Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
JCO Precis Oncol ; 3: 1-20, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35100718

RESUMO

PURPOSE: Telomere maintenance is a hallmark of high-risk neuroblastoma; however, the contribution of telomerase and alternative lengthening of telomeres (ALT) to clinical phenotypes has remained unclear. We aimed to determine the clinical relevance of telomerase activation versus ALT as biomarkers in pretreatment neuroblastoma and to assess the potential value of telomerase as a therapeutic target. MATERIALS AND METHODS: The genomic status of TERT and MYCN was assessed in 457 pretreatment neuroblastomas by fluorescence in situ hybridization. ALT was examined in 273 of 457 tumors by detection of ALT-associated promyelocytic leukemia nuclear bodies, and TERT expression was determined by microarrays in 223 of these. Cytotoxic effects of telomerase-interacting compounds were analyzed in neuroblastoma cell lines in vitro and in vivo. RESULTS: We detected TERT rearrangements in 46 of 457 cases (10.1%), MYCN amplification in 93 of 457 cases (20.4%), and elevated TERT expression in tumors lacking TERT or MYCN alterations in 10 of 223 cases (4.5%). ALT activation was found in 49 of 273 cases (17.9%). All these alterations occurred almost mutually exclusively and were associated with unfavorable prognostic variables and adverse outcome. The presence of activated telomerase (ie, TERT rearrangements, MYCN amplification, or high TERT expression without these alterations) was associated with poorest overall survival and was an independent prognostic marker in multivariable analyses. We also found that the telomerase-interacting compound 6-thio-2'-deoxyguanosine effectively inhibited viability and proliferation of neuroblastoma cells bearing activated telomerase. Similarly, tumor growth was strongly impaired upon 6-thio-2'-deoxyguanosine treatment in telomerase-positive neuroblastoma xenografts in mice. CONCLUSION: Our data suggest telomerase activation and ALT define distinct neuroblastoma subgroups with adverse outcome and that telomerase may represent a promising therapeutic target in many high-risk neuroblastomas.

2.
Science ; 362(6419): 1165-1170, 2018 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-30523111

RESUMO

Neuroblastoma is a pediatric tumor of the sympathetic nervous system. Its clinical course ranges from spontaneous tumor regression to fatal progression. To investigate the molecular features of the divergent tumor subtypes, we performed genome sequencing on 416 pretreatment neuroblastomas and assessed telomere maintenance mechanisms in 208 of these tumors. We found that patients whose tumors lacked telomere maintenance mechanisms had an excellent prognosis, whereas the prognosis of patients whose tumors harbored telomere maintenance mechanisms was substantially worse. Survival rates were lowest for neuroblastoma patients whose tumors harbored telomere maintenance mechanisms in combination with RAS and/or p53 pathway mutations. Spontaneous tumor regression occurred both in the presence and absence of these mutations in patients with telomere maintenance-negative tumors. On the basis of these data, we propose a mechanistic classification of neuroblastoma that may benefit the clinical management of patients.


Assuntos
Neuroblastoma/classificação , Neuroblastoma/mortalidade , Homeostase do Telômero/genética , Criança , Pré-Escolar , Intervalo Livre de Doença , Exoma/genética , Genoma Humano , Humanos , Redes e Vias Metabólicas/genética , Mutação , Neuroblastoma/tratamento farmacológico , Neuroblastoma/genética , Prognóstico , Análise de Sequência de DNA , Proteína Supressora de Tumor p53/genética , Proteínas ras/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA