Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Genome Res ; 2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35863900

RESUMO

Genomic rearrangements are known to result in proto-oncogene deregulation in many cancers, but the link to 3D genome structure remains poorly understood. Here, we used the highly predictive heteromorphic polymer (HiP-HoP) model to predict chromatin conformations at the proto-oncogene CCND1 in healthy and malignant B cells. After confirming that the model gives good predictions of Hi-C data for the nonmalignant human B cell-derived cell line GM12878, we generated predictions for two cancer cell lines, U266 and Z-138. These possess genome rearrangements involving CCND1 and the immunoglobulin heavy locus (IGH), which we mapped using targeted genome sequencing. Our simulations showed that a rearrangement in U266 cells where a single IGH super-enhancer is inserted next to CCND1 leaves the local topologically associated domain (TAD) structure intact. We also observed extensive changes in enhancer-promoter interactions within the TAD, suggesting that it is the downstream chromatin remodeling which gives rise to the oncogene activation, rather than the presence of the inserted super-enhancer DNA sequence per se. Simulations of the IGH-CCND1 reciprocal translocation in Z-138 cells revealed that an oncogenic fusion TAD is created, encompassing CCND1 and the IGH super-enhancers. We predicted how the structure and expression of CCND1 changes in these different cell lines, validating this using qPCR and fluorescence in situ hybridization microscopy. Our work demonstrates the power of polymer simulations to predict differences in chromatin interactions and gene expression for different translocation breakpoints.

2.
Genome Res ; 32(7): 1343-1354, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34933939

RESUMO

Chromosomal translocations are important drivers of haematological malignancies whereby proto-oncogenes are activated by juxtaposition with enhancers, often called enhancer hijacking We analyzed the epigenomic consequences of rearrangements between the super-enhancers of the immunoglobulin heavy locus (IGH) and proto-oncogene CCND1 that are common in B cell malignancies. By integrating BLUEPRINT epigenomic data with DNA breakpoint detection, we characterized the normal chromatin landscape of the human IGH locus and its dynamics after pathological genomic rearrangement. We detected an H3K4me3 broad domain (BD) within the IGH locus of healthy B cells that was absent in samples with IGH-CCND1 translocations. The appearance of H3K4me3-BD over CCND1 in the latter was associated with overexpression and extensive chromatin accessibility of its gene body. We observed similar cancer-specific H3K4me3-BDs associated with hijacking of super-enhancers of other common oncogenes in B cell (MAF, MYC, and FGFR3/NSD2) and T cell malignancies (LMO2, TLX3, and TAL1). Our analysis suggests that H3K4me3-BDs can be created by super-enhancers and supports the new concept of epigenomic translocation, in which the relocation of H3K4me3-BDs from cell identity genes to oncogenes accompanies the translocation of super-enhancers.


Assuntos
Epigenômica , Translocação Genética , Cromatina/genética , Histonas , Humanos , Oncogenes
3.
Semin Cell Dev Biol ; 123: 115-123, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-33958284

RESUMO

Analysis of the genetic basis for multiple myeloma (MM) has informed many of our current concepts of the biology that underlies disease initiation and progression. Studying these events in further detail is predicted to deliver important insights into its pathogenesis, prognosis and treatment. Information from whole genome sequencing of structural variation is revealing the role of these events as drivers of MM. In particular, we discuss how the insights we have gained from studying chromothripsis suggest that it can be used to provide information on disease initiation and that, as a consequence, it can be used for the clinical classification of myeloma precursor diseases allowing for early intervention and prognostic determination. For newly diagnosed MM, the integration of information on the presence of chromothripsis has the potential to significantly enhance current risk prediction strategies and to better characterize patients with high-risk disease biology. In this article we summarize the genetic basis for MM and the role played by chromothripsis as a critical pathogenic factor active at early disease phases.


Assuntos
Cromotripsia , Mieloma Múltiplo , Humanos , Mieloma Múltiplo/diagnóstico , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Sequenciamento Completo do Genoma
4.
Haematologica ; 108(3): 717-731, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35484682

RESUMO

Rarely, immunophenotypically immature B-cell precursor acute lymphoblastic leukemia (BCP-ALL) carries an immunoglobulin- MYC rearrangement (IG-MYC-r). This can result in diagnostic confusion with Burkitt lymphoma/leukemia and use of individualized treatment schedules of unproven efficacy. Here we compare the molecular characteristics of these conditions and investigate historic clinical outcome data. We identified 90 cases registered in a national BCP-ALL clinical trial/registry. When present, diagnostic material underwent cytogenetic, exome, methylome and transcriptome analyses. The outcomes analyzed were 3-year event-free survival and overall survival. IG-MYC-r was identified in diverse cytogenetic backgrounds, co-existing with either established BCP-ALL-specific abnormalities (high hyperdiploidy, n=3; KMT2A-rearrangement, n=6; iAMP21, n=1; BCR-ABL1, n=1); BCL2/BCL6-rearrangements (n=15); or, most commonly, as the only defining feature (n=64). Within this final group, precursor-like V(D)J breakpoints predominated (8/9) and KRAS mutations were common (5/11). DNA methylation identified a cluster of V(D)J-rearranged cases, clearly distinct from Burkitt leukemia/lymphoma. Children with IG-MYC-r within that subgroup had a 3-year event-free survival of 47% and overall survival of 60%, representing a high-risk BCP-ALL. To develop effective management strategies this group of patients must be allowed access to contemporary, minimal residual disease-adapted, prospective clinical trial protocols.


Assuntos
Linfoma de Burkitt , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Criança , Humanos , Linfoma de Burkitt/diagnóstico , Linfoma de Burkitt/genética , Linfoma de Burkitt/terapia , Estudos Prospectivos , Imunoglobulinas/genética , Rearranjo Gênico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/terapia
5.
Haematologica ; 106(3): 736-745, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-32079689

RESUMO

Disruption of the normal splicing patterns of RNA is a major factor in the pathogenesis of a number of diseases. Increasingly research has shown the strong influence that splicing patterns can have on cancer progression. Multiple Myeloma is a molecularly heterogeneous disease classified by the presence of key translocations, gene expression profiles and mutations but the splicing patterns in MM remains largely unexplored. We take a multifaceted approach to define the extent and impact of alternative splicing in MM. We look at the spliceosome component, SF3B1, with hotspot mutations (K700E and K666T/Q) shown to result in an increase in alternative splicing in other cancers. We discovered a number of differentially spliced genes in comparison of the SF3B1 mutant and wild type samples that included, MZB1, DYNLL1, TMEM14C and splicing related genes DHX9, CLASRP, and SNRPE. We identified a broader role for abnormal splicing showing clear differences in the extent of novel splice variants in the different translocation groups. We show that a high number of novel splice loci is associated with adverse survival and an ultra-high risk group. The enumeration of patterns of alternative splicing has the potential to refine MM classification and to aid in the risk stratification of patients.


Assuntos
Mieloma Múltiplo , Processamento Alternativo , Humanos , Mieloma Múltiplo/genética , Mutação , Fosfoproteínas/genética , Splicing de RNA , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , Fatores de Processamento de Serina-Arginina , Spliceossomos/genética
6.
Eur J Haematol ; 106(2): 230-240, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33107092

RESUMO

Circulating cell-free DNA (cfDNA) has the potential to capture spatial genetic heterogeneity in myeloma (MM) patients. We assessed whether cfDNA levels vary according to risk status defined by the 70 gene expression profile (GEP70). cfDNA levels in 77 patients were significantly higher in the GEP70 high-risk (HR) group compared to the low-risk (LR) group and correlated weakly with clinical markers including lactate dehydrogenase, ß2 -microglobulin, and ISS. Patients with high cfDNA levels were associated with a worse PFS (hazard ratio 6.4; 95% CI of ratio 1.9-22) and OS (hazard ratio 4.4; 95% CI of ratio 1.2-15.7). Circulating tumor DNA (ctDNA) was elevated in the HR group and ctDNA correlated strongly with GEP70 risk score (Spearman r = .69, P = .0027). cfDNA concentrations were significantly elevated between days 3-5 after chemotherapy before falling back to baseline levels. ctDNA in two patients showed a similar spike in levels between days 3 and 5 after chemotherapy with a concomitant increase in allele fraction of KRAS mutations. We assessed cfDNA levels in 25 patients with smoldering myeloma with serial samples and showed increased allele fraction of mutated KRAS at progression in cfDNA. Our study shows that cfDNA is a dynamic tool to capture genetic events in myeloma.


Assuntos
Biomarcadores Tumorais , DNA Tumoral Circulante , Mieloma Múltiplo/genética , Alelos , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Medula Óssea , Biologia Computacional/métodos , Progressão da Doença , Variação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Biópsia Líquida , Mieloma Múltiplo/sangue , Mieloma Múltiplo/diagnóstico , Mieloma Múltiplo/terapia , Prognóstico , Mieloma Múltiplo Latente/sangue , Mieloma Múltiplo Latente/diagnóstico , Mieloma Múltiplo Latente/genética , Mieloma Múltiplo Latente/terapia , Resultado do Tratamento , Carga Tumoral , Proteínas ras/genética
7.
BMC Bioinformatics ; 21(1): 144, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32293247

RESUMO

BACKGROUND: The study of cancer genomics continually matures as the number of patient samples sequenced increases. As more data is generated, oncogenic drivers for specific cancer types are discovered along with their associated risks. This in turn leads to potential treatment strategies that pave the way to precision medicine. However, significant financial and analytical barriers make it infeasible to sequence the entire genome of every patient. In contrast, targeted sequencing panels give reliable information on relevant portions of the genome at a fiscally responsible cost. Therefore, we have created the Targeted Panel (TarPan) Viewer, a software tool, to investigate this type of data. RESULTS: TarPan Viewer helps investigators understand data from targeted sequencing data by displaying the information through a web browser interface. Through this interface, investigators can easily observe copy number changes, mutations, and structural events in cancer samples. The viewer runs in R Shiny with a robust SQLite backend and its input is generated from bioinformatic algorithms reliably described in the literature. Here we show the results from using TarPan Viewer on publicly available follicular lymphoma, breast cancer, and multiple myeloma data. In addition, we have tested and utilized the viewer internally, and this data has been used in high-impact peer-reviewed publications. CONCLUSIONS: We have designed a flexible, simple to setup viewer that is easily adaptable to any type of cancer targeted sequencing, and has already proven its use in a research laboratory environment. Further, we believe with deeper sequencing and/or more targeted application it could be of use in the clinic in conjunction with an appropriate targeted sequencing panel as a cost-effective diagnostic test, especially in cancers such as acute leukemia or diffuse large B-cell lymphoma that require rapid interventions.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Neoplasias/genética , Software , Algoritmos , Neoplasias da Mama/genética , Feminino , Dosagem de Genes , Genoma Humano , Genômica , Humanos , Linfoma Folicular/genética , Mieloma Múltiplo/genética , Mutação , Medicina de Precisão , Navegador
8.
PLoS Med ; 17(11): e1003323, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33147277

RESUMO

BACKGROUND: The tumor microenvironment (TME) is increasingly appreciated as an important determinant of cancer outcome, including in multiple myeloma (MM). However, most myeloma microenvironment studies have been based on bone marrow (BM) aspirates, which often do not fully reflect the cellular content of BM tissue itself. To address this limitation in myeloma research, we systematically characterized the whole bone marrow (WBM) microenvironment during premalignant, baseline, on treatment, and post-treatment phases. METHODS AND FINDINGS: Between 2004 and 2019, 998 BM samples were taken from 436 patients with newly diagnosed MM (NDMM) at the University of Arkansas for Medical Sciences in Little Rock, Arkansas, United States of America. These patients were 61% male and 39% female, 89% White, 8% Black, and 3% other/refused, with a mean age of 58 years. Using WBM and matched cluster of differentiation (CD)138-selected tumor gene expression to control for tumor burden, we identified a subgroup of patients with an adverse TME associated with 17 fewer months of progression-free survival (PFS) (95% confidence interval [CI] 5-29, 49-69 versus 70-82 months, χ2 p = 0.001) and 15 fewer months of overall survival (OS; 95% CI -1 to 31, 92-120 versus 113-129 months, χ2 p = 0.036). Using immunohistochemistry-validated computational tools that identify distinct cell types from bulk gene expression, we showed that the adverse outcome was correlated with elevated CD8+ T cell and reduced granulocytic cell proportions. This microenvironment develops during the progression of premalignant to malignant disease and becomes less prevalent after therapy, in which it is associated with improved outcomes. In patients with quantified International Staging System (ISS) stage and 70-gene Prognostic Risk Score (GEP-70) scores, taking the microenvironment into consideration would have identified an additional 40 out of 290 patients (14%, premutation p = 0.001) with significantly worse outcomes (PFS, 95% CI 6-36, 49-73 versus 74-90 months) who were not identified by existing clinical (ISS stage III) and tumor (GEP-70) criteria as high risk. The main limitations of this study are that it relies on computationally identified cell types and that patients were treated with thalidomide rather than current therapies. CONCLUSIONS: In this study, we observe that granulocyte signatures in the MM TME contribute to a more accurate prognosis. This implies that future researchers and clinicians treating patients should quantify TME components, in particular monocytes and granulocytes, which are often ignored in microenvironment studies.


Assuntos
Medula Óssea/patologia , Mieloma Múltiplo/diagnóstico , Mieloma Múltiplo/patologia , Microambiente Tumoral , Adulto , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mieloma Múltiplo/tratamento farmacológico , Prognóstico , Carga Tumoral
9.
Blood ; 132(1): 59-66, 2018 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-29784643

RESUMO

Spatial intratumor heterogeneity is frequently seen in multiple myeloma (MM) and poses a significant challenge for risk classifiers, which rely on tumor samples from the iliac crest. Because biopsy-based assessment of multiple skeletal sites is difficult, alternative strategies for risk stratification are required. Recently, the size of focal lesions (FLs) was shown to be a surrogate marker for spatial heterogeneity, suggesting that data from medical imaging could be used to improve risk stratification approaches. Here, we investigated the prognostic value of FL size in 404 transplant-eligible, newly diagnosed MM patients. Using diffusion-weighted magnetic resonance imaging with background suppression, we identified the presence of multiple large FLs as a strong prognostic factor. Patients with at least 3 large FLs with a product of the perpendicular diameters >5 cm2 were associated with poor progression-free survival (PFS) and overall survival (OS; median, 2.3 and 3.6 years, respectively). This pattern, seen in 13.8% of patients, was independent of the Revised International Staging System (RISS), gene expression profiling (GEP)-based risk score, gain(1q), or extramedullary disease (hazard ratio, 2.7 and 2.2 for PFS and OS in multivariate analysis, respectively). The number of FLs lost its negative impact on outcome after adjusting for FL size. In conclusion, the presence of at least 3 large FL is a feature of high risk, which can be used to refine the diagnosis of this type of disease behavior and as an entry criterion for risk-stratified trials.


Assuntos
Imagem de Difusão por Ressonância Magnética , Mieloma Múltiplo/diagnóstico por imagem , Mieloma Múltiplo/mortalidade , Adulto , Intervalo Livre de Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Medição de Risco , Fatores de Risco , Taxa de Sobrevida
10.
Blood ; 132(6): 587-597, 2018 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-29884741

RESUMO

Understanding the profile of oncogene and tumor suppressor gene mutations with their interactions and impact on the prognosis of multiple myeloma (MM) can improve the definition of disease subsets and identify pathways important in disease pathobiology. Using integrated genomics of 1273 newly diagnosed patients with MM, we identified 63 driver genes, some of which are novel, including IDH1, IDH2, HUWE1, KLHL6, and PTPN11 Oncogene mutations are significantly more clonal than tumor suppressor mutations, indicating they may exert a bigger selective pressure. Patients with more driver gene abnormalities are associated with worse outcomes, as are identified mechanisms of genomic instability. Oncogenic dependencies were identified between mutations in driver genes, common regions of copy number change, and primary translocation and hyperdiploidy events. These dependencies included associations with t(4;14) and mutations in FGFR3, DIS3, and PRKD2; t(11;14) with mutations in CCND1 and IRF4; t(14;16) with mutations in MAF, BRAF, DIS3, and ATM; and hyperdiploidy with gain 11q, mutations in FAM46C, and MYC rearrangements. These associations indicate that the genomic landscape of myeloma is predetermined by the primary events upon which further dependencies are built, giving rise to a nonrandom accumulation of genetic hits. Understanding these dependencies may elucidate potential evolutionary patterns and lead to better treatment regimens.


Assuntos
Regulação Neoplásica da Expressão Gênica , Mieloma Múltiplo/genética , Mutagênese , Oncogenes , Células Clonais , Análise Mutacional de DNA , DNA de Neoplasias/genética , Conjuntos de Dados como Assunto , Dosagem de Genes , Estudo de Associação Genômica Ampla , Instabilidade Genômica , Genômica , Humanos , Perda de Heterozigosidade , Mieloma Múltiplo/patologia , Mutação , Prognóstico , Translocação Genética , Resultado do Tratamento , Sequenciamento do Exoma
11.
Haematologica ; 105(4): 1055-1066, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31221783

RESUMO

MYC is a widely acting transcription factor and its deregulation is a crucial event in many human cancers. MYC is important biologically and clinically in multiple myeloma, but the mechanisms underlying its dysregulation are poorly understood. We show that MYC rearrangements are present in 36.0% of newly diagnosed myeloma patients, as detected in the largest set of next generation sequencing data to date (n=1,267). Rearrangements were complex and associated with increased expression of MYC and PVT1, but not other genes at 8q24. The highest effect on gene expression was detected in cases where the MYC locus is juxtaposed next to super-enhancers associated with genes such as IGH, IGK, IGL, TXNDC5/BMP6, FAM46C and FOXO3 We identified three hotspots of recombination at 8q24, one of which is enriched for IGH-MYC translocations. Breakpoint analysis indicates primary myeloma rearrangements involving the IGH locus occur through non-homologous end joining, whereas secondary MYC rearrangements occur through microhomology-mediated end joining. This mechanism is different to lymphomas, where non-homologous end joining generates MYC rearrangements. Rearrangements resulted in overexpression of key genes and chromatin immunoprecipitation-sequencing identified that HK2, a member of the glucose metabolism pathway, is directly over-expressed through binding of MYC at its promoter.


Assuntos
Genes myc , Mieloma Múltiplo , RNA Longo não Codificante/genética , Genes de Cadeia Pesada de Imunoglobulina , Humanos , Hibridização in Situ Fluorescente , Mieloma Múltiplo/genética , Isomerases de Dissulfetos de Proteínas , Translocação Genética
12.
Hum Genomics ; 13(1): 37, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31429796

RESUMO

BACKGROUND: While genome-wide association studies (GWAS) of multiple myeloma (MM) have identified variants at 23 regions influencing risk, the genes underlying these associations are largely unknown. To identify candidate causal genes at these regions and search for novel risk regions, we performed a multi-tissue transcriptome-wide association study (TWAS). RESULTS: GWAS data on 7319 MM cases and 234,385 controls was integrated with Genotype-Tissue Expression Project (GTEx) data assayed in 48 tissues (sample sizes, N = 80-491), including lymphocyte cell lines and whole blood, to predict gene expression. We identified 108 genes at 13 independent regions associated with MM risk, all of which were in 1 Mb of known MM GWAS risk variants. Of these, 94 genes, located in eight regions, had not previously been considered as a candidate gene for that locus. CONCLUSIONS: Our findings highlight the value of leveraging expression data from multiple tissues to identify candidate genes responsible for GWAS associations which provide insight into MM tumorigenesis. Among the genes identified, a number have plausible roles in MM biology, notably APOBEC3C, APOBEC3H, APOBEC3D, APOBEC3F, APOBEC3G, or have been previously implicated in other malignancies. The genes identified in this TWAS can be explored for follow-up and validation to further understand their role in MM biology.


Assuntos
Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Mieloma Múltiplo/genética , Transcriptoma/genética , Desaminase APOBEC-3G/genética , Aminoidrolases/genética , Citidina Desaminase/genética , Citosina Desaminase/genética , Perfilação da Expressão Gênica , Genótipo , Humanos , Mieloma Múltiplo/patologia , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética
13.
Br J Haematol ; 187(3): 319-327, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31218679

RESUMO

Single agent daratumumab has shown clinical activity in relapsed, refractory multiple myeloma (RRMM). The Intergroupe Francophone du Myélome 2014-04 trial was designed to further investigate daratumumab in combination with dexamethasone in triple RRMM patients. Patients received daratumumab infusions in combination with weekly dexamethasone until disease progression or unacceptable toxicity. Fifty-seven patients were included in the trial and evaluable for response. The overall response rate and the clinical benefit rate were 33% (n = 19) and 48% (n = 27), respectively. Five (8·8%) patients achieved a very good partial response or better. The median time to response was 4 weeks. For responding patients, the median progression-free survival was 6·6 months, compared to 3·7 months (3·0-5·5) for those with a minimal or stable disease. The median overall survival (OS) for all patients was 16·7 months (11·2-24·0). For responding patients, the median OS was 23·23 months, whereas that of patients with progressive disease was 2·97 months. The incidence of infusion-related reactions was 37%; all cases were manageable and did not lead to dose reduction or permanent treatment discontinuation. These data demonstrate that treatment with daratumumab and dexamethasone results in a meaningful long-term benefit with an acceptable safety profile for patients with triple RRMM.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Mieloma Múltiplo/tratamento farmacológico , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Dexametasona/administração & dosagem , Dexametasona/efeitos adversos , Intervalo Livre de Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mieloma Múltiplo/mortalidade , Taxa de Sobrevida
14.
Blood ; 130(14): 1639-1643, 2017 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-28827410

RESUMO

Recent studies suggest that the evolutionary history of a cancer is important in forecasting clinical outlook. To gain insight into the clonal dynamics of multiple myeloma (MM) and its possible influence on patient outcomes, we analyzed whole exome sequencing tumor data for 333 patients from Myeloma XI, a UK phase 3 trial and 434 patients from the CoMMpass study, all of which had received immunomodulatory drug (IMiD) therapy. By analyzing mutant allele frequency distributions in tumors, we found that 17% to 20% of MM is under neutral evolutionary dynamics. These tumors are associated with poorer patient survival in nonintensively treated patients, which is consistent with the reduced therapeutic efficacy of microenvironment-modulating IMiDs. Our findings provide evidence that knowledge of the evolutionary history of MM has relevance for predicting patient outcomes and personalizing therapy.


Assuntos
Frequência do Gene , Fatores Imunológicos/uso terapêutico , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Mutação , Talidomida/análogos & derivados , Talidomida/uso terapêutico , Exoma/efeitos dos fármacos , Feminino , Deriva Genética , Humanos , Imunossupressores/uso terapêutico , Estimativa de Kaplan-Meier , Lenalidomida , Masculino , Mieloma Múltiplo/diagnóstico , Mieloma Múltiplo/patologia , Prognóstico , Microambiente Tumoral/efeitos dos fármacos
15.
Blood ; 130(1): 30-34, 2017 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-28432222

RESUMO

18F-Fluorodeoxyglucose (FDG)-positron emission tomography (PET) and diffusion-weighted magnetic resonance imaging with background signal suppression (DWIBS) are 2 powerful functional imaging modalities in the evaluation of malignant plasma cell (PC) disease multiple myeloma (MM). Preliminary observations have suggested that MM patients with extensive disease according to DWIBS may be reported as being disease-free on FDG-PET ("PET false-negative"). The aim of this study was to describe the proportion of PET false-negativity in a representative set of 227 newly diagnosed MM patients with simultaneous assessment of FDG-PET and DWIBS, and to identify tumor-intrinsic features associated with this pattern. We found the incidence of PET false-negativity to be 11%. Neither tumor load-associated parameters, such as degree of bone marrow PC infiltration, nor the PC proliferation rate were associated with this subset. However, the gene coding for hexokinase-2, which catalyzes the first step of glycolysis, was significantly lower expressed in PET false-negative cases (5.3-fold change, P < .001) which provides a mechanistic explanation for this feature. In conclusion, we demonstrate a relevant number of patients with FDG-PET false-negative MM and a strong association between hexokinase-2 expression and this negativity: a finding which may also be relevant for clinical imaging of other hematological cancers.


Assuntos
Fluordesoxiglucose F18/administração & dosagem , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Hexoquinase/biossíntese , Mieloma Múltiplo , Proteínas de Neoplasias/biossíntese , Tomografia por Emissão de Pósitrons , Reações Falso-Positivas , Feminino , Humanos , Masculino , Mieloma Múltiplo/diagnóstico por imagem , Mieloma Múltiplo/enzimologia
16.
Haematologica ; 104(7): 1440-1450, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30733268

RESUMO

The emergence of treatment resistant sub-clones is a key feature of relapse in multiple myeloma. Therapeutic attempts to extend remission and prevent relapse include maximizing response and the use of maintenance therapy. We used whole exome sequencing to study the genetics of paired samples taken at presentation and at relapse from 56 newly diagnosed patients, following induction therapy, randomized to receive either lenalidomide maintenance or observation as part of the Myeloma XI trial. Patients included were considered high risk, relapsing within 30 months of maintenance randomization. Patients achieving a complete response had predominantly branching evolutionary patterns leading to relapse, characterized by a greater mutational burden, an altered mutational profile, bi-allelic inactivation of tumor suppressor genes, and acquired structural aberrations. Conversely, in patients achieving a partial response, the evolutionary features were predominantly stable with a similar mutational and structural profile seen at both time points. There were no significant differences between patients relapsing after lenalidomide maintenance versus observation. This study shows that the depth of response is a key determinant of the evolutionary patterns seen at relapse. This trial is registered at clinicaltrials.gov identifier: 01554852.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Biomarcadores Tumorais/genética , Evolução Clonal , Mieloma Múltiplo/patologia , Mutação , Recidiva Local de Neoplasia/patologia , Idoso , Feminino , Seguimentos , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Lenalidomida/administração & dosagem , Quimioterapia de Manutenção , Masculino , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/genética , Indução de Remissão , Talidomida/administração & dosagem , Resultado do Tratamento , Sequenciamento do Exoma
17.
J Acoust Soc Am ; 145(6): 3667, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31255105

RESUMO

The goal of this study was to determine if temporal modulation cutoff frequency was mature in three-month-old infants. Normal-hearing infants and young adults were tested in a single-interval forced-choice observer-based psychoacoustic procedure. Two parameters of the temporal modulation transfer function (TMTF) were estimated to separate temporal resolution from amplitude modulation sensitivity. The modulation detection threshold (MDT) of a broadband noise amplitude modulated at 10 Hz estimated the y-intercept of the TMTF. The cutoff frequency of the TMTF, measured at a modulation depth 4 dB greater than the MDT, provided an estimate of temporal resolution. MDT was obtained in 27 of 33 infants while both MDT and cutoff frequency was obtained in 15 infants and in 16 of 16 adults. Mean MDT was approximately 10 dB poorer in infants compared to adults. In contrast, mean temporal modulation cutoff frequency did not differ significantly between age groups. These results suggest that temporal resolution is mature, on average, by three months of age in normal hearing children despite immature sensitivity to amplitude modulation. The temporal modulation cutoff frequency approach used here may be a feasible way to examine development of temporal resolution in young listeners with markedly immature sensitivity to amplitude modulation.


Assuntos
Percepção Auditiva/fisiologia , Limiar Auditivo/fisiologia , Audição/fisiologia , Fatores Etários , Criança , Feminino , Testes Auditivos/métodos , Humanos , Lactente , Masculino , Psicoacústica , Adulto Jovem
18.
Blood ; 128(13): 1735-44, 2016 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-27516441

RESUMO

To elucidate the mechanisms underlying relapse from chemotherapy in multiple myeloma, we performed a longitudinal study of 33 patients entered into Total Therapy protocols investigating them using gene expression profiling, high-resolution copy number arrays, and whole-exome sequencing. The study illustrates the mechanistic importance of acquired mutations in known myeloma driver genes and the critical nature of biallelic inactivation events affecting tumor suppressor genes, especially TP53, the end result being resistance to apoptosis and increased proliferation rates, which drive relapse by Darwinian-type clonal evolution. The number of copy number aberration changes and biallelic inactivation of tumor suppressor genes was increased in GEP70 high risk, consistent with genomic instability being a key feature of high risk. In conclusion, the study highlights the impact of acquired genetic events, which enhance the evolutionary fitness level of myeloma-propagating cells to survive multiagent chemotherapy and to result in relapse.


Assuntos
Evolução Clonal , Genes Supressores de Tumor , Mieloma Múltiplo/genética , Mutação , Adulto , Idoso , Proliferação de Células , Variações do Número de Cópias de DNA , Progressão da Doença , Feminino , Perfilação da Expressão Gênica , Genes p53 , Genes ras , Instabilidade Genômica , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Modelos Genéticos , Mieloma Múltiplo/patologia , Mieloma Múltiplo/terapia , Fosfatidilinositol 3-Quinases/genética , Recidiva , Fatores de Risco , Transplante de Células-Tronco , Transplante Autólogo
19.
BMC Cancer ; 18(1): 724, 2018 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-29980194

RESUMO

BACKGROUND: Multiple myeloma (MM) patients with t(14;20) have a poor prognosis and their outcome has not improved following the introduction of bortezomib (Bzb). The mechanism underlying the resistance to proteasome inhibitors (PIs) for this subset of patients is unknown. METHODS: IC50 of Bzb and carfilzomib (CFZ) in human myeloma cell lines (HMCLs) were established by MTT assay. Gene Expression profile (GEP) analysis was used to determine gene expression in primary myeloma cells. Immunoblotting analysis was performed for MAFb and caspase family proteins. Immunofluorescence staining was used to detect the location of MAFb protein in MM cells. Lentiviral infections were used to knock-down MAFb expression in two lines. Apoptosis detection by flow cytometry and western blot analysis was performed to determine the molecular mechanism MAFb confers resistance to proteasome inhibitors. RESULTS: We found high levels of MAFb protein in cell lines with t(14;20), in one line with t(6;20), in one with Igλ insertion into MAFb locus, and in primary plasma cells from MM patients with t(14;20). High MAFb protein levels correlated with higher IC50s of PIs in MM cells. Inhibition of GSK3ß activity or treatment with Bzb or CFZ prevented MAFb protein degradation without affecting the corresponding mRNA level indicating a role for GSK3 and proteasome inhibitors in regulation of MAFb stability. Silencing MAFb restored sensitivity to Bzb and CFZ, and enhanced PIs-induced apoptosis and activation of caspase-3, - 8, - 9, PARP and lamin A/C suggesting that high expression of MAFb protein leads to insensitivity to proteasome inhibitors. CONCLUSION: These results highlight the role of post-translational modification of MAFb in maintaining its protein level, and identify a mechanism by which proteasome inhibitors induced stabilization of MAFb confers resistance to proteasome inhibitors, and provide a rationale for the development of targeted therapeutic strategies for this subset of patients.


Assuntos
Fator de Transcrição MafB/fisiologia , Mieloma Múltiplo/tratamento farmacológico , Inibidores de Proteassoma/uso terapêutico , Apoptose/efeitos dos fármacos , Caspases/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Humanos , Fator de Transcrição MafB/análise , Fator de Transcrição MafB/genética , Mieloma Múltiplo/patologia
20.
Blood ; 125(5): 831-40, 2015 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-25428216

RESUMO

The acquisition of the cytogenetic abnormalities hyperdiploidy or translocations into the immunoglobulin gene loci are considered as initiating events in the pathogenesis of myeloma and were often assumed to be mutually exclusive. These lesions have clinical significance; hyperdiploidy or the presence of the t(11;14) translocation is associated with a favorable outcome, whereas t(4;14), t(14;16), and t(14;20) are unfavorable. Poor outcomes are magnified when lesions occur in association with other high-risk features, del17p and +1q. Some patients have coexistence of both good and poor prognostic lesions, and there has been no consensus on their risk status. To address this, we have investigated their clinical impact using cases in the Myeloma IX study (ISRCTN68454111) and shown that the coexistence of hyperdiploidy or t(11;14) does not abrogate the poor prognosis associated with adverse molecular lesions, including translocations. We have also used single-cell analysis to study cases with coexistent translocations and hyperdiploidy to determine how these lesions cosegregate within the clonal substructure, and we have demonstrated that hyperdiploidy may precede IGH translocation in a proportion of patients. These findings have important clinical and biological implications, as we conclude patients with coexistence of adverse lesions and hyperdiploidy should be considered high risk and treated accordingly.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Diploide , Regulação Neoplásica da Expressão Gênica , Cadeias Pesadas de Imunoglobulinas/genética , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Translocação Genética , Idoso , Cromossomos Humanos Par 11 , Cromossomos Humanos Par 14 , Cromossomos Humanos Par 16 , Cromossomos Humanos Par 20 , Cromossomos Humanos Par 4 , Análise Citogenética , Feminino , Humanos , Cadeias Pesadas de Imunoglobulinas/imunologia , Hibridização in Situ Fluorescente , Masculino , Pessoa de Meia-Idade , Mieloma Múltiplo/imunologia , Mieloma Múltiplo/mortalidade , Prognóstico , Transdução de Sinais , Análise de Célula Única , Análise de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA