Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 55(42): 13224-13228, 2016 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-27653957

RESUMO

The threat associated with chemical warfare agents (CWAs) motivates the development of new materials to provide enhanced protection with a reduced burden. Metal-organic frame-works (MOFs) have recently been shown as highly effective catalysts for detoxifying CWAs, but challenges still remain for integrating MOFs into functional filter media and/or protective garments. Herein, we report a series of MOF-nanofiber kebab structures for fast degradation of CWAs. We found TiO2 coatings deposited via atomic layer deposition (ALD) onto polyamide-6 nanofibers enable the formation of conformal Zr-based MOF thin films including UiO-66, UiO-66-NH2 , and UiO-67. Cross-sectional TEM images show that these MOF crystals nucleate and grow directly on and around the nanofibers, with strong attachment to the substrates. These MOF-functionalized nanofibers exhibit excellent reactivity for detoxifying CWAs. The half-lives of a CWA simulant compound and nerve agent soman (GD) are as short as 7.3 min and 2.3 min, respectively. These results therefore provide the earliest report of MOF-nanofiber textile composites capable of ultra-fast degradation of CWAs.

2.
J Am Chem Soc ; 137(43): 13756-9, 2015 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-26456471

RESUMO

Rapid room-temperature synthesis of metal-organic frameworks (MOFs) is highly desired for industrial implementation and commercialization. Here we find that a (Zn,Cu) hydroxy double salt (HDS) intermediate formed in situ from ZnO particles or thin films enables rapid growth (<1 min) of HKUST-1 (Cu3(BTC)2) at room temperature. The space-time-yield reaches >3 × 10(4) kg·m(-3)·d(-1), at least 1 order of magnitude greater than any prior report. The high anion exchange rate of (Zn,Cu) hydroxy nitrate HDS drives the ultrafast MOF formation. Similarly, we obtained Cu-BDC, ZIF-8, and IRMOF-3 structures from HDSs, demonstrating synthetic generality. Using ZnO thin films deposited via atomic layer deposition, MOF patterns are obtained on pre-patterned surfaces, and dense HKUST-1 coatings are grown onto various form factors, including polymer spheres, silicon wafers, and fibers. Breakthrough tests show that the MOF-functionalized fibers have high adsorption capacity for toxic gases. This rapid synthesis route is also promising for new MOF-based composite materials and applications.

3.
JMIR Form Res ; 8: e53977, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39110968

RESUMO

BACKGROUND: Wearable physiological monitoring devices are promising tools for remote monitoring and early detection of potential health changes of interest. The widespread adoption of such an approach across communities and over long periods of time will require an automated data platform for collecting, processing, and analyzing relevant health information. OBJECTIVE: In this study, we explore prospective monitoring of individual health through an automated data collection, metrics extraction, and health anomaly analysis pipeline in free-living conditions over a continuous monitoring period of several months with a focus on viral respiratory infections, such as influenza or COVID-19. METHODS: A total of 59 participants provided smartwatch data and health symptom and illness reports daily over an 8-month window. Physiological and activity data from photoplethysmography sensors, including high-resolution interbeat interval (IBI) and step counts, were uploaded directly from Garmin Fenix 6 smartwatches and processed automatically in the cloud using a stand-alone, open-source analytical engine. Health risk scores were computed based on a deviation in heart rate and heart rate variability metrics from each individual's activity-matched baseline values, and scores exceeding a predefined threshold were checked for corresponding symptoms or illness reports. Conversely, reports of viral respiratory illnesses in health survey responses were also checked for corresponding changes in health risk scores to qualitatively assess the risk score as an indicator of acute respiratory health anomalies. RESULTS: The median average percentage of sensor data provided per day indicating smartwatch wear compliance was 70%, and survey responses indicating health reporting compliance was 46%. A total of 29 elevated health risk scores were detected, of which 12 (41%) had concurrent survey data and indicated a health symptom or illness. A total of 21 influenza or COVID-19 illnesses were reported by study participants; 9 (43%) of these reports had concurrent smartwatch data, of which 6 (67%) had an increase in health risk score. CONCLUSIONS: We demonstrate a protocol for data collection, extraction of heart rate and heart rate variability metrics, and prospective analysis that is compatible with near real-time health assessment using wearable sensors for continuous monitoring. The modular platform for data collection and analysis allows for a choice of different wearable sensors and algorithms. Here, we demonstrate its implementation in the collection of high-fidelity IBI data from Garmin Fenix 6 smartwatches worn by individuals in free-living conditions, and the prospective, near real-time analysis of the data, culminating in the calculation of health risk scores. To our knowledge, this study demonstrates for the first time the feasibility of measuring high-resolution heart IBI and step count using smartwatches in near real time for respiratory illness detection over a long-term monitoring period in free-living conditions.

4.
ACS Appl Mater Interfaces ; 8(14): 9514-22, 2016 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-26999431

RESUMO

Chemically functional microporous metal-organic framework (MOF) crystals are attractive for filtration and gas storage applications, and recent results show that they can be immobilized on high surface area substrates, such as fiber mats. However, fundamental knowledge is still lacking regarding initial key reaction steps in thin film MOF nucleation and growth. We find that thin inorganic nucleation layers formed by atomic layer deposition (ALD) can promote solvothermal growth of copper benzenetricarboxylate MOF (Cu-BTC) on various substrate surfaces. The nature of the ALD material affects the MOF nucleation time, crystal size and morphology, and the resulting MOF surface area per unit mass. To understand MOF nucleation mechanisms, we investigate detailed Cu-BTC MOF nucleation behavior on metal oxide powders and Al2O3, ZnO, and TiO2 layers formed by ALD on polypropylene substrates. Studying both combined and sequential MOF reactant exposure conditions, we find that during solvothermal synthesis ALD metal oxides can react with the MOF metal precursor to form double hydroxy salts that can further convert to Cu-BTC MOF. The acidic organic linker can also etch or react with the surface to form MOF from an oxide metal source, which can also function as a nucleation agent for Cu-BTC in the mixed solvothermal solution. We discuss the implications of these results for better controlled thin film MOF nucleation and growth.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA