Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(52): e2313200120, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38113263

RESUMO

In female mice, the gene dosage from X chromosomes is adjusted by a process called X chromosome inactivation (XCI) that occurs in two steps. An imprinted form of XCI (iXCI) that silences the paternally inherited X chromosome (Xp) is initiated at the 2- to 4-cell stages. As extraembryonic cells including trophoblasts keep the Xp silenced, epiblast cells that give rise to the embryo proper reactivate the Xp and undergo a random form of XCI (rXCI) around implantation. Both iXCI and rXCI require the lncRNA Xist, which is expressed from the X to be inactivated. The X-linked E3 ubiquitin ligase Rlim (Rnf12) in conjunction with its target protein Rex1 (Zfp42), a critical repressor of Xist, have emerged as major regulators of iXCI. However, their roles in rXCI remain controversial. Investigating early mouse development, we show that the Rlim-Rex1 axis is active in pre-implantation embryos. Upon implantation Rex1 levels are downregulated independently of Rlim specifically in epiblast cells. These results provide a conceptual framework of how the functional dynamics between Rlim and Rex1 ensures regulation of iXCI but not rXCI in female mice.


Assuntos
RNA Longo não Codificante , Inativação do Cromossomo X , Animais , Feminino , Camundongos , Embrião de Mamíferos/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Cromossomo X/genética , Cromossomo X/metabolismo , Inativação do Cromossomo X/genética
2.
J Vasc Res ; 58(5): 277-285, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33951626

RESUMO

The sodium-dependent phosphate transporter, SLC20A1, is required for elevated inorganic phosphate (Pi) induced vascular smooth muscle cell (VSMC) matrix mineralization and phenotype transdifferentiation. Recently, elevated Pi was shown to induce ERK1/2 phosphorylation through SLC20A1 by Pi uptake-independent functions in VSMCs, suggesting a cell signaling response to elevated Pi. Previous studies identified Rap1 guanine nucleotide exchange factor (RapGEF1) as an SLC20A1-interacting protein and RapGEF1 promotes ERK1/2 phosphorylation through Rap1 activation. In this study, we tested the hypothesis that RapGEF1 is a critical component of the SLC20A1-mediated Pi-induced ERK1/2 phosphorylation pathway. Co-localization of SLC20A1 and RapGEF1, knockdown of RapGEF1 with siRNA, and small molecule inhibitors of Rap1, B-Raf, and Mek1/2 were investigated. SLC20A1 and RapGEF1 were co-localized in peri-membranous structures in VSMCs. Knockdown of RapGEF1 and small molecule inhibitors against Rap1, B-Raf, and Mek1/2 eliminated elevated Pi-induced ERK1/2 phosphorylation. Knockdown of RapGEF1 inhibited SM22α mRNA expression and blocked elevated Pi-induced downregulation of SM22α mRNA. Together, these data suggest that RapGEF1 is required for SLC20A1-mediated elevated Pi signaling through a Rap1/B-Raf/Mek1/2 cell signaling pathway, thereby promoting ERK1/2 phosphorylation and inhibiting SM22α gene expression in VSMCs.


Assuntos
Fator 2 de Liberação do Nucleotídeo Guanina/fisiologia , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Fosfatos/farmacologia , Animais , Células Cultivadas , Fator 2 de Liberação do Nucleotídeo Guanina/genética , Humanos , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculo Liso Vascular/enzimologia , Miócitos de Músculo Liso/enzimologia , Fosforilação , Transdução de Sinais , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/metabolismo
3.
Nature ; 511(7507): 86-9, 2014 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-24870238

RESUMO

In female mice, two forms of X-chromosome inactivation (XCI) ensure the selective silencing of female sex chromosomes during mouse embryogenesis. Beginning at the four-cell stage, imprinted XCI (iXCI) exclusively silences the paternal X chromosome. Later, around implantation, epiblast cells of the inner cell mass that give rise to the embryo reactivate the paternal X chromosome and undergo a random form of XCI (rXCI). Xist, a long non-coding RNA crucial for both forms of XCI, is activated by the ubiquitin ligase RLIM (also known as Rnf12). Although RLIM is required for triggering iXCI in mice, its importance for rXCI has been controversial. Here we show that RLIM levels are downregulated in embryonic cells undergoing rXCI. Using mouse genetics we demonstrate that female cells lacking RLIM from pre-implantation stages onwards show hallmarks of XCI, including Xist clouds and H3K27me3 foci, and have full embryogenic potential. These results provide evidence that RLIM is dispensable for rXCI, indicating that in mice an RLIM-independent mechanism activates Xist in the embryo proper.


Assuntos
Camadas Germinativas/embriologia , Camadas Germinativas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Inativação do Cromossomo X/genética , Animais , Regulação para Baixo , Implantação do Embrião , Embrião de Mamíferos/embriologia , Embrião de Mamíferos/metabolismo , Feminino , Histonas/química , Histonas/metabolismo , Hibridização in Situ Fluorescente , Lisina/metabolismo , Metilação , Camundongos , Camundongos Knockout , RNA Longo não Codificante/genética , Ubiquitina-Proteína Ligases/genética
4.
Int J Mol Sci ; 21(15)2020 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-32722465

RESUMO

Inorganic phosphate (Pi) is an essential nutrient that fulfills critical roles in human health. It enables skeletal ossification, supports cellular structure and organelle function, and serves key biochemical roles in energetics and molecular signaling. Pi homeostasis is modulated through diet, intestinal uptake, renal reabsorption, and mobilization of stores in bone and extracellular compartments. Disrupted Pi homeostasis is associated with phosphate wasting, mineral and bone disorders, and vascular calcification. Mechanisms of Pi homeostasis in pregnancy remain incompletely understood. The study presented herein examined biological fluid Pi characteristics over the course of gestation. Correlations with gestation age, pregnancy number, preterm birth, preeclampsia, diabetes mellitus, and placental calcification were evaluated during the last trimester. The results support that maternal urinary Pi levels increased during the third trimester of pregnancy. Reduced levels were observed with previous pregnancy. Amniotic fluid Pi levels decreased with gestation while low second trimester levels associated with preterm birth. No significant difference in urinary Pi levels was observed between preeclampsia and controls (8.50 ± 2.74 vs. 11.52 ± 2.90 mmol/L). Moreover, increased maternal urinary Pi was associated with preexisting diabetes mellitus in preeclampsia. Potential confounding factors in this study are maternal age at delivery and body mass index (BMI)-information which we do not have access to for this cohort. In conclusion, Pi levels provide clinical information regarding the pathogenesis of pregnancy-related complications, supporting that phosphate should be examined more closely and in larger populations.


Assuntos
Fosfatos/urina , Complicações na Gravidez/urina , Terceiro Trimestre da Gravidez/urina , Adulto , Líquido Amniótico/metabolismo , Feminino , Humanos , Gravidez
5.
Biochem Biophys Res Commun ; 495(1): 553-559, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29133259

RESUMO

Normal bone mineralization requires phosphate oversaturation in bone matrix vesicles, as well as normal regulation of phosphate metabolism via the interplay among bone, intestine, and kidney. In turn, derangement of phosphate metabolism greatly affects bone function and structure. The type III sodium-dependent phosphate transporters, PiT-1 and PiT-2, are believed to be important in tissue phosphate metabolism and physiological bone formation, but their requirement and molecular roles in bone remain poorly investigated. In order to decipher the role of PiT-2 in bone, we examined normal bone development, growth, and mineralization in global PiT-2 homozygous knockout mice. PiT-2 deficiency resulted in reduced vertebral column, femur, and tibia length as well as mandibular dimensions. Micro-computed tomography analysis revealed that bone mineral density in the mandible, femur, and tibia were decreased, indicating that maintenance of bone function and structure is impaired in both craniofacial and long bones of PiT-2 deficient mice. Both cortical and trabecular thickness and mineral density were reduced in PiT-2 homozygous knockout mice compared with wild-type mice. These results suggest that PiT-2 is involved in normal bone development and growth and plays roles in cortical and trabecular bone metabolism feasibly by regulating local phosphate transport and mineralization processes in the bone. Further studies that evaluate bone cell-specific loss of PiT-2 are now warranted and may yield insight into complex mechanisms of bone development and growth, leading to identification of new therapeutic options for patients with bone diseases.


Assuntos
Densidade Óssea , Desenvolvimento Ósseo , Doenças Ósseas/metabolismo , Doenças Ósseas/patologia , Osso e Ossos/patologia , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/metabolismo , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Tamanho do Órgão , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/genética
7.
Dev Biol ; 373(2): 359-72, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23123966

RESUMO

Preimplantation development culminates with the emergence of three distinct populations: the inner cell mass, primitive endoderm and trophectoderm. Here, we define the mechanisms underlying the requirement of Suds3 in pre/peri-implantation development. Suds3 knockdown blastocysts exhibit a failure of both trophectoderm proliferation as well as a conspicuous lack of primitive endoderm. Expression of essential lineage factors Nanog, Sox2, Cdx2, Eomes, Elf5 and Sox17 are severely reduced in the absence of Suds3. Importantly, we document deficient FGF4/ERK signaling and show that exogenous FGF4 rescues primitive endoderm formation and trophectoderm proliferation in Suds3 knockdown blastocysts. We also show that Hdac1 knockdown reduces Sox2/FGF4/ERK signaling in blastocysts. Collectively, these data define a role for Suds3 in activation of FGF4/ERK signaling and determine an essential molecular role of Suds3/Sin3/HDAC complexes in lineage specification in vivo.


Assuntos
Padronização Corporal , Linhagem da Célula , Proteínas Repressoras/deficiência , Animais , Massa Celular Interna do Blastocisto/citologia , Massa Celular Interna do Blastocisto/efeitos dos fármacos , Massa Celular Interna do Blastocisto/metabolismo , Padronização Corporal/efeitos dos fármacos , Padronização Corporal/genética , Linhagem da Célula/efeitos dos fármacos , Linhagem da Célula/genética , Ectoderma/citologia , Ectoderma/efeitos dos fármacos , Ectoderma/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Fator 4 de Crescimento de Fibroblastos/metabolismo , Fator 4 de Crescimento de Fibroblastos/farmacologia , Fator de Transcrição GATA6/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Proteínas HMGB/genética , Proteínas HMGB/metabolismo , Histona Desacetilase 1/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Camundongos , Proteína Homeobox Nanog , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Fatores de Transcrição SOXF/genética , Fatores de Transcrição SOXF/metabolismo , Transdução de Sinais/efeitos dos fármacos
8.
Arterioscler Thromb Vasc Biol ; 33(11): 2625-32, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23968976

RESUMO

OBJECTIVE: Elevated serum phosphate has emerged as a major risk factor for vascular calcification. The sodium-dependent phosphate cotransporter, PiT-1, was previously shown to be required for phosphate-induced osteogenic differentiation and calcification of cultured human vascular smooth muscle cells (VSMCs), but its importance in vascular calcification in vivo and the potential role of its homologue, PiT-2, have not been determined. We investigated the in vivo requirement for PiT-1 in vascular calcification using a mouse model of chronic kidney disease and the potential compensatory role of PiT-2 using in vitro knockdown and overexpression strategies. APPROACH AND RESULTS: Mice with targeted deletion of PiT-1 in VSMCs were generated (PiT-1(Δsm)). PiT-1 mRNA levels were undetectable, whereas PiT-2 mRNA levels were increased 2-fold in the vascular aortic media of PiT-1(Δsm) compared with PiT-1(flox/flox) control. When arterial medial calcification was induced in PiT-1(Δsm) and PiT-1(flox/flox) by chronic kidney disease followed by dietary phosphate loading, the degree of aortic calcification was not different between genotypes, suggesting compensation by PiT-2. Consistent with this possibility, VSMCs isolated from PiT-1(Δsm) mice had no PiT-1 mRNA expression, increased PiT-2 mRNA levels, and no difference in sodium-dependent phosphate uptake or phosphate-induced matrix calcification compared with PiT-1(flox/flox) VSMCs. Knockdown of PiT-2 decreased phosphate uptake and phosphate-induced calcification of PiT-1(Δsm) VSMCs. Furthermore, overexpression of PiT-2 restored these parameters in human PiT-1-deficient VSMCs. CONCLUSIONS: PiT-2 can mediate phosphate uptake and calcification of VSMCs in the absence of PiT-1. Mechanistically, PiT-1 and PiT-2 seem to serve redundant roles in phosphate-induced calcification of VSMCs.


Assuntos
Músculo Liso Vascular/metabolismo , Insuficiência Renal Crônica/fisiopatologia , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/metabolismo , Calcificação Vascular/fisiopatologia , Animais , Aorta/citologia , Aorta/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Knockout , Músculo Liso Vascular/citologia , Fosfatos/metabolismo , RNA Mensageiro/metabolismo , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/genética , Uremia/genética , Uremia/metabolismo , Uremia/fisiopatologia , Calcificação Vascular/genética , Calcificação Vascular/metabolismo
9.
Dev Dyn ; 242(9): 1110-20, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23728800

RESUMO

BACKGROUND: Although successful implantation is required for development in placental mammals, the molecular and morphogenetic events that define peri-implantation remain largely unexplored. RESULTS: Here we present detailed morphological and immunohistochemical analysis of mouse embryos between embryonic day 3.75 and 5.25 of gestation, during the implantation process in vivo. We examined expression patterns of key transcription factors (Sox2, Oct4, Nanog, Cdx2, Gata6, Sox17, and Yy1) during pre- and postimplantation development. Additionally, we examined morphogenetic changes through analysis of ZO-1, Laminin, and E-Cadherin localization. The results presented reveal novel changes in gene expression and morphogenetic events during peri-implantation in utero. Here we show: (1) molecular and morphological changes in primitive endoderm cells as they transition from a salt and pepper distribution to a sheet covering the inner cell mass; (2) tissue-specific GATA6 levels; and (3) a striking pattern of SOX17 that is suggestive of a functional role either directing or permitting implantation at specific sites in the uterine epithelium. CONCLUSIONS: A growing number of knockout mice display peri-implantation lethality, and the data presented herein identify key morphogenetic landmarks that can be used to characterize mutant phenotypes, as well as further our basic understanding of peri-implantation development.


Assuntos
Implantação do Embrião/fisiologia , Embrião de Mamíferos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Fatores de Transcrição/biossíntese , Animais , Embrião de Mamíferos/citologia , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Feminino , Camundongos , Camundongos Knockout , Fatores de Transcrição/genética , Útero/citologia , Útero/metabolismo
10.
Vasc Biol ; 5(1)2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36795703

RESUMO

The placenta mediates the transport of nutrients, such as inorganic phosphate (Pi), between the maternal and fetal circulatory systems. The placenta itself also requires high levels of nutrient uptake as it develops to provide critical support for fetal development. This study aimed to determine placental Pi transport mechanisms using in vitro and in vivo models. We observed that Pi (P33) uptake in BeWo cells is sodium dependent and that SLC20A1/Slc20a1 is the most highly expressed placental sodium-dependent transporter in mouse (microarray), human cell line (RT-PCR) and term placenta (RNA-seq), supporting that normal growth and maintenance of the mouse and human placenta requires SLC20A1/Slc20a1. Slc20a1 wild-type (Slc20a1+/+) and knockout (Slc20a1-/-) mice were produced through timed intercrosses and displayed yolk sac angiogenesis failure as expected at E10.5. E9.5 tissues were analyzed to test whether placental morphogenesis requires Slc20a1. At E9.5, the developing placenta was reduced in size in Slc20a1-/-. Multiple structural abnormalities were also observed in the Slc20a1-/-chorioallantois. We determined that monocarboxylate transporter 1 protein (MCT1+) cells were reduced in developing Slc20a1-/-placenta, confirming that Slc20a1 loss reduced trophoblast syncytiotrophoblast 1 (SynT-I) coverage. Next, we examined the cell type-specific Slc20a1 expression and SynT molecular pathways in silico and identified Notch/Wnt as a pathway of interest that regulates trophoblast differentiation. We further observed that specific trophoblast lineages express Notch/Wnt genes that associate with endothelial cell tip-and-stalk cell markers. In conclusion, our findings support that Slc20a1 mediates the symport of Pi into SynT cells, providing critical support for their differentiation and angiogenic mimicry function at the developing maternal-fetal interface.

11.
Gene Expr Patterns ; 48: 119319, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37148985

RESUMO

Heterogeneous nuclear ribonucleoprotein L (hnRNPL) is a conserved RNA binding protein (RBP) that plays an important role in the alternative splicing of gene transcripts, and thus in the generation of specific protein isoforms. Global deficiency in hnRNPL in mice results in preimplantation embryonic lethality at embryonic day (E) 3.5. To begin to understand the contribution of hnRNPL-regulated pathways in the normal development of the embryo and placenta, we determined hnRNPL expression profile and subcellular localization throughout development. Proteome and Western blot analyses were employed to determine hnRNPL abundance between E3.5 and E17.5. Histological analyses supported that the embryo and implantation site display distinct hnRNPL localization patterns. In the fully developed mouse placenta, nuclear hnRNPL was observed broadly in trophoblasts, whereas within the implantation site a discrete subset of cells showed hnRNPL outside the nucleus. In the first-trimester human placenta, hnRNPL was detected in the undifferentiated cytotrophoblasts, suggesting a role for this factor in trophoblast progenitors. Parallel in vitro studies utilizing Htr8 and Jeg3 cell lines confirmed expression of hnRNPL in cellular models of human trophoblasts. These studies [support] coordinated regulation of hnRNPL during the normal developmental program in the mammalian embryo and placenta.


Assuntos
Ribonucleoproteínas Nucleares Heterogêneas Grupo L , Placenta , Animais , Feminino , Humanos , Camundongos , Gravidez , Linhagem Celular Tumoral , Embrião de Mamíferos , Ribonucleoproteínas Nucleares Heterogêneas Grupo L/metabolismo , Placenta/metabolismo , Trofoblastos/metabolismo
12.
Exp Neurol ; 351: 113986, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35065053

RESUMO

Microglia are resident immune cells in the central nervous system (CNS), which, in a healthy state, promote CNS homeostasis and respond to CNS injury. In contrast, microglia are also implicated in pathological conditions where they may contribute to neural damage. Primitive microglia arise from extraembryonic progenitors in the yolk sac (YS). The extraembryonic origins of primitive microglia are distinct from other tissue macrophages. The YS is the first site of hematopoiesis in development. Uniquely, microglial pregenital cells in the mouse derive from an early myeloid branch of the hematopoietic lineage in the YS. Microglia are critical in several key stages of physiological brain development, including embryonic vasculogenesis, immunosurveillance, and neurogenesis. Abnormal microglial function has been linked to neurodevelopmental and neurodegenerative diseases, although mechanistic roles in disease etiology remain incompletely understood. Knowledge of species-specific differences between human, murine and other animal models is also critical to understanding translational relevance to human health and disease as biomedical understanding of the importance of primitive microglia advances. This significance drives the importance of understanding, comparatively, the extraembryonic origins and developmental mechanisms whereby human primitive microglia differentiate and migrate to inform translational research. A better understanding of the molecular drivers may lead to biomarkers and/or preventative or therapeutic measures for neonatal brain development and neurodegenerative diseases. Herein, the role of microglia in neonatal brain development is discussed, current understandings of the developmental origins of microglia are described, the ontogeny and phylogeny of microglia, and implications of in vitro microglia-like cell differentiation, with a specific interest on neurodegenerative diseases, are reviewed. Together, these emphasize the importance of leveraging the extraembryonic origins of microglia to not only better understand neurodevelopment and neurodegenerative diseases, but also to develop protective measures that are specific to human microglia.


Assuntos
Macrófagos , Microglia , Animais , Encéfalo , Hematopoese/fisiologia , Camundongos , Saco Vitelino/fisiologia
13.
Curr Stem Cell Rep ; 7(4): 185-193, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34697582

RESUMO

Purpose of Review: The placenta is a transient organ that forms de novo and serves a critical role in supporting fetal growth and development. Placental oxygen, nutrients, and waste are transported through processes that depend on vascular structure and cell type-specific expression and localization of membrane transporters. Understanding how the placenta develops holds great significance for maternal-fetal medicine. The purpose of this review is to examine current information regarding placental progenitor populations. Recent Findings: Recent advancements in single-cell RNA sequencing (scRNA-seq) provide unprecedented depth for the investigation of cell type-specific gene expression patterns in the placenta. Thus far, several mouse placenta scRNA-seq studies have been conducted which produced and analyzed transcriptomes of placental progenitors and cells of the fully developed placenta between embryonic day (E) 7.0 and E12.5. Together with human placenta scRNA-seq data which, in part, has been produced through coordinated research campaigns in the scientific community to understand the potential for SARS-CoV-2 infection, these mammalian studies lend fundamental insight into the cellular and molecular composition of hemochorial placentae found in both mouse and human. Summary: Single-cell placenta research has advanced understanding of tissue-resident stem cells and molecules that are poised to support maternal-fetal communication and nutrient transport. Herein, we provide context for these recent findings by reviewing placental anatomy and cell populations, and discuss recent scRNA-seq mouse placenta findings. Further research is needed to evaluate the utility of placental stem cells in the development of new therapeutic approaches for the treatment of wound healing and disease.

14.
Cardiogenetics ; 11(3): 132-138, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36158166

RESUMO

Thoracic aortic aneurysms (TAAs) that progress to acute thoracic aortic dissections (TADs) are life threatening vascular events that have been associated with altered transforming growth factor (TGF) ß signaling. In addition to TAA, multiple genetic vascular disorders, including hereditary hemorrhagic telangiectasia (HHT), involve altered TGFß signaling and vascular malformations. Due to the importance of TGFß, genomic variant databases have been curated for activin receptor-like kinase 1 (ALK1) and endoglin (ENG). This case report details seven variants in SMAD4 that are associated with either heritable or early onset aortic dissections and compares them to pathogenic exon variants in gnomAD v2.1.1. The TAA and TAD variants were identified through whole exome sequencing of 346 unrelated heritable thoracic aortic disease (HTAD) and 355 individuals of early onset (age ≤ 56 years old) of thoracic aortic dissection (ESTAD). An allele frequency filter of less than 0.05% was applied in the Genome Aggregation Database (gnomAD exome v2.1.1) with a combined annotation dependent depletion score (CADD) greater than 20. These seven variants also have a higher REVEL score (>0.2), indicating pathogenic potential. Further in vivo and in vitro analysis is needed to evaluate how these variants affect mRNA stability and SMAD4 protein activity in association with thoracic aortic disease.

15.
Elife ; 102021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33620316

RESUMO

The X-linked gene Rlim plays major roles in female mouse development and reproduction, where it is crucial for the maintenance of imprinted X chromosome inactivation in extraembryonic tissues of embryos. However, while females carrying a systemic Rlim knockout (KO) die around implantation, male Rlim KO mice appear healthy and are fertile. Here, we report an important role for Rlim in testis where it is highly expressed in post-meiotic round spermatids as well as in Sertoli cells. Systemic deletion of the Rlim gene results in lower numbers of mature sperm that contains excess cytoplasm, leading to decreased sperm motility and in vitro fertilization rates. Targeting the conditional Rlim cKO specifically to the spermatogenic cell lineage largely recapitulates this phenotype. These results reveal functions of Rlim in male reproduction specifically in round spermatids during spermiogenesis.


Assuntos
Células de Sertoli/metabolismo , Espermatogênese/genética , Ubiquitina-Proteína Ligases/genética , Animais , Genes Ligados ao Cromossomo X , Masculino , Camundongos , Camundongos Knockout , Ubiquitina-Proteína Ligases/deficiência
16.
EMJ Radiol ; 1(1): 54-62, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35949207

RESUMO

The placenta is a highly vascularized organ with unique structural and metabolic complexities. As the primary conduit of fetal support, the placenta mediates transport of oxygen, nutrients, and waste between maternal and fetal blood. Thus, normal placenta anatomy and physiology is absolutely required for maintenance of maternal and fetal health during pregnancy. Moreover, impaired placental health can negatively impact offspring growth trajectories as well as increase the risk of maternal cardiovascular disease later in life. Despite these crucial roles for the placenta, placental disorders, such as preeclampsia, intrauterine growth restriction (IUGR), and preterm birth, remain incompletely understood. Effective noninvasive imaging and image analysis are needed to advance the obstetrician's clinical reasoning toolkit and improve the utility of the placenta in interpreting maternal and fetal health trajectories. Current paradigms in placental imaging and image analysis aim to improve the traditional imaging techniques that may be time-consuming, costly, or invasive. In concert with conventional clinical approaches such as ultrasound (US), advanced imaging modalities can provide insightful information on the structure of placental tissues. Herein we discuss such imaging modalities, their specific applications in structural, vascular, and metabolic analysis of placental health, and emerging frontiers in image analysis research in both preclinical and clinical contexts.

17.
Am J Hypertens ; 32(2): 123-134, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30380007

RESUMO

The mineralocorticoid receptor (MR) is indispensable for survival through its critical role in maintaining blood pressure in response to sodium scarcity or bleeding. Activation of MR by aldosterone in the kidney controls water and electrolyte homeostasis. This review summarizes recent advances in our understanding of MR function, specifically in vascular endothelial and smooth muscle cells. The evolving roles for vascular MR are summarized in the areas of (i) vascular tone regulation, (ii) thrombosis, (iii) inflammation, and (iv) vascular remodeling/fibrosis. Synthesis of the data supports the concept that vascular MR does not contribute substantially to basal homeostasis but rather, MR is poised to be activated when the vasculature is damaged to coordinate blood pressure maintenance and wound healing. Specifically, MR activation in the vascular wall promotes vasoconstriction, inflammation, and exuberant vascular remodeling with fibrosis. A teleological model is proposed in which these functions of vascular MR may have provided a critical evolutionary survival advantage in the face of mechanical vascular injury with bleeding. However, modern lifestyle is characterized by physical inactivity and high fat/high sodium diet resulting in diffuse vascular damage. Under these modern conditions, diffuse, persistent and unregulated activation of vascular MR contributes to post-reproductive cardiovascular disease in growing populations with hypertension, obesity, and advanced age.


Assuntos
Doenças Cardiovasculares/metabolismo , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Hemodinâmica , Estilo de Vida , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Receptores de Mineralocorticoides/metabolismo , Remodelação Vascular , Animais , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/patologia , Doenças Cardiovasculares/fisiopatologia , Dieta Hiperlipídica , Células Endoteliais/patologia , Endotélio Vascular/patologia , Endotélio Vascular/fisiopatologia , Evolução Molecular , Humanos , Músculo Liso Vascular/patologia , Músculo Liso Vascular/fisiopatologia , Miócitos de Músculo Liso/patologia , Fatores de Risco , Comportamento Sedentário , Transdução de Sinais , Sódio na Dieta/efeitos adversos , Cicatrização
18.
Front Physiol ; 9: 1044, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30131710

RESUMO

Vascular calcification is the deposition of calcium phosphate minerals in vascular tissue. Vascular calcification occurs by both active and passive processes. Extent and tissue-specific patterns of vascular calcification are predictors of cardiovascular morbidity and mortality. The placenta is a highly vascularized organ with specialized vasculature that mediates communication between two circulatory systems. At delivery the placenta often contains calcified tissue and calcification can be considered a marker of viral infection, but the mechanisms, histoanatomical specificity, and pathophysiological significance of placental calcification are poorly understood. In this review, we outline the current understanding of vascular calcification mechanisms, biomedical consequences, and therapeutic interventions in the context of histoanatomical types. We summarize available placental calcification data and clinical grading systems for placental calcification. We report on studies that have examined the association between placental calcification and acute adverse maternal and fetal outcomes. We then review the intersection between placental dysfunction and long-term cardiovascular health, including subsequent occurrence of maternal vascular calcification. Possible maternal phenotypes and trigger mechanisms that may predispose for calcification and cardiovascular disease are discussed. We go on to highlight the potential diagnostic value of placental calcification. Finally, we suggest avenues of research to evaluate placental calcification as a research model for investigating the relationship between placental dysfunction and cardiovascular health, as well as a biomarker for placental dysfunction, adverse clinical outcomes, and increased risk of subsequent maternal and offspring cardiovascular events.

19.
Cardiovasc Pathol ; 34: 28-37, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29539583

RESUMO

OBJECTIVE: Calcific aortic valve disease (CAVD) is a major cause of aortic stenosis (AS) and cardiac insufficiency. Patients with type II diabetes mellitus (T2DM) are at heightened risk for CAVD, and their valves have greater calcification than nondiabetic valves. No drugs to prevent or treat CAVD exist, and animal models that might help identify therapeutic targets are sorely lacking. To develop an animal model mimicking the structural and functional features of CAVD in people with T2DM, we tested a diabetogenic, procalcific diet and its effect on the incidence and severity of CAVD and AS in the, LDLr-/-ApoB100/100 mouse model. RESULTS: LDLr-/-ApoB100/100 mice fed a customized diabetogenic, procalcific diet (DB diet) developed hyperglycemia, hyperlipidemia, increased atherosclerosis, and obesity when compared with normal chow fed LDLr-/-ApoB100/100 mice, indicating the development of T2DM and metabolic syndrome. Transthoracic echocardiography revealed that LDLr-/-ApoB100/100 mice fed the DB diet had 77% incidence of hemodynamically significant AS, and developed thickened aortic valve leaflets and calcification in both valve leaflets and hinge regions. In comparison, normal chow (NC) fed LDLr-/-ApoB100/100 mice had 38% incidence of AS, thinner valve leaflets and very little valve and hinge calcification. Further, the DB diet fed mice with AS showed significantly impaired cardiac function as determined by reduced ejection fraction and fractional shortening. In vitro mineralization experiments demonstrated that elevated glucose in culture medium enhanced valve interstitial cell (VIC) matrix calcium deposition. CONCLUSIONS: By manipulating the diet we developed a new model of CAVD in T2DM, hyperlipidemic LDLr-/-ApoB100/100 that shows several important functional, and structural features similar to CAVD found in people with T2DM and atherosclerosis including AS, cardiac dysfunction, and inflamed and calcified thickened valve cusps. Importantly, the high AS incidence of this diabetic model may be useful for mechanistic and translational studies aimed at development of novel treatments for CAVD.


Assuntos
Estenose da Valva Aórtica/patologia , Valva Aórtica/patologia , Apolipoproteínas B/deficiência , Calcinose/patologia , Dieta , Receptores de LDL/deficiência , Animais , Valva Aórtica/metabolismo , Valva Aórtica/fisiopatologia , Estenose da Valva Aórtica/sangue , Estenose da Valva Aórtica/genética , Estenose da Valva Aórtica/fisiopatologia , Apolipoproteína B-100 , Apolipoproteínas B/genética , Glicemia/metabolismo , Calcinose/sangue , Calcinose/genética , Calcinose/fisiopatologia , Células Cultivadas , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patologia , Modelos Animais de Doenças , Predisposição Genética para Doença , Hemodinâmica , Hiperlipidemias/sangue , Hiperlipidemias/genética , Hiperlipidemias/patologia , Lipídeos/sangue , Masculino , Camundongos Knockout , Papio , Fenótipo , Receptores de LDL/genética , Volume Sistólico , Fatores de Tempo , Função Ventricular Esquerda
20.
Cell Reprogram ; 19(4): 263-269, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28682643

RESUMO

Yinyang1 (YY1) participates in protein-DNA, protein-RNA, and protein-protein interactions and regulates developmental processes and disease mechanisms. YY1 interactions regulate a range of important biological functions, including oocyte maturation, epithelial to mesenchymal transition, and vascular endothelial growth factor (VEGF) signaling. We tested the hypothesis that YY1 is required for inner cell mass (ICM) lineage commitment during preimplantation development. In this study, we document gene expression patterns and protein localization of key transcription factors in Yy1 global, tissue-specific, and dsRNA-mediated knockout/down embryos. YY1 protein was found in cells of preimplantation and peri-implantation embryos, and adult tissues where two isoforms are observed. In the absence of YY1, OCT4 and SOX2 protein were lost in the ICM during preimplantation and naive neuroectoderm during gastrulation stages, yet no difference in Oct4 or Sox2 mRNA levels was observed. The loss of OCT4 and SOX2 protein occurred specifically in cells that normally express both OCT4 and SOX2 protein. These observations support a role for YY1 meditating and/or regulating the interaction of OCT4 and SOX2 at a posttranscriptional level. Our results suggest that distinct mechanisms of YY1-mediated molecular regulation are present in the early embryo, and may offer insight to promote lineage commitment in in vitro cell lines.


Assuntos
Blastocisto/metabolismo , Fator 3 de Transcrição de Octâmero/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Fator de Transcrição YY1/metabolismo , Animais , Blastocisto/citologia , Feminino , Camundongos , Camundongos Knockout , Fator 3 de Transcrição de Octâmero/genética , Estabilidade Proteica , Fatores de Transcrição SOXB1/genética , Fator de Transcrição YY1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA