Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(30)2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34285074

RESUMO

Organoheterotrophs are the dominant bacteria in most soils worldwide. While many of these bacteria can subsist on atmospheric hydrogen (H2), levels of this gas are generally insufficient to sustain hydrogenotrophic growth. In contrast, bacteria residing within soil-derived termite mounds are exposed to high fluxes of H2 due to fermentative production within termite guts. Here, we show through community, metagenomic, and biogeochemical profiling that termite emissions select for a community dominated by diverse hydrogenotrophic Actinobacteriota and Dormibacterota. Based on metagenomic short reads and derived genomes, uptake hydrogenase and chemosynthetic RuBisCO genes were significantly enriched in mounds compared to surrounding soils. In situ and ex situ measurements confirmed that high- and low-affinity H2-oxidizing bacteria were highly active in the mounds, such that they efficiently consumed all termite-derived H2 emissions and served as net sinks of atmospheric H2 Concordant findings were observed across the mounds of three different Australian termite species, with termite activity strongly predicting H2 oxidation rates (R2 = 0.82). Cell-specific power calculations confirmed the potential for hydrogenotrophic growth in the mounds with most termite activity. In contrast, while methane is produced at similar rates to H2 by termites, mounds contained few methanotrophs and were net sources of methane. Altogether, these findings provide further evidence of a highly responsive terrestrial sink for H2 but not methane and suggest H2 availability shapes composition and activity of microbial communities. They also reveal a unique arthropod-bacteria interaction dependent on H2 transfer between host-associated and free-living microbial communities.


Assuntos
Bactérias/metabolismo , Gases/metabolismo , Isópteros/microbiologia , Microbiota , Animais , Austrália , Hidrogênio/metabolismo , Consumo de Oxigênio , Microbiologia do Solo
2.
Plant Dis ; 108(2): 291-295, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37755419

RESUMO

Tomato (Solanum lycopersicum L., family Solanaceae) represents one of the most economically valuable horticultural crops worldwide. Tomato production is affected by numerous emerging plant viruses. We identified, for the first time in New Zealand (NZ), Pepino mosaic virus (PepMV) in greenhouse grown tomato crops using a combination of methods from electron microscopy and herbaceous indexing to RT-qPCR and high-throughput sequencing. Phylogenetic and genomic analysis of a near-complete PepMV genome determined that the detected strain belonged to the mild form of the CH2 lineage of the virus. Subsequently, a delimiting survey of PepMV was conducted, and PepMV was detected at four additional locations. PCR-derived sequences obtained from samples collected from different greenhouses and from herbaceous indicator plants were identical to the original sequence. Since PepMV has never been reported in NZ before, seed pathways are speculated to be the most likely source of entry into the country.


Assuntos
Potexvirus , Solanum lycopersicum , Filogenia , Nova Zelândia , Doenças das Plantas
3.
Antimicrob Agents Chemother ; 65(10): e0093621, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34310207

RESUMO

The structural diversity in metallo-ß-lactamases (MBLs), especially in the vicinity of the active site, has been a major hurdle in the development of clinically effective inhibitors. Representatives from three variants of the B3 MBL subclass, containing either the canonical HHH/DHH active-site motif (present in the majority of MBLs in this subclass) or the QHH/DHH (B3-Q) or HRH/DQK (B3-RQK) variations, were reported previously. Here, we describe the structure and kinetic properties of the first example (SIE-1) of a fourth variant containing the EHH/DHH active-site motif (B3-E). SIE-1 was identified in the hexachlorocyclohexane-degrading bacterium Sphingobium indicum, and kinetic analyses demonstrate that although it is active against a wide range of antibiotics, its efficiency is lower than that of other B3 MBLs but has increased efficiency toward cephalosporins relative to other ß-lactam substrates. The overall fold of SIE-1 is characteristic of the MBLs; the notable variation is observed in the Zn1 site due to the replacement of the canonical His116 by a glutamate. The unusual preference of SIE-1 for cephalosporins and its occurrence in a widespread environmental organism suggest the scope for increased MBL-mediated ß-lactam resistance. Thus, it is relevant to include SIE-1 in MBL inhibitor design studies to widen the therapeutic scope of much needed antiresistance drugs.


Assuntos
Sphingomonadaceae , beta-Lactamases , Antibacterianos/farmacologia , Domínio Catalítico , Ácido Glutâmico , Sphingomonadaceae/metabolismo , Inibidores de beta-Lactamases/farmacologia , beta-Lactamases/genética , beta-Lactamases/metabolismo
4.
Int J Syst Evol Microbiol ; 70(11): 5972-6016, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33151140

RESUMO

The class Deltaproteobacteria comprises an ecologically and metabolically diverse group of bacteria best known for dissimilatory sulphate reduction and predatory behaviour. Although this lineage is the fourth described class of the phylum Proteobacteria, it rarely affiliates with other proteobacterial classes and is frequently not recovered as a monophyletic unit in phylogenetic analyses. Indeed, one branch of the class Deltaproteobacteria encompassing Bdellovibrio-like predators was recently reclassified into a separate proteobacterial class, the Oligoflexia. Here we systematically explore the phylogeny of taxa currently assigned to these classes using 120 conserved single-copy marker genes as well as rRNA genes. The overwhelming majority of markers reject the inclusion of the classes Deltaproteobacteria and Oligoflexia in the phylum Proteobacteria. Instead, the great majority of currently recognized members of the class Deltaproteobacteria are better classified into four novel phylum-level lineages. We propose the names Desulfobacterota phyl. nov. and Myxococcota phyl. nov. for two of these phyla, based on the oldest validly published names in each lineage, and retain the placeholder name SAR324 for the third phylum pending formal description of type material. Members of the class Oligoflexia represent a separate phylum for which we propose the name Bdellovibrionota phyl. nov. based on priority in the literature and general recognition of the genus Bdellovibrio. Desulfobacterota phyl. nov. includes the taxa previously classified in the phylum Thermodesulfobacteria, and these reclassifications imply that the ability of sulphate reduction was vertically inherited in the Thermodesulfobacteria rather than laterally acquired as previously inferred. Our analysis also indicates the independent acquisition of predatory behaviour in the phyla Myxococcota and Bdellovibrionota, which is consistent with their distinct modes of action. This work represents a stable reclassification of one of the most taxonomically challenging areas of the bacterial tree and provides a robust framework for future ecological and systematic studies.


Assuntos
Bactérias/classificação , Deltaproteobacteria/classificação , Proteobactérias/classificação , Filogenia , Terminologia como Assunto
5.
Environ Microbiol ; 20(2): 561-576, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29098761

RESUMO

Many marine sponges contain dense and diverse communities of associated microorganisms. Members of the 'sponge-associated unclassified lineage' (SAUL) are frequently recorded from sponges, yet little is known about these bacteria. Here we investigated the distribution and phylogenetic status of SAUL. A meta-analysis of the available literature revealed the widespread distribution of this clade and its association with taxonomically varied sponge hosts. Phylogenetic analyses, conducted using both 16S rRNA gene-based phylogeny and concatenated marker protein sequences, revealed that SAUL is a sister clade of the candidate phylum 'Latescibacteria'. Furthermore, we conducted a comprehensive analysis of two draft genomes assembled from sponge metagenomes, revealing novel insights into the physiology of this symbiont. Metabolic reconstruction suggested that SAUL members are aerobic bacteria with facultative anaerobic metabolism, with the capacity to degrade multiple sponge- and algae-derived carbohydrates. We described for the first time in a sponge symbiont the putative genomic capacity to transport phosphate into the cell and to produce and store polyphosphate granules, presumably constituting a phosphate reservoir for the sponge host in deprivation periods. Our findings suggest that the lifestyle of SAUL is symbiotic with the host sponge, and identify symbiont factors which may facilitate the establishment and maintenance of this relationship.


Assuntos
Bactérias Aeróbias/classificação , Poríferos/microbiologia , Animais , Bactérias Aeróbias/genética , Tipagem Molecular , Filogenia , RNA Bacteriano , RNA Ribossômico 16S , Simbiose
6.
J Anim Ecol ; 87(2): 428-437, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29111601

RESUMO

Gut microbes are increasingly recognised for their role in regulating an animal's metabolism and immunity. However, identifying repeatable associations between host physiological processes and their gut microbiota has proved challenging, in part because microbial communities often respond stochastically to host physiological stress (e.g. fasting, forced exercise or infection). Migratory birds provide a valuable system in which to test host-microbe interactions under physiological extremes because these hosts are adapted to predictable metabolic and immunological challenges as they undergo seasonal migrations, including temporary gut atrophy during long-distance flights. These physiological challenges may either temporarily disrupt gut microbial ecosystems, or, alternatively, promote predictable host-microbe associations during migration. To determine the relationship between migration and gut microbiota, we compared gut microbiota composition between migrating and non-migrating ("resident") conspecific shorebirds sharing a flock. We performed this across two sandpiper species, Calidris ferruginea and Calidris ruficollis, in north-western Australia, and an additional C. ruficollis population 3,000 km away in southern Australia. We found that migrants consistently had higher abundances of the bacterial genus Corynebacterium (average 28% abundance) compared to conspecific residents (average <1% abundance), with this effect holding across both species and sites. However, other than this specific association, community structure and diversity was almost identical between migrants and residents, with migration status accounting for only 1% of gut community variation when excluding Corynebacterium. Our findings suggest a consistent relationship between Corynebacterium and Calidris shorebirds during migration, with further research required to identify causal mechanisms behind the association, and to elucidate functionality to the host. However, outside this specific association, migrating shorebirds broadly maintained gut community structure, which may allow them to quickly recover gut function after a migratory flight. This study provides a rare example of a repeatable and specific response of the gut microbiota to a major physiological challenge across two species and two distant populations.


Assuntos
Migração Animal , Biodiversidade , Aves/microbiologia , Charadriiformes/microbiologia , Microbioma Gastrointestinal/fisiologia , Interações entre Hospedeiro e Microrganismos/fisiologia , Animais , Microbioma Gastrointestinal/genética , Especificidade de Hospedeiro , RNA Ribossômico 16S/genética , Austrália do Sul , Austrália Ocidental
8.
Environ Sci Technol ; 52(9): 5386-5397, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29620869

RESUMO

Free nitrous acid (FNA) exerts a broad range of antimicrobial effects on bacteria, although susceptibility varies considerably among microorganisms. Among nitrifiers found in activated sludge of wastewater treatment processes (WWTPs), nitrite-oxidizing bacteria (NOB) are more susceptible to FNA compared to ammonia-oxidizing bacteria (AOB). This selective inhibition of NOB over AOB in WWTPs bypasses nitrate production and improves the efficiency and costs of the nitrogen removal process in both the activated sludge and anaerobic ammonium oxidation (Anammox) system. However, the molecular mechanisms governing this atypical tolerance of AOB to FNA have yet to be understood. Herein we investigate the varying effects of the antimicrobial FNA on activated sludge containing AOB and NOB using an integrated metagenomics and label-free quantitative sequential windowed acquisition of all theoretical fragment ion mass spectra (SWATH-MS) metaproteomic approach. The Nitrosomonas genus of AOB, on exposure to FNA, maintains internal homeostasis by upregulating a number of known oxidative stress enzymes, such as pteridine reductase and dihydrolipoyl dehydrogenase. Denitrifying enzymes were upregulated on exposure to FNA, suggesting the detoxification of nitrite to nitric oxide. Interestingly, proteins involved in stress response mechanisms, such as DNA and protein repair enzymes, phage prevention proteins, and iron transport proteins, were upregulated on exposure to FNA. In addition enzymes involved in energy generation were also upregulated on exposure to FNA. The total proteins specifically derived from the NOB genus Nitrobacter was low and, as such, did not allow for the elucidation of the response mechanism to FNA exposure. These findings give us an understanding of the adaptive mechanisms of tolerance within the AOB Nitrosomonas to the biocidal agent FNA.


Assuntos
Nitrosomonas , Ácido Nitroso , Amônia , Bactérias , Reatores Biológicos , Nitritos , Oxirredução , Esgotos
9.
Environ Microbiol ; 19(1): 381-392, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27902866

RESUMO

Chronic rhinosinusitis (CRS) is a common, debilitating condition characterized by long-term inflammation of the nasal cavity and paranasal sinuses. The role of the sinonasal bacteria in CRS is unclear. We conducted a meta-analysis combining and reanalysing published bacterial 16S rRNA sequence data to explore differences in sinonasal bacterial community composition and predicted function between healthy and CRS affected subjects. The results identify the most abundant bacteria across all subjects as Staphylococcus, Propionibacterium, Corynebacterium, Streptococcus and an unclassified lineage of Actinobacteria. The meta-analysis results suggest that the bacterial community associated with CRS patients is dysbiotic and ecological networks fostering healthy communities are fragmented. Increased dispersion of bacterial communities, significantly lower bacterial diversity, and increased abundance of members of the genus Corynebacterium are associated with CRS. Increased relative abundance and diversity of other members belonging to the phylum Actinobacteria and members from the genera Propionibacterium differentiated healthy sinuses from those that were chronically inflamed. Removal of Burkholderia and Propionibacterium phylotypes from the healthy community dataset was correlated with a significant increase in network fragmentation. This meta-analysis highlights the potential importance of the genera Burkholderia and Propionibacterium as gatekeepers, whose presence may be important in maintaining a stable sinonasal bacterial community.


Assuntos
Bactérias/isolamento & purificação , Microbiota , Cavidade Nasal/microbiologia , Rinite/microbiologia , Sinusite/microbiologia , Bactérias/classificação , Bactérias/genética , Doença Crônica , Humanos , RNA Ribossômico 16S/genética
10.
Mol Ecol ; 26(20): 5842-5854, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28815767

RESUMO

Migratory animals encounter suites of novel microbes as they move between disparate sites during their migrations, and are frequently implicated in the global spread of pathogens. Although wild animals have been shown to source a proportion of their gut microbiota from their environment, the susceptibility of migrants to enteric infections may be dependent upon the capacity of their gut microbiota to resist incorporating encountered microbes. To evaluate migrants' susceptibility to microbial invasion, we determined the extent of microbial sourcing from the foraging environment and examined how this influenced gut microbiota dynamics over time and space in a migratory shorebird, the Red-necked stint Calidris ruficollis. Contrary to previous studies on wild, nonmigratory hosts, we found that stint on their nonbreeding grounds obtained very little of their microbiota from their environment, with most individuals sourcing only 0.1% of gut microbes from foraging sediment. This microbial resistance was reflected at the population level by only weak compositional differences between stint flocks occupying ecologically distinct sites, and by our finding that stint that had recently migrated 10,000 km did not differ in diversity or taxonomy from those that had inhabited the same site for a full year. However, recent migrants had much greater abundances of the genus Corynebacterium, suggesting a potential microbial response to either migration or exposure to a novel environment. We conclude that the gut microbiota of stint is largely resistant to invasion from ingested microbes and that this may have implications for their susceptibility to enteric infections during migration.


Assuntos
Migração Animal , Charadriiformes/microbiologia , Meio Ambiente , Microbioma Gastrointestinal , Sedimentos Geológicos/microbiologia , Animais , Animais Selvagens/microbiologia , Bactérias/classificação , DNA Bacteriano/isolamento & purificação , Vitória
11.
Arch Microbiol ; 197(4): 603-12, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25701133

RESUMO

The endemic New Zealand weta is an enigmatic insect. Although the insect is well known by its distinctive name, considerable size, and morphology, many basic aspects of weta biology remain unknown. Here, we employed cultivation-independent enumeration techniques and rRNA gene sequencing to investigate the gut microbiota of the Auckland tree weta (Hemideina thoracica). Fluorescence in situ hybridisation performed on different sections of the gut revealed a bacterial community of fluctuating density, while rRNA gene-targeted amplicon pyrosequencing revealed the presence of a microbial community containing high bacterial diversity, but an apparent absence of archaea. Bacteria were further studied using full-length 16S rRNA gene sequences, with statistical testing of bacterial community membership against publicly available termite- and cockroach-derived sequences, revealing that the weta gut microbiota is similar to that of cockroaches. These data represent the first analysis of the weta microbiota and provide initial insights into the potential function of these microorganisms.


Assuntos
Archaea/genética , Bactérias/genética , Gryllidae/microbiologia , Intestinos/microbiologia , Animais , Sequência de Bases , Biodiversidade , Genes de RNAr , Hibridização in Situ Fluorescente , Microbiota/genética , Dados de Sequência Molecular , Nova Zelândia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Árvores
12.
Appl Environ Microbiol ; 80(15): 4650-8, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24837385

RESUMO

The critically endangered New Zealand parrot, the kakapo, is subject to an intensive management regime aiming to maintain bird health and boost population size. Newly hatched kakapo chicks are subjected to human intervention and are frequently placed in captivity throughout their formative months. Hand rearing greatly reduces mortality among juveniles, but the potential long-term impact on the kakapo gut microbiota is uncertain. To track development of the kakapo gut microbiota, fecal samples from healthy, prefledged juvenile kakapos, as well as from unrelated adults, were analyzed by using 16S rRNA gene amplicon pyrosequencing. Following the original sampling, juvenile kakapos underwent a period of captivity, so further sampling during and after captivity aimed to elucidate the impact of captivity on the juvenile gut microbiota. Variation in the fecal microbiota over a year was also investigated, with resampling of the original juvenile population. Amplicon pyrosequencing revealed a juvenile fecal microbiota enriched with particular lactic acid bacteria compared to the microbiota of adults, although the overall community structure did not differ significantly among kakapos of different ages. The abundance of key operational taxonomic units (OTUs) was correlated with antibiotic treatment and captivity, although the importance of these factors could not be proven unequivocally within the bounds of this study. Finally, the microbial community structure of juvenile and adult kakapos changed over time, reinforcing the need for continual monitoring of the microbiota as part of regular health screening.


Assuntos
Bactérias/isolamento & purificação , Espécies em Perigo de Extinção , Fezes/microbiologia , Microbiota , Papagaios/crescimento & desenvolvimento , Papagaios/microbiologia , Manejo de Espécimes/métodos , Fatores Etários , Animais , Bactérias/classificação , Bactérias/genética , Biodiversidade , Feminino , Humanos , Masculino , Dados de Sequência Molecular , Filogenia , Manejo de Espécimes/instrumentação
13.
Viruses ; 16(10)2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39459884

RESUMO

High-throughput sequencing (HTS) technologies may be a useful tool for testing imported plant germplasm for multiple pathogens present in a sample, offering strain-generic detection not offered by most PCR-based assays. Metatranscriptomics (RNAseq) and tiled amplicon PCR (TA-PCR) were tested as HTS-based techniques to detect viruses present in low titres. Strawberry mottle virus (SMoV), an RNA virus, and strawberry vein banding virus (SVBV), a DNA virus, were selected for comparison of RNAseq and TA-PCR with quantitative PCR assays. RNAseq of plant ribosomal RNA-depleted samples of low viral titre was used to obtain datasets from 3 M to 120 M paired-end (PE) reads. RNAseq demonstrated PCR-like sensitivity, able to detect as few as 10 viral copies/µL when 60 million (M) PE reads were generated. The custom TA-PCR primer panels designed for each virus were successfully used to recover most of the reference genomes for each virus. Single- and multiple-target TA-PCR allowed the detection of viruses in samples with around 10 viral copies/µL with a minimum continuous sequence length recovery of 500 bp. The limit of detection of the HTS-based protocols described here is comparable to that of quantitative PCR assays. This work lays the groundwork for an increased flexibility in HTS detection of plant viruses.


Assuntos
Fragaria , Sequenciamento de Nucleotídeos em Larga Escala , Doenças das Plantas , Vírus de Plantas , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Fragaria/virologia , Doenças das Plantas/virologia , Vírus de Plantas/genética , Vírus de Plantas/isolamento & purificação , Vírus de RNA/genética , Vírus de RNA/isolamento & purificação , Vírus de RNA/classificação , Genoma Viral , Vírus de DNA/genética , Vírus de DNA/isolamento & purificação , RNA Viral/genética , Reação em Cadeia da Polimerase/métodos
14.
Drug Discov Today ; 29(8): 104098, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38997002

RESUMO

Block copolymer micelles, formed by the self-assembly of amphiphilic polymers, address formulation challenges, such as poor drug solubility and permeability. These micelles offer advantages including a smaller size, easier preparation, sterilization, and superior solubilization, compared with other nanocarriers. Preclinical studies have shown promising results, advancing them toward clinical trials. Their mucoadhesive properties enhance and prolong contact with the ocular surface, and their small size allows deeper penetration through tissues, such as the cornea. Additionally, copolymeric micelles improve the solubility and stability of hydrophobic drugs, sustain drug release, and allow for surface modifications to enhance biocompatibility. Despite these benefits, long-term stability remains a challenge. In this review, we highlight the preclinical performance, structural frameworks, preparation techniques, physicochemical properties, current developments, and prospects of block copolymer micelles as ocular drug delivery systems.


Assuntos
Administração Oftálmica , Sistemas de Liberação de Medicamentos , Micelas , Polímeros , Humanos , Sistemas de Liberação de Medicamentos/métodos , Polímeros/química , Animais , Portadores de Fármacos/química , Solubilidade
16.
Zoo Biol ; 32(6): 620-5, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24019012

RESUMO

The endemic New Zealand kakapo is classified as 'critically endangered' and, in an effort to prevent extinction and restore the kakapo population, intensive handling of rare kakapo chicks is often utilised to reduce mortality and improve health outcomes among juveniles. Due to concerns that hand-reared chicks may not receive a full bacterial complement in their gut in the absence of regurgitated food from their mother, conservation workers feed a suspension of frozen adult faeces to captive chicks. However, the efficacy of this practice is unknown, with no information about the viability of these bacteria, or whether certain bacterial taxa are selected for or against as a consequence of freezing. In this study we experimentally determined the effects of freezing and reanimation on bacterial cell viability and diversity, using a faecal sample obtained from a healthy adult kakapo. Freezing reduced the number of viable bacterial cells (estimated by colony-forming units, CFU) by 99.86%, although addition of a cryoprotectant prior to freezing resulted in recovery of bacterial cells equivalent to that of non-frozen controls. Bacterial taxonomic diversity was reduced by freezing, irrespective of the presence of a cryoprotectant. While this study did not address the efficacy of faecal supplementation per se, the obtained data do suggest that faecal bacteriotherapy using frozen faeces (with a cryoprotectant) from healthy adult birds warrants further consideration as a conservation strategy for intensively managed species.


Assuntos
Criopreservação/veterinária , Espécies em Perigo de Extinção , Fezes/microbiologia , Papagaios/fisiologia , Manejo de Espécimes/veterinária , Criação de Animais Domésticos/métodos , Animais , Animais de Zoológico , Crioprotetores , Suplementos Nutricionais , Manejo de Espécimes/métodos
17.
Microbiome ; 11(1): 57, 2023 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-36945040

RESUMO

In microbiome fields of study, meta-analyses have proven to be a valuable tool for identifying the technical drivers of variation among studies and results of investigations in several diseases, such as those of the gut and sinuses. Meta-analyses also represent a powerful and efficient approach to leverage existing scientific data to both reaffirm existing findings and generate new hypotheses within the field. However, there are currently limited data in other fields, such as the paediatric respiratory tract, where extension of original data becomes even more critical due to samples often being difficult to obtain and process for a range of both technical and ethical reasons. Performing such analyses in an evolving field comes with challenges related to data accessibility and heterogeneity. This is particularly the case in paediatric respiratory microbiomics - a field in which best microbiome-related practices are not yet firmly established, clinical heterogeneity abounds and ethical challenges can complicate sharing of patient data. Having recently conducted a large-scale, individual participant data meta-analysis of the paediatric respiratory microbiota (n = 2624 children from 20 studies), we discuss here some of the unique barriers facing these studies and open and invite a dialogue towards future opportunities. Video Abstract.


Assuntos
Microbiota , Criança , Humanos , Sistema Respiratório , Metanálise como Assunto
18.
Viruses ; 15(2)2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36851632

RESUMO

To protect New Zealand's unique ecosystems and primary industries, imported plant materials must be constantly monitored at the border for high-threat pathogens. Techniques adopted for this purpose must be robust, accurate, rapid, and sufficiently agile to respond to new and emerging threats. Polymerase chain reaction (PCR), especially real-time PCR, remains an essential diagnostic tool but it is now being complemented by high-throughput sequencing using both Oxford Nanopore and Illumina technologies, allowing unbiased screening of whole populations. The demand for and value of Point-of-Use (PoU) technologies, which allow for in situ screening, are also increasing. Isothermal PoU molecular diagnostics based on recombinase polymerase amplification (RPA) and loop-mediated amplification (LAMP) do not require expensive equipment and can reach PCR-comparable levels of sensitivity. Recent advances in PoU technologies offer opportunities for increased specificity, accuracy, and sensitivities which makes them suitable for wider utilization by frontline or border staff. National and international activities and initiatives are adopted to improve both the plant virus biosecurity infrastructure and the integration, development, and harmonization of new virus diagnostic technologies.


Assuntos
Biosseguridade , Ecossistema , Humanos , Nova Zelândia , Sequenciamento de Nucleotídeos em Larga Escala , Reação em Cadeia da Polimerase em Tempo Real
19.
Adv Drug Deliv Rev ; 199: 114950, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37295560

RESUMO

Implantable drug delivery systems (IDDS) are an attractive alternative to conventional drug administration routes. Oral and injectable drug administration are the most common routes for drug delivery providing peaks of drug concentrations in blood after administration followed by concentration decay after a few hours. Therefore, constant drug administration is required to keep drug levels within the therapeutic window of the drug. Moreover, oral drug delivery presents alternative challenges due to drug degradation within the gastrointestinal tract or first pass metabolism. IDDS can be used to provide sustained drug delivery for prolonged periods of time. The use of this type of systems is especially interesting for the treatment of chronic conditions where patient adherence to conventional treatments can be challenging. These systems are normally used for systemic drug delivery. However, IDDS can be used for localised administration to maximise the amount of drug delivered within the active site while reducing systemic exposure. This review will cover current applications of IDDS focusing on the materials used to prepare this type of systems and the main therapeutic areas of application.


Assuntos
Sistemas de Liberação de Medicamentos , Bombas de Infusão Implantáveis , Humanos
20.
Plants (Basel) ; 12(11)2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37299118

RESUMO

High-throughput sequencing (HTS), more specifically RNA sequencing of plant tissues, has become an indispensable tool for plant virologists to detect and identify plant viruses. During the data analysis step, plant virologists typically compare the obtained sequences to reference virus databases. In this way, they are neglecting sequences without homologies to viruses, which usually represent the majority of sequencing reads. We hypothesized that traces of other pathogens might be detected in this unused sequence data. In the present study, our goal was to investigate whether total RNA-seq data, as generated for plant virus detection, is also suitable for the detection of other plant pathogens and pests. As proof of concept, we first analyzed RNA-seq datasets of plant materials with confirmed infections by cellular pathogens in order to check whether these non-viral pathogens could be easily detected in the data. Next, we set up a community effort to re-analyze existing Illumina RNA-seq datasets used for virus detection to check for the potential presence of non-viral pathogens or pests. In total, 101 datasets from 15 participants derived from 51 different plant species were re-analyzed, of which 37 were selected for subsequent in-depth analyses. In 29 of the 37 selected samples (78%), we found convincing traces of non-viral plant pathogens or pests. The organisms most frequently detected in this way were fungi (15/37 datasets), followed by insects (13/37) and mites (9/37). The presence of some of the detected pathogens was confirmed by independent (q)PCRs analyses. After communicating the results, 6 out of the 15 participants indicated that they were unaware of the possible presence of these pathogens in their sample(s). All participants indicated that they would broaden the scope of their bioinformatic analyses in future studies and thus check for the presence of non-viral pathogens. In conclusion, we show that it is possible to detect non-viral pathogens or pests from total RNA-seq datasets, in this case primarily fungi, insects, and mites. With this study, we hope to raise awareness among plant virologists that their data might be useful for fellow plant pathologists in other disciplines (mycology, entomology, bacteriology) as well.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA