Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Infect Dis ; 205(11): 1709-18, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22448004

RESUMO

BACKGROUND: New therapeutic targets for antibiotic-resistant bacterial pathogens are desperately needed. The bacterial surface polysaccharide poly-ß-(1-6)-N-acetyl-glucosamine (PNAG) mediates biofilm formation by some bacterial species, and antibodies to PNAG can confer protective immunity. By analyzing sequenced genomes, we found that potentially multidrug-resistant bacterial species such as Klebsiella pneumoniae, Enterobacter cloacae, Stenotrophomonas maltophilia, and the Burkholderia cepacia complex (BCC) may be able to produce PNAG. Among patients with cystic fibrosis patients, highly antibiotic-resistant bacteria in the BCC have emerged as problematic pathogens, providing an impetus to study the potential of PNAG to be targeted for immunotherapy against pan-resistant bacterial pathogens. METHODS: The presence of PNAG on BCC was assessed using a combination of bacterial genetics, microscopy, and immunochemical approaches. Antibodies to PNAG were tested using opsonophagocytic assays and for protective efficacy against lethal peritonitis in mice. RESULTS: PNAG is expressed in vitro and in vivo by the BCC, and cystic fibrosis patients infected by the BCC species B. dolosa mounted a PNAG-specific opsonophagocytic antibody response. Antisera to PNAG mediated opsonophagocytic killing of BCC and were protective against lethal BCC peritonitis even during coinfection with methicillin-resistant Staphylococcus aureus. CONCLUSIONS: Our findings raise potential new therapeutic options against PNAG-producing bacteria, including even pan-resistant pathogens.


Assuntos
Anticorpos Antibacterianos/imunologia , Infecções por Burkholderia/terapia , Complexo Burkholderia cepacia/efeitos dos fármacos , Polissacarídeos Bacterianos/imunologia , Animais , Anticorpos Antibacterianos/administração & dosagem , Atividade Bactericida do Sangue , Complexo Burkholderia cepacia/imunologia , Modelos Animais de Doenças , Feminino , Imunoterapia/métodos , Camundongos , Fagocitose
2.
Cell Microbiol ; 12(8): 1064-82, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20148898

RESUMO

Type III secretion systems deliver effector proteins from Gram-negative bacterial pathogens into host cells, where they disarm host defences, allowing the pathogens to establish infection. Although Yersinia pseudotuberculosis delivers its effector proteins, called Yops, into numerous cell types grown in culture, we show that during infection Y. pseudotuberculosis selectively targets Yops to professional phagocytes in Peyer's patches, mesenteric lymph nodes and spleen, although it colocalizes with B and T cells as well as professional phagocytes. Strikingly, in the absence of neutrophils, the number of cells with translocated Yops was significantly reduced although the bacterial loads were similar, indicating that Y. pseudotuberculosis did not arbitrarily deliver Yops to the available cells. Using isolated splenocytes, selective binding and selective targeting to professional phagocytes when bacteria were limiting was also observed, indicating that tissue architecture was not required for the tropism for professional phagocytes. In isolated splenocytes, YadA and Invasin increased the number of all cells types with translocated Yops, but professional phagocytes were still preferentially translocated with Yops in the absence of these adhesins. Together these results indicate that Y. pseudotuberculosis discriminates among cells it encounters during infection and selectively delivers Yops to phagocytes while refraining from translocation to other cell types.


Assuntos
Proteínas de Bactérias/metabolismo , Fagócitos/imunologia , Fagócitos/microbiologia , Fatores de Virulência/metabolismo , Yersiniose/imunologia , Yersinia pseudotuberculosis/imunologia , Yersinia pseudotuberculosis/patogenicidade , Animais , Linfonodos/imunologia , Linfonodos/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Nódulos Linfáticos Agregados/imunologia , Nódulos Linfáticos Agregados/microbiologia , Transporte Proteico , Baço/imunologia , Baço/microbiologia , Yersiniose/microbiologia
3.
J Immunol ; 181(7): 4965-75, 2008 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-18802100

RESUMO

In a murine model of acute fatal pneumonia, we previously showed that nasal immunization with a live-attenuated aroA deletant of Pseudomonas aeruginosa strain PAO1 elicited LPS serogroup-specific protection, indicating that opsonic Ab to the LPS O Ag was the most important immune effector. Because P. aeruginosa strain PA14 possesses additional virulence factors, we hypothesized that a live-attenuated vaccine based on PA14 might elicit a broader array of immune effectors. Thus, an aroA deletant of PA14, denoted PA14DeltaaroA, was constructed. PA14DeltaaroA-immunized mice were protected against lethal pneumonia caused not only by the parental strain but also by cytotoxic variants of the O Ag-heterologous P. aeruginosa strains PAO1 and PAO6a,d. Remarkably, serum from PA14DeltaaroA-immunized mice had very low levels of opsonic activity against strain PAO1 and could not passively transfer protection, suggesting that an antibody-independent mechanism was needed for the observed cross-serogroup protection. Compared with control mice, PA14DeltaaroA-immunized mice had more rapid recruitment of neutrophils to the airways early after challenge. T cells isolated from P. aeruginosa DeltaaroA-immunized mice proliferated and produced IL-17 in high quantities after coculture with gentamicin-killed P. aeruginosa. Six hours following challenge, PA14DeltaaroA-immunized mice had significantly higher levels of IL-17 in bronchoalveolar lavage fluid compared with unimmunized, Escherichia coli-immunized, or PAO1DeltaaroA-immunized mice. Antibody-mediated depletion of IL-17 before challenge or absence of the IL-17 receptor abrogated the PA14DeltaaroA vaccine's protection against lethal pneumonia. These data show that IL-17 plays a critical role in antibody-independent vaccine-induced protection against LPS-heterologous strains of P. aeruginosa in the lung.


Assuntos
Interleucina-17/fisiologia , Lipopolissacarídeos/imunologia , Pneumonia Bacteriana/prevenção & controle , Infecções por Pseudomonas/prevenção & controle , Vacinas contra Pseudomonas/imunologia , Pseudomonas aeruginosa/imunologia , Animais , Anticorpos Antibacterianos/biossíntese , Células Cultivadas , Feminino , Lipopolissacarídeos/classificação , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Knockout , Antígenos O/classificação , Antígenos O/genética , Antígenos O/imunologia , Pneumonia Bacteriana/imunologia , Pneumonia Bacteriana/microbiologia , Pneumonia Bacteriana/mortalidade , Infecções por Pseudomonas/imunologia , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/mortalidade , Vacinas contra Pseudomonas/administração & dosagem , Vacinas contra Pseudomonas/genética , Sorotipagem , Baço/citologia , Baço/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Auxiliares-Indutores/metabolismo , Linfócitos T Auxiliares-Indutores/microbiologia , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia
4.
mBio ; 2(3): e00092-11, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21610120

RESUMO

UNLABELLED: Streptococcus pneumoniae (pneumococcus) is a frequent colonizer of the nasopharynx and one of the leading causative agents of otitis media, pneumonia, and meningitis. The current literature asserts that S. pneumoniae is transmitted person to person via respiratory droplets; however, environmental surfaces (fomites) have been linked to the spread of other respiratory pathogens. Desiccation tolerance has been to shown to be essential for long-term survival on dry surfaces. This study investigated the survival and infectivity of S. pneumoniae following desiccation under ambient conditions. We recovered viable bacteria after all desiccation periods tested, ranging from 1 h to 4 weeks. Experiments conducted under nutrient limitation indicate that desiccation is a condition separate from starvation. Desiccation of an acapsular mutant and 15 different clinical isolates shows that S. pneumoniae desiccation tolerance is independent of the polysaccharide capsule and is a species-wide phenomenon, respectively. Experiments demonstrating that nondesiccated and desiccated S. pneumoniae strains colonize the nasopharynx at comparable levels, combined with their ability to survive long-term desiccation, suggest that fomites may serve as alternate sources of pneumococcal infection. IMPORTANCE: Even with the advent of multivalent capsular polysaccharide conjugate vaccines, S. pneumoniae continues to be a major cause of morbidity and mortality worldwide. Every year, there are approximately 7 million cases of pneumococcus-based otitis media in the United States alone, while pneumococcal invasive diseases are responsible for more than 1 million deaths globally. It is believed that the human upper respiratory tract is the sole niche of S. pneumoniae and, thus, that spread occurs via close contact with an infected individual. In this study, we characterized the desiccation tolerance of S. pneumoniae and found that it can survive for many weeks postdehydration and retain infectivity. Our results suggest that desiccation tolerance is an inherent trait of this genetically variable species and that fomites may be a source of transmission.


Assuntos
Viabilidade Microbiana , Streptococcus pneumoniae/fisiologia , Streptococcus pneumoniae/patogenicidade , Animais , Portador Sadio/microbiologia , Contagem de Colônia Microbiana , Dessecação , Modelos Animais de Doenças , Fômites/microbiologia , Camundongos , Infecções Pneumocócicas/microbiologia , Fatores de Tempo , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA