Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Glia ; 71(4): 991-1001, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36511515

RESUMO

Multiple sclerosis (MS) is a focal inflammatory and demyelinating disease. The inflammatory infiltrates consist of macrophages/microglia, T and B cells. Remyelination (RM) is an endogenous repair process which frequently fails in MS patients. In earlier studies, T cells either promoted or impaired RM. Here, we used the combined cuprizone/MOG-EAE model to further dissect the functional role of T cells for RM. The combination of MOG immunization with cuprizone feeding targeted T cells to the corpus callosum and increased the extent of axonal injury. Global gene expression analyses demonstrated significant changes in the inflammatory environment; however, additional MOG immunization did not alter the course of RM. Our results suggest that the inflammatory environment in the combined model affects axons and oligodendrocytes differently and that oligodendroglial lineage cells might be less susceptible to T cell mediated injury.


Assuntos
Doenças Desmielinizantes , Esclerose Múltipla , Remielinização , Animais , Camundongos , Axônios , Corpo Caloso/metabolismo , Cuprizona/toxicidade , Doenças Desmielinizantes/metabolismo , Doenças Desmielinizantes/patologia , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Esclerose Múltipla/metabolismo , Bainha de Mielina/fisiologia , Oligodendroglia/metabolismo , Remielinização/imunologia , Linfócitos T/metabolismo , Linfócitos T/patologia
2.
J Neurosci ; 40(38): 7269-7285, 2020 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-32817250

RESUMO

Processing of olfactory information is modulated by centrifugal projections from cortical areas, yet their behavioral relevance and underlying neural mechanisms remain unclear in most cases. The anterior olfactory nucleus (AON) is part of the olfactory cortex, and its extensive connections to multiple upstream and downstream brain centers place it in a prime position to modulate early sensory information in the olfactory system. Here, we show that optogenetic activation of AON neurons in awake male and female mice was not perceived as an odorant equivalent cue. However, AON activation during odorant presentation reliably suppressed behavioral odor responses. This AON-mediated effect was fast and constant across odors and concentrations. Likewise, activation of glutamatergic AON projections to the olfactory bulb (OB) transiently inhibited the excitability of mitral/tufted cells (MTCs) that relay olfactory input to the cortex. Single-unit MTC recordings revealed that optogenetic activation of glutamatergic AON terminals in the OB transiently decreased sensory-evoked MTC spiking, regardless of the strength or polarity of the sensory response. The reduction in MTC firing during optogenetic stimulation was confirmed in recordings in awake mice. These findings suggest that glutamatergic AON projections to the OB impede early olfactory signaling by inhibiting OB output neurons, thereby dynamically gating sensory throughput to the cortex.SIGNIFICANCE STATEMENT The anterior olfactory nucleus (AON) as an olfactory information processing area sends extensive projections to multiple brain centers, but the behavioral consequences of its activation have been scarcely investigated. Using behavioral tests in combination with optogenetic manipulation, we show that, in contrast to what has been suggested previously, the AON does not seem to form odor percepts but instead suppresses behavioral odor responses across odorants and concentrations. Furthermore, this study shows that AON activation inhibits olfactory bulb output neurons in both anesthetized as well as awake mice, pointing to a potential mechanism by which the olfactory cortex can actively and dynamically gate sensory throughput to higher brain centers.


Assuntos
Bulbo Olfatório/metabolismo , Condutos Olfatórios/metabolismo , Percepção Olfatória , Transmissão Sináptica , Animais , Feminino , Ácido Glutâmico/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios Aferentes/metabolismo , Neurônios Aferentes/fisiologia , Bulbo Olfatório/fisiologia , Condutos Olfatórios/fisiologia , Olfato
3.
Nat Commun ; 13(1): 7525, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36473867

RESUMO

We developed a family of genetically encoded serotonin (5-HT) sensors (sDarken) on the basis of the native 5-HT1A receptor and circularly permuted GFP. sDarken 5-HT sensors are bright in the unbound state and diminish their fluorescence upon binding of 5-HT. Sensor variants with different affinities for serotonin were engineered to increase the versatility in imaging of serotonin dynamics. Experiments in vitro and in vivo showed the feasibility of imaging serotonin dynamics with high temporal and spatial resolution. As demonstrated here, the designed sensors show excellent membrane expression, have high specificity and a superior signal-to-noise ratio, detect the endogenous release of serotonin and are suitable for two-photon in vivo imaging.


Assuntos
Serotonina
4.
Neuron ; 81(6): 1263-1273, 2014 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-24656249

RESUMO

G protein-coupled receptors (GPCRs) coupling to Gi/o signaling pathways are involved in the control of important physiological functions, which are difficult to investigate because of the limitation of tools to control the signaling pathway with precise kinetics and specificity. We established two vertebrate cone opsins, short- and long-wavelength opsin, for long-lasting and repetitive activation of Gi/o signaling pathways in vitro and in vivo. We demonstrate for both opsins the repetitive fast, membrane-delimited, ultra light-sensitive, and wavelength-dependent activation of the Gi/o pathway in HEK cells. We also show repetitive control of Gi/o pathway activation in 5-HT1A receptor domains in the dorsal raphe nucleus (DRN) in brain slices and in vivo, which is sufficient to modulate anxiety behavior in mice. Thus, vertebrate cone opsins represent a class of tools for understanding the role of Gi/o-coupled GPCRs in health and disease.


Assuntos
Ansiedade/fisiopatologia , Comportamento Animal , Opsinas dos Cones/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo , Transdução de Sinais/fisiologia , Animais , Ansiedade/metabolismo , Comportamento Animal/fisiologia , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Humanos , Luz , Camundongos , Neurônios/metabolismo , Receptor 5-HT1A de Serotonina/metabolismo , Opsinas de Bastonetes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA