Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 162
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 186(10): 2144-2159.e22, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37172565

RESUMO

Bats are special in their ability to live long and host many emerging viruses. Our previous studies showed that bats have altered inflammasomes, which are central players in aging and infection. However, the role of inflammasome signaling in combating inflammatory diseases remains poorly understood. Here, we report bat ASC2 as a potent negative regulator of inflammasomes. Bat ASC2 is highly expressed at both the mRNA and protein levels and is highly potent in inhibiting human and mouse inflammasomes. Transgenic expression of bat ASC2 in mice reduced the severity of peritonitis induced by gout crystals and ASC particles. Bat ASC2 also dampened inflammation induced by multiple viruses and reduced mortality of influenza A virus infection. Importantly, it also suppressed SARS-CoV-2-immune-complex-induced inflammasome activation. Four key residues were identified for the gain of function of bat ASC2. Our results demonstrate that bat ASC2 is an important negative regulator of inflammasomes with therapeutic potential in inflammatory diseases.


Assuntos
Proteínas Reguladoras de Apoptose , Quirópteros , Inflamassomos , Ribonucleoproteínas , Viroses , Animais , Humanos , Camundongos , Proteínas Reguladoras de Apoptose/metabolismo , Quirópteros/imunologia , COVID-19 , Inflamassomos/imunologia , Ribonucleoproteínas/metabolismo , SARS-CoV-2 , Viroses/imunologia , Fenômenos Fisiológicos Virais
2.
Nature ; 584(7821): 457-462, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32668444

RESUMO

Memory T cells induced by previous pathogens can shape susceptibility to, and the clinical severity of, subsequent infections1. Little is known about the presence in humans of pre-existing memory T cells that have the potential to recognize severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here we studied T cell responses against the structural (nucleocapsid (N) protein) and non-structural (NSP7 and NSP13 of ORF1) regions of SARS-CoV-2 in individuals convalescing from coronavirus disease 2019 (COVID-19) (n = 36). In all of these individuals, we found CD4 and CD8 T cells that recognized multiple regions of the N protein. Next, we showed that patients (n = 23) who recovered from SARS (the disease associated with SARS-CoV infection) possess long-lasting memory T cells that are reactive to the N protein of SARS-CoV 17 years after the outbreak of SARS in 2003; these T cells displayed robust cross-reactivity to the N protein of SARS-CoV-2. We also detected SARS-CoV-2-specific T cells in individuals with no history of SARS, COVID-19 or contact with individuals who had SARS and/or COVID-19 (n = 37). SARS-CoV-2-specific T cells in uninfected donors exhibited a different pattern of immunodominance, and frequently targeted NSP7 and NSP13 as well as the N protein. Epitope characterization of NSP7-specific T cells showed the recognition of protein fragments that are conserved among animal betacoronaviruses but have low homology to 'common cold' human-associated coronaviruses. Thus, infection with betacoronaviruses induces multi-specific and long-lasting T cell immunity against the structural N protein. Understanding how pre-existing N- and ORF1-specific T cells that are present in the general population affect the susceptibility to and pathogenesis of SARS-CoV-2 infection is important for the management of the current COVID-19 pandemic.


Assuntos
Betacoronavirus/imunologia , Infecções por Coronavirus/imunologia , Pneumonia Viral/imunologia , Síndrome Respiratória Aguda Grave/imunologia , Linfócitos T/imunologia , Betacoronavirus/química , COVID-19 , Estudos de Casos e Controles , Infecções por Coronavirus/virologia , Proteínas do Nucleocapsídeo de Coronavírus , Reações Cruzadas/imunologia , Humanos , Epitopos Imunodominantes/imunologia , Proteínas do Nucleocapsídeo/química , Proteínas do Nucleocapsídeo/imunologia , Pandemias , Fosfoproteínas , Pneumonia Viral/virologia , SARS-CoV-2
3.
Proc Natl Acad Sci U S A ; 120(24): e2302854120, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37276396

RESUMO

Stomata are pores found in the epidermis of stems or leaves that modulate both plant gas exchange and water/nutrient uptake. The development and function of plant stomata are regulated by a diverse range of environmental cues. However, how carbohydrate status in preexisting leaves might determine systemic stomatal formation within newly developing leaves has remained obscure. The glucose (Glc) sensor HEXOKINASE1 (HXK1) has been reported to decrease the stability of an ethylene/Glc signaling transcriptional regulator, EIN3 (ETHYLENE INSENSITIVE3). EIN3 in turn directly represses the expression of SUC2 (sucrose transporter 2), encoding a master transporter of sucrose (Suc). Further, KIN10, a nuclear regulator involved in energy homeostasis, has been reported to repress the transcription factor SPCH (SPEECHLESS), a master regulator of stomatal development. Here, we demonstrate that the Glc status of preexisting leaves determines systemic stomatal development within newly developing leaves by the HXK1-¦EIN3-¦SUC2 module. Further, increasing Glc levels in preexisting leaves results in a HXK1-dependent decrease of EIN3 and increase of SUC2, triggering the perception, amplification and relay of HXK1-dependent Glc signaling and thereby triggering Suc transport from mature to newly developing leaves. The HXK1-¦EIN3-¦SUC2 molecular module thereby drives systemic Suc transport from preexisting leaves to newly developing leaves. Subsequently, increasing Suc levels within newly developing leaves promotes stomatal formation through the established KIN10⟶ SPCH module. Our findings thus show how a carbohydrate signal in preexisting leaves is sensed, amplified and relayed to determine the extent of systemic stomatal development within newly developing leaves.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Açúcares/metabolismo , Folhas de Planta/metabolismo , Etilenos/metabolismo , Sacarose/metabolismo , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo
4.
Plant Physiol ; 195(3): 2309-2322, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38466216

RESUMO

Soil (or plant) water deficit accelerates plant reproduction. However, the underpinning molecular mechanisms remain unknown. By modulating cell division/number, ABSCISIC ACID-INSENSITIVE 5 (ABI5), a key bZIP (basic (region) leucine zippers) transcription factor, regulates both seed development and abiotic stress responses. The KIP-RELATED PROTEIN (KRP) cyclin-dependent kinases (CDKs) play an essential role in controlling cell division, and SHOOT MERISTEMLESS (STM) plays a key role in the specification of flower meristem identity. Here, our findings show that abscisic acid (ABA) signaling and/or metabolism in adjust reproductive outputs (such as rosette leaf number and open flower number) under water-deficient conditions in Arabidopsis (Arabidopsis thaliana) plants. Reproductive outputs increased under water-sufficient conditions but decreased under water-deficient conditions in the ABA signaling/metabolism mutants abscisic acid2-1 (aba2-1), aba2-11, abscisic acid insensitive3-1 (abi3-1), abi4-1, abi5-7, and abi5-8. Further, under water-deficient conditions, ABA induced-ABI5 directly bound to the promoter of KRP1, which encodes a CDK that plays an essential role in controlling cell division, and this binding subsequently activated KRP1 expression. In turn, KRP1 physically interacted with STM, which functions in the specification of flower meristem identity, promoting STM degradation. We further demonstrate that reproductive outputs are adjusted by the ABI5-KRP1-STM molecular module under water-deficient conditions. Together, our findings reveal the molecular mechanism by which ABA signaling and/or metabolism regulate reproductive development under water-deficient conditions. These findings provide insights that may help guide crop yield improvement under water deficiency.


Assuntos
Ácido Abscísico , Proteínas de Arabidopsis , Arabidopsis , Flores , Regulação da Expressão Gênica de Plantas , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Ácido Abscísico/metabolismo , Flores/genética , Flores/crescimento & desenvolvimento , Flores/fisiologia , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Transdução de Sinais , Meristema/genética , Meristema/crescimento & desenvolvimento , Meristema/metabolismo , Reprodução , Mutação/genética , Quinases Ciclina-Dependentes/metabolismo , Quinases Ciclina-Dependentes/genética , Proteínas de Homeodomínio
5.
N Engl J Med ; 385(15): 1401-1406, 2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34407341

RESUMO

Emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern pose a challenge to the effectiveness of current vaccines. A vaccine that could prevent infection caused by known and future variants of concern as well as infection with pre-emergent sarbecoviruses (i.e., those with potential to cause disease in humans in the future) would be ideal. Here we provide data showing that potent cross-clade pan-sarbecovirus neutralizing antibodies are induced in survivors of severe acute respiratory syndrome coronavirus 1 (SARS-CoV-1) infection who have been immunized with the BNT162b2 messenger RNA (mRNA) vaccine. The antibodies are high-level and broad-spectrum, capable of neutralizing not only known variants of concern but also sarbecoviruses that have been identified in bats and pangolins and that have the potential to cause human infection. These findings show the feasibility of a pan-sarbecovirus vaccine strategy. (Funded by the Singapore National Research Foundation and National Medical Research Council.).


Assuntos
Anticorpos Antivirais/sangue , Anticorpos Amplamente Neutralizantes/sangue , Vacinas contra COVID-19/imunologia , COVID-19/imunologia , SARS-CoV-2/imunologia , Síndrome Respiratória Aguda Grave/imunologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/imunologia , Linfócitos B , Vacina BNT162 , Humanos , Imunogenicidade da Vacina , Filogenia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , SARS-CoV-2/genética , Sobreviventes
6.
Small ; : e2402525, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38801302

RESUMO

Persistent organic pollutants (POPs), including xenoestrogens and polyfluoroalkyl substances (PFAS), demand urgent global intervention. Fenton oxidation, catalyzed by iron ions, offers a cost-effective means to degrade POPs. However, numerous challenges like acid dependency, catalyst loss, and toxic waste generation hinder practical application. Efforts to create long-lasting heterogeneous Fenton catalysts, capable of simultaneously eliminating acid requirements, sustaining rapid kinetics, and retaining iron efficiently, have been unsuccessful. This study introduces an innovative heterogeneous zwitterionic hydrogel-based Fenton catalyst, surmounting these challenges in a cost-effective and scalable manner. The hydrogel, hosting individually complexed iron ions in a porous scaffold, exhibits substantial effective surface area and kinetics akin to homogeneous Fenton reactions. Complexed ions within the hydrogel can initiate Fenton degradation at neutral pH, eliminating acid additions. Simultaneously, the zwitterionic hydrogel scaffold, chosen for its resistance to Fenton oxidation, forms strong bonds with iron ions, enabling prolonged reuse. Diverging from existing designs, the catalyst proves compatible with UV-Fenton processes and achieves rapid self-regeneration during operation, offering a promising solution for the efficient and scalable degradation of POPs. The study underscores the efficacy of the approach by demonstrating the swift degradation of three significant contaminants-xenoestrogens, pesticides, and PFAS-across multiple cycles at trace concentrations.

7.
Plant Physiol ; 194(1): 391-407, 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-37738410

RESUMO

Exposure of dark-grown etiolated seedlings to light triggers the transition from skotomorphogenesis/etiolation to photomorphogenesis/de-etiolation. In the life cycle of plants, de-etiolation is essential for seedling development and plant survival. The mobilization of soluble sugars (glucose [Glc], sucrose, and fructose) derived from stored carbohydrates and lipids to target organs, including cotyledons, hypocotyls, and radicles, underpins de-etiolation. Therefore, dynamic carbohydrate biochemistry is a key feature of this phase transition. However, the molecular mechanisms coordinating carbohydrate status with the cellular machinery orchestrating de-etiolation remain largely opaque. Here, we show that the Glc sensor HEXOKINASE 1 (HXK1) interacts with GROWTH REGULATOR FACTOR5 (GRF5), a transcriptional activator and key plant growth regulator, in Arabidopsis (Arabidopsis thaliana). Subsequently, GRF5 directly binds to the promoter of phytochrome A (phyA), encoding a far-red light (FR) sensor/cotyledon greening inhibitor. We demonstrate that the status of Glc within dark-grown etiolated cotyledons determines the de-etiolation of seedlings when exposed to light irradiation by the HXK1-GRF5-phyA molecular module. Thus, following seed germination, accumulating Glc within dark-grown etiolated cotyledons stimulates a HXK1-dependent increase of GRF5 and an associated decrease of phyA, triggering the perception, amplification, and relay of HXK1-dependent Glc signaling, thereby facilitating the de-etiolation of seedlings following light irradiation. Our findings, therefore, establish how cotyledon carbohydrate signaling under subterranean darkness is sensed, amplified, and relayed, determining the phase transition from skotomorphogenesis to photomorphogenesis on exposure to light irradiation.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Plântula/metabolismo , Cotilédone/metabolismo , Estiolamento , Glucose/metabolismo , Luz , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fitocromo A/metabolismo , Regulação da Expressão Gênica de Plantas
8.
J Craniofac Surg ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38847498

RESUMO

OBJECTIVE: Flexible nasopharyngoscopy is a common procedure for evaluating the hypopharynx. The modified Killian method has been reported to enhance visualization during this examination. The aim of this study was to compare the visibility of the hypopharynx using conventional and modified Killian methods. METHODS: A systematic literature search was conducted in PubMed, EMBASE, and the Cochrane Library to identify studies that compared the visibility of the hypopharynx using the 2 methods. Comprehensive meta-analysis software was used to analyze the data. Studies that evaluated the overall hypopharyngeal visibility score and the visibility of the pyriform sinus, postcricoid region, and upper esophageal sphincter were included. RESULTS: Five studies were included in the analysis. The pooled results showed that the modified Killian method significantly improved overall visibility score (SMD=1.09; 95% CI, 0.39-1.80) and complete visibility of the pyriform sinus, postcricoid region, and upper esophageal sphincter (log OR=3.83; 95% CI, 2.30-5.35; log OR=4.20; 95% CI, 3.21-5.19; log OR=3.38; 95% CI, 1.68-5.08). CONCLUSION: The modified Killian method is a valuable technique for improving hypopharyngeal visibility during flexible nasopharyngoscopy. This technique can enhance the detection of potential abnormalities or lesions, leading to better diagnostic accuracy and improved patient outcomes.

9.
Sensors (Basel) ; 24(4)2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38400449

RESUMO

Measuring soot concentration in a burner flame is essential for an in-depth understanding of the formation mechanism and to abate its generation. This paper presents an improved emission spectroscopy (ES) method that uses an adaptive particle swarm optimization (APSO) algorithm for measuring the concentration of soot in methane burner flames. Experimental tests were conducted on a laboratory-scale facility under a methane flowrate ranging between 0.6 and 0.9 L/min. A comparison analysis of the soot concentration measured by the ES method, the improved emission spectroscopy (IES) method, and the thermocouple particle density (TPD) method (as a reference) was conducted. The ES method obtained a maximum absolute deviation of 0.84 ppm from the average soot concentration at the three measurement points compared to the TPD method, while that of the IES was only 0.09 ppm. The experimental results demonstrate that the proposed IES method can obtain a more accurate soot concentration of diffusion flames.

10.
Rheumatology (Oxford) ; 62(9): 3101-3109, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36661304

RESUMO

OBJECTIVES: To evaluate the humoral immunogenicity for 6 months after the two-dose coronavirus disease 2019 (COVID-19) mRNA vaccination in adolescents and young adults (AYAs) with childhood-onset rheumatic diseases (cRDs). METHODS: This monocentric observational study was conducted between August 2020 and March 2022. Humoral immunogenicity was assessed at 2-3 weeks after first vaccine dose and 1, 3 and 6 months after the second dose by the cPass™ severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) neutralization antibody (nAb) assay. An inhibition signal of ≥30% defined the seroconversion threshold and the readings were calibrated against the World Health Organization International Standard for SARS-CoV-2 antibodies. RESULTS. ONE HUNDRED AND SIXTY-NINE: AYAs with cRDs were recruited [median age 16.8 years (interquartile range, IQR 14.7-19.5), 52% female, 72% Chinese]. JIA (58%) and SLE (18%) comprised the major diagnoses. After second vaccine dose, 99% seroconverted with a median nAb titre of 1779.8 IU/ml (IQR 882.8-2541.9), declining to 935.6 IU/ml (IQR 261.0-1514.9) and 683.2 IU/ml (IQR 163.5-1400.5) at the 3- and 6-month timepoints, respectively. The diagnosis of JIA [odds ratio (OR) 10.1, 95% CI 1.8-58.4, P = 0.010] and treatment with anti-TNF-α (aTNF) (OR 10.1, 95% CI 1.5-70.0, P = 0.019) were independently associated with a >50% drop of nAb titres at 6 months. Withholding MTX or MMF did not affect the vaccine response or decay rate. The COVID-19 breakthrough infection was estimated at 18.2 cases/1000 patient-months with no clinical risk factors identified. CONCLUSION: Over half of AYAs with cRDs had a significant drop in SARS-CoV-2 nAb at 6-month despite an initial robust humoral response. JIA and aTNF usage are predictors of a faster decay rate.


Assuntos
COVID-19 , Doenças Reumáticas , Criança , Adolescente , Feminino , Humanos , Adulto Jovem , Masculino , Vacinas contra COVID-19 , COVID-19/epidemiologia , COVID-19/prevenção & controle , Imunogenicidade da Vacina , Inibidores do Fator de Necrose Tumoral , SARS-CoV-2 , Anticorpos Antivirais , Doenças Reumáticas/tratamento farmacológico
11.
BMC Cancer ; 23(1): 126, 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36750965

RESUMO

BACKGROUND: The prognostic significance of the relapse interval in patients with resected oral cavity squamous cell carcinoma (OCSCC) is a matter of ongoing debate. In this large-scale, registry-based, nationwide study, we examined whether the time interval between surgery and the first disease relapse may affect survival outcomes in Taiwanese patients with OCSCC. METHODS: Data made available by the Taiwan Health Promotion Administration as of 2004 were obtained. The study cohort consisted of patients who were included in the registry between 2011 and 2017. Disease staging was performed according to the American Joint Committee on Cancer (AJCC) Staging Manual, Eight Edition. We retrospectively reviewed the clinical records of 13,789 patients with OCSCC who received surgical treatment. A total of 2327 (16.9%) patients experienced a first disease relapse. The optimal cutoff value for the relapse interval was 330 days when both 5-year disease-specific survival (DSS) and overall survival (OS) (≤ 330/>330 days, n = 1630/697) were taken into account. In addition, we undertook a propensity score (PS)-matched analysis of patients (n = 654 each) with early (≤ 330 days) versus late (> 330 days) relapse. RESULTS: The median follow-up time in the entire study cohort was 702 days (433 and 2001 days in the early and late relapse groups, respectively). Compared with patients who experienced late relapse, those with early relapse showed a higher prevalence of the following adverse prognostic factors: pT4, pN3, pStage IV, poor differentiation, depth of invasion ≥ 10 mm, and extra-nodal extension. Multivariable analysis revealed that early relapse was an independent adverse prognostic factor for both 5-year DSS and OS (average hazard ratios [AHRs]: 3.24 and 3.91, respectively). In the PS-matched cohort, patients who experienced early relapse showed less favorable 5-year DSS: 58% versus 30%, p < 0.0001 (AHR: 3.10 [2.69 - 3.57]) and OS: 49% versus 22%, p < 0.0001 (AHR: 3.32 [2.89 - 3.81]). CONCLUSION: After adjustment for potential confounders and PS matching, early relapse was an adverse prognostic factor for survival outcomes in patients with OCSCC. Our findings may have significant implications for risk stratification.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Prognóstico , Estudos Retrospectivos , Estadiamento de Neoplasias , Recidiva Local de Neoplasia/patologia , Carcinoma de Células Escamosas/patologia , Neoplasias Bucais/patologia , Neoplasias de Cabeça e Pescoço/patologia , Sistema de Registros
12.
Rheumatology (Oxford) ; 61(11): 4472-4481, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-35199166

RESUMO

OBJECTIVES: Immunogenicity to the SARS-CoV-2 mRNA vaccines in adolescents and young adults (AYA) with childhood-onset rheumatic diseases (cRD) is unknown. We aimed to evaluate the humoral immunogenicity and safety of the vaccines in our AYA with cRD. METHODS: A monocentric observational study with 159 AYA (50.3% female and 70.4% Chinese). Humoral immunogenicity was assessed at 2-3 and 4-6 weeks following first and second vaccination by cPass™ SARS-CoV-2 Neutralization Antibody Assay. Inhibition signal of ≥30% defined the cut-off for positive detection of the SARS-CoV-2 neutralizing antibodies. Vaccine safety and disease activity were assessed within 6 weeks after second vaccination. RESULTS: A total of 64.9% and 99.1% of 159 patients (median age: 16.9, IQR: 14.7-19.5) mounted positive SARS-CoV-2 neutralizing responses after first and second vaccination, respectively. Most patients (89.8%) had ≥90% inhibition signal after second vaccination. Methotrexate and mycophenolate mofetil increased the risk associated with negative cPass neutralization responses following the first vaccination. Holding both medications after each vaccination did not affect immunogenicity. There was no symptomatic COVID-19 infection. Local reaction remained the most common (23.3-25.2%) adverse event, without serious complication. Two and seven patients flared following the first and second vaccination, respectively. Subgroup analyses of the 12-18-year-old cohort did not show any differences in vaccine efficacy, predictors of poor response and general safety, but higher proportion of disease flares. CONCLUSIONS: SARS-CoV-2 mRNA vaccines were efficacious after the two-dose regimen in almost all AYA with cRD without serious adverse event. The rate of disease flare observed is 4.4% after the second mRNA vaccine dose.


Assuntos
COVID-19 , Doenças Reumáticas , Vacinas Virais , Criança , Humanos , Adulto Jovem , Adolescente , Feminino , Masculino , Anticorpos Neutralizantes , Testes de Neutralização , SARS-CoV-2 , Vacinas Virais/efeitos adversos , Vacinas de Produtos Inativados , Anticorpos Antivirais , Vacinação , Doenças Reumáticas/induzido quimicamente , RNA Mensageiro , Imunogenicidade da Vacina , Vacinas de mRNA
13.
Brain Behav Immun ; 106: 11-20, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35914698

RESUMO

Schizophrenia (SZ) is influenced by genetic and environmental factors, and associated with chronic neuroinflammation. If the symptoms express after adolescence, environmental impacts are more substantial, and the disease is defined as adult-onset schizophrenia (AOS). Effects of environmental factors on antibody responses such as Escherichia coli (E. coli) to immunoglobulin G (IgG) and immunoglobulin M (IgM) might increase the severity of symptoms in SZ via the gut-brain axis. The purpose of this study is to reveal antibody profiles of SZ against bacterial protein antigens. We analyzed the IgG and IgM antibodies using E. coli proteome microarrays from 80 SZ patients and 40 healthy controls (HC). Using support vector machine to select panels of proteins differentiating between groups and conducted enrichment analysis for those proteins. We identified that the groL, pldA, yjjU, livG, and ftsE can classify IgGs in AOS vs HC achieved accuracy of 0.7. The protein yjjU, livG and ftsE can form the best combination panel to classify IgG in AOS vs HC with accuracy of 0.8. The enrichment results are highly related to ABC (ATP binding cassette) transporter in the protein domain and cellular component. We further found that the human ATP binding cassette subfamily b member 1 (ABCB1) autoantibody level in AOS is significantly higher than in HC. The findings suggest that AOS had different immunoglobulin production compared to early-onset schizophrenia (EOS) and HC. We also identified potential antibody biomarkers of AOS and found their antigens are enriched in ABC transporter related domains, including human ABCB1 protein.


Assuntos
Proteínas de Escherichia coli , Esquizofrenia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Trifosfato de Adenosina , Adolescente , Adulto , Proteínas de Bactérias/metabolismo , Escherichia coli , Proteínas de Escherichia coli/metabolismo , Humanos , Imunoglobulina G , Imunoglobulina M/metabolismo , Proteoma/metabolismo
14.
Virtual Real ; : 1-17, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36118174

RESUMO

Virtual reality (VR) applications could be beneficial for education, training, and treatment. However, VR may induce symptoms of simulator sickness (SS) such as difficulty focusing, difficulty concentrating, or dizziness that could impair autonomic nervous system function, affect mental workload, and worsen interventional outcomes. In the original randomized controlled trial, which explored the effectiveness of using a 360° VR video versus a two-dimensional VR video to learn history taking and physical examination skills, only the former group participants had SS. Therefore, 28 undergraduate medical students who participated in a 360° VR learning module were included in this post hoc study using a repeated measures design. Data of the Simulator Sickness Questionnaire (SSQ), heart rate variability (HRV) analysis, Task Load Index, and Mini-Clinical Evaluation Exercise were retrospectively reviewed and statistically analyzed. Ten (36%) participants had mild SS (total score > 0 and ≤ 20), and 18 (64%) had no SS symptom. Total SSQ score was positively related to the very low frequency (VLF) band power, physical demand subscale, and frustration subscale, and inversely related to physical examination score. Using multilevel modeling, the VLF power mediated the relationship between total SSQ score and physical examination score. Furthermore, frustration subscale moderated the mediating effects of the VLF power. Our results highlight the importance of documenting SS to evaluate a 360° VR training program. Furthermore, the combination of HRV analysis with mental workload measurement and outcome assessments provided the important clinical value in evaluating the effects of SS in VR applications in medical education.

15.
Clin Infect Dis ; 73(9): e2932-e2942, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-32856707

RESUMO

BACKGROUND: Key knowledge gaps remain in the understanding of viral dynamics and immune response of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection. METHODS: We evaluated these characteristics and established their association with clinical severity in a prospective observational cohort study of 100 patients with PCR-confirmed SARS-CoV-2 infection (mean age, 46 years; 56% male; 38% with comorbidities). Respiratory samples (n = 74) were collected for viral culture, serum samples for measurement of IgM/IgG levels (n = 30), and plasma samples for levels of inflammatory cytokines and chemokines (n = 81). Disease severity was correlated with results from viral culture, serologic testing, and immune markers. RESULTS: Fifty-seven (57%) patients developed viral pneumonia, of whom 20 (20%) required supplemental oxygen, including 12 (12%) with invasive mechanical ventilation. Viral culture from respiratory samples was positive for 19 of 74 patients (26%). No virus was isolated when the PCR cycle threshold (Ct) value was >30 or >14 days after symptom onset. Seroconversion occurred at a median (IQR) of 12.5 (9-18) days for IgM and 15.0 (12-20) days for IgG; 54/62 patients (87.1%) sampled at day 14 or later seroconverted. Severe infections were associated with earlier seroconversion and higher peak IgM and IgG levels. Levels of IP-10, HGF, IL-6, MCP-1, MIP-1α, IL-12p70, IL-18, VEGF-A, PDGF-BB, and IL-1RA significantly correlated with disease severity. CONCLUSIONS: We found virus viability was associated with lower PCR Ct value in early illness. A stronger antibody response was associated with disease severity. The overactive proinflammatory immune signatures offer targets for host-directed immunotherapy, which should be evaluated in randomized controlled trials.


Assuntos
COVID-19 , Pneumonia Viral , Anticorpos Antivirais , Feminino , Humanos , Imunoglobulina M , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , SARS-CoV-2 , Soroconversão
16.
Artigo em Inglês | MEDLINE | ID: mdl-34542394

RESUMO

A Gram-stain-positive, non-motile and short rod-shaped actinobacterium, designated strain LNNU 22110T, was isolated from the rhizosphere soil of the halophyte Suaeda aralocaspica (Bunge) Freitag and Schütze, which collected in Xinjiang, north-west China. Growth occurred at 10-45 °C, pH 6.0-10.0 and in the presence of 0-11 % NaCl (w/v). Based on the results of 16S rRNA gene sequence phylogenetic analyses, strain LNNU 22110T belonged to the genus Ruania and had 97.5 and 95.5 % sequence similarity to Ruania alba KCTC 19413T and Ruania albidiflava CGMCC 4.3142T, respectively. The digital DNA-DNA hybridization relatedness values between strain LNNU 22110T and R. alba KCTC 19413T and R. albidiflava CGMCC 4.3142T were 23.2 and 19.9 %, respectively. The highest average nucleotide identity value between strain LNNU 22110T and its closest related strain (R. alba KCTC 19413T) was 80.2 %, much lower than the species delineation threshold of 95-96 %. The genome of strain LNNU 22110T was 4.4 Mb, with a genomic DNA G+C content of 68.4 mol%. The diagnostic diamino acids in the peptidoglycan layer of strain LNNU 22110T were lysine, alanine, glycine, glutamic acid and aspartic acid. The predominant menaquinone was MK-8(H4). The major fatty acid (>10 %) was anteiso-C15 : 0. The polar lipid profile of strain LNNU 22110T included diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, diacylated phosphatidyl dimannoside, one unidentified glycolipid and two unidentified phospholipids. According to the phenotypic, phylogenetic and chemotaxonomic results, strain LNNU 22110T is considered to represent a novel species of the genus Ruania, for which the name Ruania rhizosphaerae sp. nov. is proposed. The type strain is LNNU 22110T (=KCTC 39807T=CGMCC 1.17105T).


Assuntos
Chenopodiaceae , Rizosfera , Actinobacteria , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Fosfolipídeos , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Microbiologia do Solo
17.
Cell Mol Life Sci ; 77(8): 1607-1622, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31352533

RESUMO

Natural reservoir hosts can sustain infection of pathogens without succumbing to overt disease. Multiple bat species host a plethora of viruses, pathogenic to other mammals, without clinical symptoms. Here, we detail infection of bat primary cells, immune cells, and cell lines with Dengue virus. While antibodies and viral RNA were previously detected in wild bats, their ability to sustain infection is not conclusive. Old-world fruitbat cells can be infected, producing high titres of virus with limited cellular responses. In addition, there is minimal interferon (IFN) response in cells infected with MOIs leading to dengue production. The ability to support in vitro replication/production raises the possibility of bats as a transient host in the life cycle of dengue or similar flaviviruses. New antibody serology evidence from Asia/Pacific highlights the previous exposure and raises awareness that bats may be involved in flavivirus dynamics and infection of other hosts.


Assuntos
Quirópteros/virologia , Vírus da Dengue/fisiologia , Dengue/veterinária , Animais , Australásia/epidemiologia , Linhagem Celular , Quirópteros/imunologia , Dengue/epidemiologia , Dengue/imunologia , Vírus da Dengue/imunologia , Interações Hospedeiro-Patógeno , Imunidade Inata , Malásia/epidemiologia , Internalização do Vírus
18.
Langmuir ; 36(6): 1523-1529, 2020 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-31995982

RESUMO

Hollow nanostructures of metal sulfides have gained tremendous attention in catalysis, biomedicine, and energy storage and conversion owing to their intriguing structural features and fascinating physicochemical properties. Here, we reported a hard template-engaged cation exchange method to fabricate a family of binary or ternary metal sulfide (CuS, Ag2S, Bi2S3, CuxBi1-xS, ZnxCo1-xS, ZnxCd1-xS, ZnxNi1-xS, and ZnxMn1-xS) hollow microspheres via adjusting the reaction kinetic parameters including solvent and temperature in the presence of unique ZnS composite microspheres. Particularly, the shell layer thickness of metal sulfide hollow microspheres could be modulated by manipulating the reaction temperature during the cation exchanging procedure. Meanwhile, the desired elementary composition of ternary metal sulfide hollow microspheres could be achieved by varying the mole ratio and species of the metal source. This synthetic strategy could be extended to rationally design and construct other metal sulfide hollow nanostructures and provide a deep insight into the nucleation and growth process of the metal sulfide hollow microspheres with well-controlled composition and microstructures.

19.
Chem Rec ; 20(8): 882-892, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32319734

RESUMO

In this mini-review, we highlighted the recent progresses in the controlled synthesis of metal sulfides hollow nanostructures via hard template technique. After a brief introduction about the formation mechanism of the inorganic hollow nanostructures via hard template technique, the discussions primarily focused on the emerging development of metal sulfides hollow nanostructures. Various synthetic strategies were summarized concerning the use of the hard template engaged strategies to fabricate various metal sulfides hollow nanostructures, such as hydrothermal method, solvothermal method, ion-exchange, sulfidation or calcination etc. Finally, the perspectives and summaries have been presented to demonstrate that a facile synthetic technique would be widely used to fabricate metal sulfides hollow nanostructures with multi-shells and components.

20.
Nanotechnology ; 31(46): 465102, 2020 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-32857735

RESUMO

The biological effects of nanoparticles are of great importance for the in-depth understanding of safety issues in biomedical applications. Induction of autophagy is a cellular response after nanoparticle exposure. Bismuth sulfide nanoparticles (Bi2S3 NPs) are often used as a CT contrast agent because of their excellent photoelectric conversion ability. Yet there has been no previous detailed study other than a cell toxicity assessment. In this study, three types of Bi2S3 NPs with different shapes (Bi2S3 nano rods (BSNR), hollow microsphere Bi2S3 NPs (BSHS) and urchin-like hollow microsphere Bi2S3 NPs (ULBSHS)) were used to evaluatecytotoxicity, autophagy induction, cell migration and invasion in human hepatocellular carcinoma cells (HepG2). Results showed that all three Bi2S3 NPs lead to blockage in autophagic flux, causing p62 protein accumulation. The cell death caused by these Bi2S3 NPs is proved to be autophagy related, rather than related to apoptosis. Moreover, Bi2S3 NPs can reduce the migration and invasion in HepG2 cells in an autophagy-dependent manner. ULBSHS is the most cytotoxic among three Bi2S3 NPs and has the best tumor metastasis suppression. These results demonstrated that, even with relatively low toxicity of Bi2S3 NPs, autophagy blockage may still substantially influence cell fate and thus significantly impact their biomedical applications, and that surface topography is a key factor regulating their biological response.


Assuntos
Autofagia/efeitos dos fármacos , Bismuto/efeitos adversos , Movimento Celular/efeitos dos fármacos , Citotoxinas/efeitos adversos , Nanopartículas/efeitos adversos , Sulfetos/efeitos adversos , Bismuto/química , Bismuto/toxicidade , Citotoxinas/química , Citotoxinas/toxicidade , Células Hep G2 , Humanos , Nanopartículas/química , Nanopartículas/toxicidade , Sulfetos/química , Sulfetos/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA