Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mar Pollut Bull ; 202: 116231, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38554685

RESUMO

Microplastic (MP) pollution poses a global concern, especially for benthic invertebrates. This one-month study investigated the accumulation of small MP polymers (polypropylene and polyester resin, 3-500 µm, 250 µg L-1) in benthic invertebrates and on one alga species. Results revealed species-specific preferences for MP size and type, driven by ingestion, adhesion, or avoidance behaviours. Polyester resin accumulated in Mytilus galloprovincialis, Chamelea gallina, Hexaplex trunculus, and Paranemonia cinerea, while polypropylene accumulated on Ulva rigida. Over time, MP accumulation decreased in count but not size, averaging 6.2 ± 5.0 particles per individual after a month. MP were mainly found inside of the organisms, especially in the gut, gills, and gonads and externally adherent MP ranged from 11 to 35 % of the total. Biochemical energy assessments after two weeks of MP exposure indicated energy gains for water column species but energy loss for sediment-associated species, highlighting the susceptibility of infaunal benthic communities to MP contamination.


Assuntos
Monitoramento Ambiental , Invertebrados , Microplásticos , Poluentes Químicos da Água , Animais , Poluentes Químicos da Água/análise , Organismos Aquáticos , Ecossistema
2.
Microorganisms ; 8(11)2020 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-33114532

RESUMO

Seaweeds are a group of essential photosynthetic organisms that harbor a rich diversity of associated microbial communities with substantial functions related to host health and defense. Environmental and anthropogenic stressors may disrupt the microbial communities and their metabolic activity, leading to host physiological alterations that negatively affect seaweeds' performance and survival. Here, the bacterial communities associated with one of the most common seaweed, Ulva laetevirens Areshough, were sampled over a year at three sites of the lagoon of Venice affected by different environmental and anthropogenic stressors. Bacterial communities were characterized through Illumina sequencing of the V4 hypervariable region of 16S rRNA genes. The study demonstrated that the seaweed associated bacterial communities at sites impacted by environmental stressors were host-specific and differed significantly from the less affected site. Furthermore, these communities were significantly distinct from those of the surrounding seawater. The bacterial communities' composition was significantly correlated with environmental parameters (nutrient concentrations, dissolved oxygen saturation, and pH) across sites. This study showed that several more abundant bacteria on U. laetevirens at stressed sites belonged to taxa related to the host response to the stressors. Overall, environmental parameters and anthropogenic stressors were shown to substantially affect seaweed associated bacterial communities, which reflect the host response to environmental variations.

3.
Environ Int ; 131: 104942, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31491810

RESUMO

The acute toxicity of citrate capped silver nanoparticles (AgNP) and silver nitrate was evaluated on the marine macroalga Ulva rigida C. Agardh (1823). Silver bioaccumulation, ultrastructural chloroplast damages verified by TEM microscopy, inhibition of primary production, neutral lipid production and oxidative stress were observed after 24 h of exposure to AgNP. The toxic effects of silver nitrate in artificial seawater started from a concentration of 0.05 ppm and was more toxic than AgNP that produced effects from a concentration of 0.1 ppm. However only AgNP induced lipid peroxidation in U. rigida. The addition of natural organic and inorganic ligands, represented by transparent exopolymer particles (TEP) and clay, drastically reduced AgNP acute toxicity in a ratio AgNP:ligand of 1:100 and 1:200, respectively. The findings suggest a marked toxicity of Ag on marine macroalgae which however should be mitigated by the high natural ligand concentrations of the transitional environments.


Assuntos
Nanopartículas Metálicas/toxicidade , Nitrato de Prata/toxicidade , Prata/toxicidade , Ulva/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Relação Dose-Resposta a Droga , Ligantes , Água do Mar/química , Alga Marinha/efeitos dos fármacos , Alga Marinha/fisiologia , Ulva/fisiologia
4.
Toxicon ; 142: 45-51, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29294314

RESUMO

The Reef Stonefish (Synanceia verrucosa) is one of the most dangerous venomous fish known, and has caused occasional human fatalities. The present study was designed to examine some of the pathological effects of the venom from this fish in Sprague Dawley rats. Crude venom was extracted from venom glands of the dorsal spines of stonefish specimens collected from coral reefs in the Gulf of Aqaba (in the northeastern branch of the Red Sea). The rats were given intramuscular injections of the venom and acute toxicity and effect on selected serum marker enzymes as well as normal architecture of vital organs were evaluated. The rat 24 h LD50 was 38 µg/kg body weight. The serum biochemical markers; alanine transaminase (ALT), lactate dehydrogenase (LDH) and creatine kinase (CK) increased after 6 h of administration of a sub lethal dose of the venom and remained significantly raised at 24 h. Amylase levels also significantly increased after venom injection. The venom caused histological damage manifested as an interstitial hemorrhage, inflammatory cell infiltration, and necrosis. The demonstrated rises in the levels of different critical biochemical parameters in the serum may have led to the observed abnormal morphological changes in these organs. These results may account for some of the clinical manifestations observed in victims of stonefish envenomation. Thus, the presented data provide further in vivo evidence of the stonefish toxic effects that may threaten human life and call for the need for special measures to be considered.


Assuntos
Venenos de Peixe/toxicidade , Peixes Venenosos , Perciformes , Animais , Biomarcadores/sangue , Venenos de Peixe/química , Venenos de Peixe/isolamento & purificação , Coração/efeitos dos fármacos , Rim/efeitos dos fármacos , Rim/patologia , Dose Letal Mediana , Fígado/efeitos dos fármacos , Fígado/patologia , Pulmão/efeitos dos fármacos , Pulmão/patologia , Masculino , Miocárdio/patologia , Ratos , Ratos Sprague-Dawley , Testes de Toxicidade Aguda
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA