RESUMO
Growing evidence suggests that metabolic regulation directly influences cellular function and development and thus may be more dynamic than previously expected. In vivo and in real-time analysis of metabolite activities during development is crucial to test this idea directly. In this study, we employ two metabolic biosensors to track the dynamics of pyruvate and oxidative phosphorylation (Oxphos) during the early embryogenesis of the sea urchin. A pyruvate sensor, PyronicSF, shows the signal enrichment on the mitotic apparatus, which is consistent with the localization patterns of the corresponding enzyme, pyruvate kinase (PKM). The addition of pyruvate increases the PyronicSF signal, while PKM knockdown decreases its signal, responding to the pyruvate level in the cell. Similarly, a ratio-metric sensor, Grx-roGFP, that reads the redox potential of the cell responds to DTT and H2O2, the known reducer and inducer of Oxphos. These observations suggest that these metabolic biosensors faithfully reflect the metabolic status in the cell during embryogenesis. The time-lapse imaging of these biosensors suggests that pyruvate and Oxphos levels change both spatially and temporarily during embryonic development. Pyruvate level is increased first in micromeres compared to other blastomeres at the 16-cell stage and remains high in ectoderm while decreasing in endomesoderm during gastrulation. In contrast, the Oxphos signal first decreases in micromeres at the 16-cell stage, while it increases in the endomesoderm during gastrulation, showing the opposite trend of the pyruvate signal. These results suggest that metabolic regulation is indeed both temporally and spatially dynamic during embryogenesis, and these biosensors are a valuable tool to monitor metabolic activities in real-time in developing embryos.
Assuntos
Técnicas Biossensoriais , Desenvolvimento Embrionário , Fosforilação Oxidativa , Piruvato Quinase , Ácido Pirúvico , Ouriços-do-Mar , Animais , Técnicas Biossensoriais/métodos , Ácido Pirúvico/metabolismo , Piruvato Quinase/metabolismo , Ouriços-do-Mar/embriologia , Ouriços-do-Mar/metabolismo , Embrião não Mamífero/metabolismo , Imagem com Lapso de Tempo/métodosRESUMO
BACKGROUND: Doublecortin-like kinase1 and 2 (DCLKs) are protein Ser/Thr kinases important for neuronal development. More recently, they are also reported to regulate plasticity such as cell proliferation and differentiation of stem cells and cancer cells, but the details of their functions in this biological context are still unclear. With an attempt to reveal the functions of DCLKs in plasticity regulation, we here used the sea urchin embryo that undergoes highly regulative development as an experimental model. RESULTS: We found that both the transcripts and the proteins of DCLKs are uniformly present during early embryogenesis and with some enrichment in mesenchymal cells after gastrula stage. Knockdown of DCLKs induced general developmental delay and defects at day 2. Further, the damage on the embryo/larva induced ectopic expression of DCLKs in the ectoderm where the damage was most severe. Under a tumor-prone or -suppressive condition, DCLKs expression was upregulated or downregulated, respectively, after damage. In both cases, the embryos showed severe developmental defects. CONCLUSIONS: Taken together, a transient upregulation of DCLKs appears to be involved in a damage response both during normal and abnormal development, and which could result in different phenotypes in a context dependent manner.
Assuntos
Quinases Semelhantes a Duplacortina/metabolismo , Desenvolvimento Embrionário/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Ouriços-do-Mar/metabolismo , Animais , Diferenciação Celular/fisiologia , Quinases Semelhantes a Duplacortina/genética , Embrião não Mamífero/metabolismo , Ouriços-do-Mar/genéticaRESUMO
Localized translation is a proposed biological event that allows mRNA to be translated on site, providing an additional level of protein regulation within a cell. Examples of localized translation have been found or proposed in a variety of cellular contexts from neurons to cancer cells and implicated in both normal development and disease for over a half century. For example, mRNA translation on the mitotic apparatus (MA) was initially hypothesized in the 1950-60s. However, its proof of existence, biological significance and mechanistic details have remained sparse and it is still unclear how well conserved this mechanism may be among different cell types or organisms. In this review, we provide a brief historic summary of translation on the MA and discuss how current and future work may help us understand this biological process that provides a subcellular level of regulation in protein synthesis within a cell.
Assuntos
Biossíntese de Proteínas , RNA Mensageiro/metabolismo , Fuso Acromático/metabolismo , Animais , Embriologia/história , História do Século XX , História do Século XXI , Humanos , RNA Mensageiro/genética , Fuso Acromático/genéticaRESUMO
Paclitaxel is a microtubule-stabilizing chemotherapeutic agent that is widely used in cancer treatment and in a number of curative and palliative regimens. Despite its beneficial effects on cancer, paclitaxel also damages healthy tissues, most prominently the peripheral sensory nervous system. The mechanisms leading to paclitaxel-induced peripheral neuropathy remain elusive, and therapies that prevent or alleviate this condition are not available. We established a zebrafish in vivo model to study the underlying mechanisms and to identify pharmacological agents that may be developed into therapeutics. Both adult and larval zebrafish displayed signs of paclitaxel neurotoxicity, including sensory axon degeneration and the loss of touch response in the distal caudal fin. Intriguingly, studies in zebrafish larvae showed that paclitaxel rapidly promotes epithelial damage and decreased mechanical stress resistance of the skin before induction of axon degeneration. Moreover, injured paclitaxel-treated zebrafish skin and scratch-wounded human keratinocytes (HEK001) display reduced healing capacity. Epithelial damage correlated with rapid accumulation of fluorescein-conjugated paclitaxel in epidermal basal keratinocytes, but not axons, and up-regulation of matrix-metalloproteinase 13 (MMP-13, collagenase 3) in the skin. Pharmacological inhibition of MMP-13, in contrast, largely rescued paclitaxel-induced epithelial damage and neurotoxicity, whereas MMP-13 overexpression in zebrafish embryos rendered the skin vulnerable to injury under mechanical stress conditions. Thus, our studies provide evidence that the epidermis plays a critical role in this condition, and we provide a previously unidentified candidate for therapeutic interventions.
Assuntos
Antineoplásicos/efeitos adversos , Epitélio/efeitos dos fármacos , Inibidores de Metaloproteinases de Matriz/farmacologia , Paclitaxel/efeitos adversos , Nervos Periféricos/efeitos dos fármacos , Nadadeiras de Animais/citologia , Nadadeiras de Animais/inervação , Animais , Axônios/efeitos dos fármacos , Embrião não Mamífero/efeitos dos fármacos , Expressão Gênica , Humanos , Queratinócitos/efeitos dos fármacos , Metaloproteinase 13 da Matriz/genética , Pele/citologia , Pele/efeitos dos fármacos , Pele/inervação , Percepção do Tato/efeitos dos fármacos , Testes de Toxicidade , Peixe-ZebraRESUMO
BACKGROUND: Semaphorin (Sema)/Plexin (Plxn) signaling is important for many aspects of neuronal development, however, the transcriptional regulation imposed by this signaling pathway is unknown. Previously, we identified an essential role for Sema6A/PlxnA2 signaling in regulating proliferation and cohesion of retinal precursor cells (RPCs) during early eye development. This study used RNA isolated from control, Sema6A-deficient and PlxnA2-deficient zebrafish embryos in a microarray analysis to identify genes that were differentially expressed when this signaling pathway was disrupted. RESULTS: We uncovered a set of 58 transcripts, and all but 1 were up-regulated in both sema6A and plxnA2 morphants. We validated gene expression changes in subset of candidates that are suggested to be involved in proliferation, migration or neuronal positioning. We further functionally evaluated one gene, rasl11b, as contributing to disrupted proliferation in sema6A and plxna2 morphants. Our results suggest rasl11b negatively regulates proliferation of RPCs in the developing zebrafish eye. CONCLUSIONS: Microarray analysis has generated a resource of target genes downstream of Sema6A/PlxnA2 signaling, which can be further investigated to elucidate the downstream effects of this well-studied neuronal and vascular guidance signaling pathway. Developmental Dynamics 246:539-549, 2017. © 2017 Wiley Periodicals, Inc.
Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Receptores de Superfície Celular/metabolismo , Semaforinas/metabolismo , Transdução de Sinais/fisiologia , Proteínas de Peixe-Zebra/metabolismo , Animais , Movimento Celular , Proliferação de Células , Olho/embriologia , Olho/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento/genética , Retina/citologia , Células-Tronco , Peixe-ZebraRESUMO
Introduction: Post-stroke dysphagia is common and associated with significant morbidity and mortality, rendering bedside screening of significant clinical importance. Using voice as a biomarker coupled with deep learning has the potential to improve patient access to screening and mitigate the subjectivity associated with detecting voice change, a component of several validated screening protocols. Methods: In this single-center study, we developed a proof-of-concept model for automated dysphagia screening and evaluated the performance of this model on training and testing cohorts. Patients were admitted to a comprehensive stroke center, where primary English speakers could follow commands without significant aphasia and participated on a rolling basis. The primary outcome was classification either as a pass or fail equivalent using a dysphagia screening test as a label. Voice data was recorded from patients who spoke a standardized set of vowels, words, and sentences from the National Institute of Health Stroke Scale. Seventy patients were recruited and 68 were included in the analysis, with 40 in training and 28 in testing cohorts, respectively. Speech from patients was segmented into 1,579 audio clips, from which 6,655 Mel-spectrogram images were computed and used as inputs for deep-learning models (DenseNet and ConvNext, separately and together). Clip-level and participant-level swallowing status predictions were obtained through a voting method. Results: The models demonstrated clip-level dysphagia screening sensitivity of 71% and specificity of 77% (F1 = 0.73, AUC = 0.80 [95% CI: 0.78-0.82]). At the participant level, the sensitivity and specificity were 89 and 79%, respectively (F1 = 0.81, AUC = 0.91 [95% CI: 0.77-1.05]). Discussion: This study is the first to demonstrate the feasibility of applying deep learning to classify vocalizations to detect post-stroke dysphagia. Our findings suggest potential for enhancing dysphagia screening in clinical settings. https://github.com/UofTNeurology/masa-open-source.
RESUMO
Histidyl-tRNA Synthetase (HARS) is a member of the aminoacyl-tRNA synthetase family, which attach amino acids to their associated tRNA molecules. This reaction is a crucial step in protein synthesis that must be carried out in every cell of an organism. However, a number of tissue-specific, human genetic disorders have been associated with mutations in the genes for aminoacyl-tRNA synthetases, including HARS. These associations indicate that, while we know a great deal about the molecular and biochemical properties of this enzyme, we still do not fully understand how these proteins function in the context of an entire organism. To this end, we set out to knock-down HARS expression in the zebrafish and characterize the developmental consequences. Through our work we show that some tissues, particularly the nervous system, are more sensitive to HARS loss than others and we reveal a link between HARS and the proliferation and survival of neuronal progenitors during development.
RESUMO
[This corrects the article DOI: 10.1371/journal.pone.0185317.].
RESUMO
BACKGROUND: A complication of diabetes is neuropathy, a condition of sensory axon degeneration that originates in the epidermis. The mechanisms remain unknown but reactive oxygen species (ROS) have been implicated in this condition. In this study, we assessed the role of ROS and a candidate downstream target, MMP-13 in glucose-induced sensory axon degeneration in zebrafish and mice. METHODS: The effects of glucose on metabolism and sensory axon degeneration were assessed using qPCR and live imaging. ROS were analyzed using pentafluorobenzene-sulfonyl fluorescein and activation of the NF-κB stress response was determined using Tg(NF-κB:GFP) zebrafish. The role of MMP-13 and ROS in glucose-dependent axon degeneration was determined in zebrafish following treatment with the antioxidant, N-acetylcysteine and the MMP-13 inhibitor, DB04760. Neuropathic mice fed on a high-fat/high-sugar diet were treated with the MMP-13 inhibitor, CL-82198 to assess sensory recovery. RESULTS: Glucose treatment of zebrafish induced metabolic changes that resemble diabetes. Sensory axon degeneration was mediated by ROS-induced MMP-13 and prevented upon antioxidant treatment or MMP-13 inhibition. MMP-13 inhibition also reversed neuropathy in diabetic mice. CONCLUSION: We demonstrate that zebrafish are suitable to study glucose-induced neurotoxicity. Given the effects in zebrafish and mice, MMP-13 inhibition may be beneficial in the treatment of human diabetic neuropathy.
Assuntos
Diabetes Mellitus Experimental/complicações , Neuropatias Diabéticas/etiologia , Metaloproteinase 13 da Matriz/fisiologia , Síndromes Neurotóxicas/etiologia , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Glucose , Masculino , Camundongos Endogâmicos C57BL , Peixe-ZebraRESUMO
Histidyl tRNA Synthetase (HARS) is a member of the aminoacyl tRNA synthetase (ARS) family of enzymes. This family of 20 enzymes is responsible for attaching specific amino acids to their cognate tRNA molecules, a critical step in protein synthesis. However, recent work highlighting a growing number of associations between ARS genes and diverse human diseases raises the possibility of new and unexpected functions in this ancient enzyme family. For example, mutations in HARS have been linked to two different neurological disorders, Usher Syndrome Type IIIB and Charcot Marie Tooth peripheral neuropathy. These connections raise the possibility of previously undiscovered roles for HARS in metazoan development, with alterations in these functions leading to complex diseases. In an attempt to establish Danio rerio as a model for studying HARS functions in human disease, we characterized the Danio rerio hars gene and compared it to that of human HARS. Using a combination of bioinformatics, molecular biology, and cellular approaches, we found that while the human genome encodes separate genes for cytoplasmic and mitochondrial HARS protein, the Danio rerio genome encodes a single hars gene which undergoes alternative splicing to produce the respective cytoplasmic and mitochondrial versions of Hars. Nevertheless, while the HARS genes of humans and Danio differ significantly at the genomic level, we found that they are still highly conserved at the amino acid level, underscoring the potential utility of Danio rerio as a model organism for investigating HARS function and its link to human diseases in vivo.