proteins in the I-phase and 73 proteins in the R-phase were quantified longitudinally. Our data demonstrate that LC-MS/MS label-free quantitative proteomics is valuable in the assessment of the protein content of the GCF and can facilitate a better understanding of the molecular mechanisms involved in the induction and resolution of plaque-induced gingival inflammation in humans.


Assuntos
Líquido do Sulco Gengival/química , Gengivite/genética , Proteoma/análise , Adulto , Proteínas de Bactérias/análise , Cromatografia Líquida , Feminino , Proteínas Fúngicas/análise , Regulação da Expressão Gênica , Líquido do Sulco Gengival/microbiologia , Gengivite/metabolismo , Gengivite/microbiologia , Humanos , Masculino , Proteínas e Peptídeos Salivares/análise , Espectrometria de Massas em Tandem
8.
J Proteome Res ; 8(12): 5666-73, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19845334

RESUMO

We present a mass spectrometry-based method for the identification and quantification of membrane proteins using the low-specificity protease Proteinase K, at very high pH, to digest proteins isolated by a modified SDS-PAGE protocol. The resulting peptides are modified with a fragmentation-directing isotope labeled tag. We apply the method to quantify differences in membrane protein expression of Bacillus subtilis grown in the presence or absence of glucose.


Assuntos
Proteínas de Membrana/análise , Fragmentos de Peptídeos/análise , Peptídeo Hidrolases/metabolismo , Proteômica/métodos , Bacillus subtilis/química , Proteínas de Bactérias/análise , Proteínas de Bactérias/efeitos dos fármacos , Eletroforese em Gel de Poliacrilamida , Endopeptidase K/metabolismo , Glucose/farmacologia , Humanos , Espectrometria de Massas
9.
Proteomics ; 8(9): 1771-9, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18442167

RESUMO

Peptide mass fingerprinting (PMF) has over the years become one of the most commonly used tools for high-throughput analysis and identification of proteins. This method is applicable when relatively simple samples have to be analysed and it is commonly used for analysing proteins previously separated by 2-DE. The most common type of instrument used for this approach is the MALDI-TOF that has proved to be particularly suitable for the PMF analysis because of its characteristics of speed, robustness, sensitivity and automation. We have used a MALDI-TOF equipped with a novel parallel PSD capability (MALDI micro MX), to perform the analysis of two sets of different biological samples isolated by 2-DE. By using a method that integrates the data obtained by PMF analysis with the PSD data obtained in the same experiment, we show that the new multiplexed PSD solution increases the protein identification rate compared to the normal PMF approach. We also investigated the use of a charge-directed fragmentation modification reagent to improve the identification rate and confidence levels.


Assuntos
Eletroforese em Gel Bidimensional/métodos , Mapeamento de Peptídeos/instrumentação , Mapeamento de Peptídeos/métodos , Peptídeos/química , Proteômica/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/instrumentação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Linhagem Celular , Bases de Dados de Proteínas , Humanos , Rim/metabolismo , Fígado/metabolismo , Lisina/química , Camundongos , Estrutura Terciária de Proteína , Proteínas/química
10.
Mol Biol Cell ; 26(14): 2596-608, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25995378

RESUMO

Protein degradation is essential for cellular homeostasis. We developed a sensitive approach to examining protein degradation rates in Saccharomyces cerevisiae by coupling a SILAC approach to selected reaction monitoring (SRM) mass spectrometry. Combined with genetic tools, this analysis made it possible to study the assembly of the oligosaccharyl transferase complex. The ER-associated degradation machinery compensated for disturbed homeostasis of complex components by degradation of subunits in excess. On a larger scale, protein degradation in the ER was found to be a minor factor in the regulation of protein homeostasis in exponentially growing cells, but ERAD became relevant when the gene dosage was affected, as demonstrated in heterozygous diploid cells. Hence the alleviation of fitness defects due to abnormal gene copy numbers might be an important function of protein degradation.


Assuntos
Degradação Associada com o Retículo Endoplasmático , Hexosiltransferases/metabolismo , Proteínas de Membrana/metabolismo , Saccharomyces cerevisiae/metabolismo , Cinética , Espectrometria de Massas
12.
Nat Biotechnol ; 27(7): 633-41, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19561596

RESUMO

Verification of candidate biomarkers relies upon specific, quantitative assays optimized for selective detection of target proteins, and is increasingly viewed as a critical step in the discovery pipeline that bridges unbiased biomarker discovery to preclinical validation. Although individual laboratories have demonstrated that multiple reaction monitoring (MRM) coupled with isotope dilution mass spectrometry can quantify candidate protein biomarkers in plasma, reproducibility and transferability of these assays between laboratories have not been demonstrated. We describe a multilaboratory study to assess reproducibility, recovery, linear dynamic range and limits of detection and quantification of multiplexed, MRM-based assays, conducted by NCI-CPTAC. Using common materials and standardized protocols, we demonstrate that these assays can be highly reproducible within and across laboratories and instrument platforms, and are sensitive to low mug/ml protein concentrations in unfractionated plasma. We provide data and benchmarks against which individual laboratories can compare their performance and evaluate new technologies for biomarker verification in plasma.


Assuntos
Proteínas Sanguíneas/análise , Espectrometria de Massas/métodos , Biomarcadores/sangue , Análise Química do Sangue/métodos , Humanos , Modelos Lineares , Espectrometria de Massas/normas , Proteoma/análise , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Avaliação da Tecnologia Biomédica
13.
J Proteome Res ; 6(3): 1101-13, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17286425

RESUMO

We present a generic approach for quantitative differential proteomics that reduces data complexity in proteome analysis by automated selection of peptides for MS/MS analysis according to their isotope-labeling ratio. Isotopic reagents were developed that give products which fragment easily to generate a unique pair of signature ions. Using the ion-pair ratio, we show that it is possible to select only BSA peptides (with a 3:1 light heavy isotope ratio) for MS/MS when spiked in a whole yeast extract using Parent (precursor) Ion Quantitation Scanning (PIQS) for MS/MS.


Assuntos
Proteínas/análise , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos , Animais , Indicadores e Reagentes , Soroalbumina Bovina/isolamento & purificação , Leveduras
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA