Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Am Soc Mass Spectrom ; 19(2): 239-45, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17596960

RESUMO

Characterization of protein-ligand complexes by nondenaturing mass spectrometry provides direct evidence of drug-like molecules binding with potential therapeutic targets. Typically, protein-ligand complexes to be analyzed contain buffer salts, detergents, and other additives to enhance protein solubility, all of which make the sample unable to be analyzed directly by electrospray ionization mass spectrometry. This work describes an in-line gel-filtration method that has been automated and optimized. Automation was achieved using commercial HPLC equipment. Gel column parameters that were optimized include: column dimensions, flow rate, packing material type, particle size, and molecular weight cut-off. Under optimal conditions, desalted protein ions are detected 4 min after injection and the analysis is completed in 20 min. The gel column retains good performance even after >200 injections. A demonstration for using the in-line gel-filtration system is shown for monitoring the exchange of fatty acids from the pocket of a nuclear hormone receptor, peroxisome proliferator activator-delta (PPARdelta) with a tool compound. Additional utilities of in-line gel-filtration mass spectrometry system will also be discussed.


Assuntos
Cromatografia em Gel/instrumentação , Cromatografia em Gel/métodos , Espectrometria de Massas/métodos , Proteínas/análise , Distinções e Prêmios , Cromatografia Líquida de Alta Pressão/instrumentação , Desenho de Fármacos , Indústria Farmacêutica/instrumentação , Ligantes
2.
J Appl Physiol (1985) ; 112(11): 1940-8, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22422801

RESUMO

There is currently no direct, facile method to determine total-body skeletal muscle mass for the diagnosis and treatment of skeletal muscle wasting conditions such as sarcopenia, cachexia, and disuse. We tested in rats the hypothesis that the enrichment of creatinine-(methyl-d(3)) (D(3)-creatinine) in urine after a defined oral tracer dose of D(3)-creatine can be used to determine creatine pool size and skeletal muscle mass. We determined 1) an oral tracer dose of D(3)-creatine that was completely bioavailable with minimal urinary spillage and sufficient enrichment in the body creatine pool for detection of D(3)-creatine in muscle and D(3)-creatinine in urine, and 2) the time to isotopic steady state. We used cross-sectional studies to compare total creatine pool size determined by the D(3)-creatine dilution method to lean body mass determined by independent methods. The tracer dose of D(3)-creatine (<1 mg/rat) was >99% bioavailable with 0.2-1.2% urinary spillage. Isotopic steady state was achieved within 24-48 h. Creatine pool size calculated from urinary D(3)-creatinine enrichment at 72 h significantly increased with muscle accrual in rat growth, significantly decreased with dexamethasone-induced skeletal muscle atrophy, was correlated with lean body mass (r = 0.9590; P < 0.0001), and corresponded to predicted total muscle mass. Total-body creatine pool size and skeletal muscle mass can thus be accurately and precisely determined by an orally delivered dose of D(3)-creatine followed by the measurement of D(3)-creatinine enrichment in a single urine sample and is promising as a noninvasive tool for the clinical determination of skeletal muscle mass.


Assuntos
Creatina/farmacocinética , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Animais , Creatina/sangue , Creatina/urina , Masculino , Taxa de Depuração Metabólica/efeitos dos fármacos , Taxa de Depuração Metabólica/fisiologia , Metilação , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA