Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Cardiology ; : 1-19, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38648752

RESUMO

INTRODUCTION: Heart failure (HF) is a major global public health concern. The application of machine learning (ML) to identify individuals at high risk and enable early intervention is a promising approach for improving HF prognosis. We aim to systematically evaluate the performance and value of ML models for predicting HF prognosis. METHODS: PubMed, Web of Science, Scopus, and Embase online databases were searched up to April 30, 2023, to identify studies on the use of ML models to predict HF prognosis. HF prognosis primarily encompasses readmission and mortality. The meta-analysis was conducted by MedCalc software. Subgroup analyses include grouping based on types of ML models, time intervals, sample sizes, the number of predictive variables, validation methods, whether to conduct hyperparameter optimization and calibration, data set partitioning methods. RESULTS: A total of 31 studies were included. The most common ML models were random forest, boosting, support vector machine, neural network. The area under the receiver operating characteristic curve (AUC) for predicting HF readmission was 0.675 (95% CI: 0.651-0.699, p < 0.001), and the AUC for predicting HF mortality was 0.790 (95% CI: 0.765-0.816, p < 0.001). Subgroup analyses revealed that models with the prediction time interval of 1 year, sample sizes ≥10,000, the number of predictive variables ≥100, external validation, hyperparameter tuning, calibration adjustment, and data set partitioning using 10-fold cross-validation exhibited favorable performance within their respective subgroups. CONCLUSION: The performance of ML models in predicting HF readmission is relatively poor, while its performance in predicting HF mortality is moderate. The quality of the relevant studies is generally low, it is essential to enhance the predictive capabilities of ML models through targeted improvements in practical applications.

2.
J Environ Sci (China) ; 117: 105-118, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35725063

RESUMO

Ultraviolet (UV)/monochloramine (NH2Cl) as an advanced oxidation process was firstly applied for Aspergillus spores inactivation. This study aims to: i) clarify the inactivation and photoreactivation characteristics of UV/NH2Cl process, ii) compared with UV/Cl2 in inactivation efficiency, photoreactivation and energy consumption. The results illustrated that UV/NH2Cl showed better inactivation efficiency than that of UV alone and UV/Cl2, and could effectively control the photoreactivation. For instance, the inactivation rates for Aspergillus flavus, Aspergillus niger and Aspergillus fumigatus in the processes of UV/NH2Cl (2.0 mg/L) was 0.034, 0.030 and 0.061 cm2/mJ, respectively, which were higher than that of UV alone (0.027, 0.026 and 0.024 cm2/mJ) and UV/Cl2 (0.023, 0.026 and 0.031 cm2/mJ). However, there was no synergistic effect for Aspergillus flavus and Aspergillus fumigatus. As for Aspergillus niger, the best synergistic effect can reach 1.86-log10. This may be due to their different resistance to disinfectants, which were related to the size, an outer layer of rodlets (hydrophobins) and pigments. After UV/NH2Cl inactivation, the degree of cell membrane damage and intracellular reactive oxygen species were higher than that of UV alone. UV/NH2Cl had the advantages of high inactivation efficiency and inhibition of photoreactivation, which provides a new entry point for the disinfection of waterborne fungi.


Assuntos
Cloro , Purificação da Água , Aspergillus , Cloraminas , Raios Ultravioleta , Purificação da Água/métodos
3.
J Environ Sci (China) ; 109: 148-160, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34607663

RESUMO

Filamentous fungi can enter drinking water supply systems in various ways, and exist in suspended or sessile states which threatens the health of individuals by posing a high risk of invasive infections. In this study, the biofilms formation kinetics of the three genera of fungal spores, Aspergillus niger (A. niger), Penicillium polonicum (P. polonicum) and Trichoderma harzianum (T. harzianum) isolated from the groundwater were reported, as well as the effects of water quality parameters were evaluated. In addition, the efficiency of low- concentrations of chlorine-based disinfectants (chlorine, chlorine dioxide and chloramine) on controlling the formation of fungal biofilms was assessed. The results showed that the biofilms formation of the three genera of fungi could be divided into the following four phases: induction, exponential, stationary and sloughing off. The optimum conditions for fungal biofilms formation were found to be neutral or weakly acidic at 28 °C with rich nutrition. In fact, A. niger, P. polonicum, and T. harzianum were not observed to form mature biofilms in actual groundwater within 120 hr. Carbon was found to have the maximum effect on the fungal biofilms formation in actual groundwater, followed by nitrogen and phosphorus. The resistance of fungal species to disinfectants during the formation of biofilms decreased in the order: A. niger > T. harzianum > P. polonicum. Chlorine dioxide was observed to control the biofilms formation with maximum efficiency, followed by chlorine and chloramine. Consequently, the results of this study will provide a beneficial understanding for the formation and control of fungal biofilms.


Assuntos
Desinfetantes , Água Subterrânea , Penicillium , Purificação da Água , Biofilmes , Cloro , Fungos , Humanos , Hypocreales , Cinética
4.
Bioprocess Biosyst Eng ; 43(10): 1859-1868, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32440713

RESUMO

Man-made organic matter acting as carbon source for oligotrophic aerobic denitrification has been studied extensively, while less attention has been paid to the actual organic matter derived from drinking water reservoir. In this study, the effect of extracellular organic matter (EOM) released from Microcystis aeruginosa and Chlorella sp. and organic matter in actual reservoir water on aerobic denitrification performance of Acinetobacter johnsonii strain WGX-9 has been investigated, by measuring nitrogen removal and determining changes in the properties of organic matter. Results indicated that the Acinetobacter johnsonii strain WGX-9 showed effective nitrogen removal efficiency when cultural conditions were low C/N of 5, pH of 5-11, and low temperature of 8 °C. The nitrate removal efficiency with EOM as the sole carbon source was relatively higher than that with intracellular organic matter or natural organic matter as the sole carbon source. This is probably due to that EOM exerts a lower molecular weight and better ability of donating electrons. Besides, the findings can elucidate that nitrate and total organic matter removal efficiency with actual high-density algal water as the carbon source was higher than that with actual low-density algal water as the carbon source. This was attributed to that more EOM was released in high-density algal water, which highlighted the aerobic denitrification performance of Acinetobacter johnsonii strain WGX-9. This study will provide a reference for the application of aerobic denitrifier in drinking water reservoirs.


Assuntos
Acinetobacter/metabolismo , Carbono/metabolismo , Desnitrificação , Nitrogênio/metabolismo , Purificação da Água , Chlorella/química , Microcystis/química
5.
Sci Total Environ ; 953: 176087, 2024 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-39255943

RESUMO

Peroxymonosulfate (PMS) is an eco-friendly disinfectant gaining attention. This study examined the influence of metal ions (Co(II), Cu(II), Fe(II)) on PMS disinfection with chloride ions (Cl-) against waterborne microorganisms, encompassing both bacteria and fungal spores. The findings elucidated that metal ions augment the inactivation of bacteria in the PMS/Cl- system while concurrently impeding the inactivation of fungal spores. Specifically, the PMS/Co(II)/Cl- process increased E. coli inactivation rates by 2.25 and 2.75 times compared to PMS/Co(II) and PMS/Cl-, respectively. Conversely, PMS/Me(II)/Cl- generally exhibited a diminished inactivation capacity against the three fungal spores compared to PMS/Cl-, albeit surpassing the efficacy of PMS/Me(II). For instance, the inactivation levels of A. niger by PMS/Cl-, PMS/Cu(II)/Cl-, and PMS/Cu(II) are 4.47-log, 1.92-log, and 0.11-log, respectively. Notably, fungal spores demonstrated a substantially higher resistance to disinfectants compared to bacteria. Differences in microbial susceptibility were linked to cell wall structure, composition, antioxidant defenses, and reactive species generation, such as hydroxyl radicals (•OH), sulfate radicals (SO4•-), and reactive chlorine species (RCS). This study demonstrated the novel and unique phenomenon of metal ions' dual role in modulating the PMS/Cl- disinfection process, which has not been reported before and has important implications for the field of water treatment.

6.
Water Res ; 267: 122451, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39293342

RESUMO

The presence of pathogenic fungal biofilms in drinking water distribution systems poses significant challenges in maintaining the safety of drinking water. This research delved into the formation of Aspergillus niger (A. niger) biofilms and evaluated their susceptibility to inactivation using combinations of ultraviolet light emitting diodes (UV-LEDs) with chlorine-based disinfectants, including UV-LEDs/chlorine (Cl2), UV-LEDs/chlorine dioxide (ClO2), and UV-LEDs/chloramine (NH2Cl) at 265 nm, 280 nm and 265/280 nm. Results indicated that A. niger biofilms reached initial maturity within 24 h, with matured three-dimensional filamentous structures and conidiospores by 96 h. UV-LEDs combined with chlorine-based disinfectants enhanced A. niger biofilm inactivation compared to UV-LEDs alone and low-pressure UV combined with chlorine-based disinfectants. At an UV fluence of 400 mJ/cm2, log reductions of UV265, UV280, and UV265/280 combined with chlorine-based disinfectants were 2.95-fold, 3.20-fold, and 2.38-fold higher than that of UV265, UV280, and UV265/280, respectively. During the inactivation, A. niger biofilm cells experienced increased membrane permeability and intracellular reactive oxygen species levels, resulting in cellular apoptosis. Extracellular polymeric substances contributed to the higher resistance of biofilms. Regarding electrical energy consumption, the order was: UV-LEDs/ClO2 > UV-LEDs/NH2Cl > UV-LEDs/Cl2. These findings provide insights into the effective utilization of UV-LEDs for fungal biofilm disinfection.

7.
Sci Total Environ ; 948: 174886, 2024 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-39032749

RESUMO

The risk of fungal pollution in drinking water has been paid attention. Solar/chlorine dioxide (ClO2) combined system is an environment-friendly, economical and efficient disinfection method, especially for countries and regions that are economically backward and still exposed to unsafe drinking water. In this paper, the kinetics, influencing factors, mechanism and regrowth potential of inactivated Aspergillus niger (A. niger) spores by solar/ClO2 were reported for the first time. The inactivation curve can be divided into three stages: instant inactivation within 1-2 min, slow linear inactivation and finally a tail. The synergistic factors produced by solar/ClO2 in terms of log reduction and maximum inactivation rate were 1.194 and 1.112, respectively. The inhibitory effect on the regrowth of A. niger spores inactivated by solar/ClO2 was also stronger than that by ClO2 alone. Strongly oxidizing reactive species produced by solar/ClO2 accelerated the accumulation of endogenic reactive oxygen species (ROS) caused by oxidation stress of A. niger spores, improving the inactivation ability of the system. The inactivation order of A. niger spores was: loss of culturability, accumulation of intracellular ROS, loss of membrane integrity, leakage of intracellular species and change of morphology. The inactivation performance of solar/ClO2 was better than solar/chlor(am)ine according to the comparison of inactivation efficiency and regrowth potential. Results also suggested that solar/ClO2 process was more suitable for the treatment of ground water sources.


Assuntos
Compostos Clorados , Desinfecção , Água Potável , Óxidos , Esporos Fúngicos , Água Potável/microbiologia , Compostos Clorados/farmacologia , Desinfecção/métodos , Desinfetantes/farmacologia , Purificação da Água/métodos , Aspergillus niger , Luz Solar , Microbiologia da Água
8.
Chemosphere ; 349: 140929, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38092169

RESUMO

Fungi outbreaks in water will include a series of processes, including spore aggregation, germination, biofilm, and finally present in a mixed state in the aquatic environment. More attention is paid to the control of dispersed fungal spores, however, there was little knowledge of the control of germinated spores. This study investigated the inactivation kinetics and mechanism of ultraviolet (UV) treatment for fungal spores with different germination percentages compared with dormant spores. The results indicated that the inactivation rate constants (k) of spores with 5%-45% germination were 0.0278-0.0299 cm2/mJ for Aspergillus niger and 0.0588-0.0647 cm2/mJ for Penicillium polonicum, which were lower than those of dormant spores. It suggested that germinated spores were more tolerant to UV irradiation than dormant spores, and it may be due to the defensive barrier (upregulated pigments) and some reductive substance (upregulated enoyl reductase) by absorbing UV or reacting with reactive oxygen species according to transcriptome analysis. Compared to dormant spores, the k-UV of germinated spores decreased by 18.17%-26.56% for Aspergillus niger, which was less than k-chlorine (62.33%-69.74%). A slighter decrease in k-UV showed UV irradiation can efficiently control fungi contamination, especially when dormant spores and germinated spores coexisted in actual water systems. This study indicates that more attention should be paid to germinated spores.


Assuntos
Cloro , Raios Ultravioleta , Cloro/farmacologia , Esporos Fúngicos , Água , Aspergillus niger , Esporos Bacterianos
9.
Water Res ; 265: 122275, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39163711

RESUMO

Dinoflagellate requires a lower temperature and blooms frequently in the spring and autumn compared to regular cyanobacteria. The outbreak of dinoflagellate bloom will also lead to the death of some aquatic organisms. However, research on freshwater dinoflagellates is still lacking due to the challenges posed by classification and culture in laboratory. The removal effect and mechanism of Peridinium umbonatum (P. umbonatum, a typical dinoflagellate) were investigated using solar/chlorine in this study. The effect of simulated solar alone on the removal of algae was negligible, and chlorine alone had only a slight effect in removing algae. However, solar/chlorine showed a better removal efficiency with shoulder length reduction factor and kmax enhancement factor of 2.80 and 3.8, respectively, indicating a shorter latency period and faster inactivation rate for solar/chlorine compared to solar and chlorine alone. The removal efficiency of algae gradually increased with the chlorine dosage, but it dropped as the cell density grew. When the experimental temperature was raised to 30 °C, algal removal efficiency significantly increased, as the temperature was unsuitable for the survival of P. umbonatum. Attacks on cell membranes by chlorine and hydroxyl radicals (•OH) produced by solar/chlorine led to a decrease in cell membrane integrity, leading to a rise in intracellular reactive oxygen species and an inhibition of photosynthetic and antioxidant systems. Cell regeneration was not observed in either the chlorine or solar/chlorine systems due to severe cell damage or cysts formation. In addition, natural solar radiation was demonstrated to have the same enhancing effect as simulated solar radiation. However, the algal removal efficiency of solar/chlorine in real water was reduced compared to 119 medium, mainly due to background material in the real water substrate that consumed the oxidant or acted as shading agents.


Assuntos
Cloro , Dinoflagellida , Água Doce , Luz Solar , Cloro/farmacologia , Eutrofização , Temperatura
10.
J Hazard Mater ; 476: 135138, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38996681

RESUMO

Biofilms are composed of complex multi-species in nature, potentially threatening drinking water safety. In this work, the formation of single- and multi-species fungal biofilms formed by Aspergillus niger (A. niger) and Aspergillus flavus (A. flavus), and the inactivation of mature biofilms using chlor(am)ine were firstly investigated. Results revealed that the antagonistic interaction occurred between A. niger and A. flavus. Chloramination at 20 mg/L for 30 min achieved 74.74 % and 76.04 % inactivation of A. flavus and multi-species biofilm, which were 1.69- and 1.84-fold higher than that of chlorine at the same condition. However, no significant difference was observed in the inactivation of A. niger biofilm between chlorine and monochloramine disinfection due to the lower amount of extracellular polymeric substance produced by it (p > 0.05). The inactivation of biofilm by monochloramine fitted the Weibull model well. According to the Weibull model, the monochloramine resistance of biofilm were as follows: A. flavus > multi-species > A. niger biofilm. Besides, an increase in reactive oxygen levels, damage of cell membrane, and leakage of intracellular substances in biofilms were observed after chlor(am)ination. More intracellular polysaccharides and proteins were leaked in chloramination inactivation (p < 0.05). This study provides important implications for controlling fungal biofilm.


Assuntos
Aspergillus flavus , Aspergillus niger , Biofilmes , Cloraminas , Desinfetantes , Desinfecção , Biofilmes/efeitos dos fármacos , Aspergillus niger/efeitos dos fármacos , Cloraminas/farmacologia , Desinfecção/métodos , Desinfetantes/farmacologia , Aspergillus flavus/efeitos dos fármacos , Microbiologia da Água , Espécies Reativas de Oxigênio/metabolismo , Purificação da Água/métodos , Farmacorresistência Fúngica/efeitos dos fármacos
11.
Aging (Albany NY) ; 16(8): 7357-7386, 2024 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-38656892

RESUMO

BACKGROUND: Heart failure (HF) has been reported to affect cerebral cortex structure, but the underlying cause has not been determined. This study used Mendelian randomization (MR) to reveal the causal relationship between HF and structural changes in the cerebral cortex. METHODS: HF was defined as the exposure variable, and cerebral cortex structure was defined as the outcome variable. Inverse-variance weighted (IVW), MR-Egger regression and weighted median (WME) were performed for MR analysis; MR-PRESSO and Egger's intercept was used to test horizontal pleiotropy; and "leave-one-out" was used for sensitivity analysis. RESULTS: Fifty-two single nucleotide polymorphisms (SNPs) were defined as instrumental variables (IVs), and there was no horizontal pleiotropy in the IVs. According to the IVW analysis, the OR and 95% CI of cerebral cortex thickness were 0.9932 (0.9868-1.00) (P=0.0402), and the MR-Egger intercept was -15.6× 10-5 (P = 0.7974) and the Global test pval was 0.078. The P-value of the cerebral cortex surface was 0.2205, and the MR-Egger intercept was -34.69052 (P= 0.6984) and the Global Test pval was 0.045. HF had a causal effect on the surface area of the caudal middle frontal lobule (P=0.009), insula lobule (P=0.01), precuneus lobule (P=0.049) and superior parietal lobule (P=0.044). CONCLUSIONS: HF was potentially associated with changes in cortical thickness and in the surface area of the caudal middle frontal lobule, insula lobule, precuneus lobule and superior parietal lobule.


Assuntos
Córtex Cerebral , Insuficiência Cardíaca , Análise da Randomização Mendeliana , Polimorfismo de Nucleotídeo Único , Humanos , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/genética , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/patologia , Imageamento por Ressonância Magnética , Masculino
12.
RSC Adv ; 14(15): 10390-10396, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38567334

RESUMO

Proton exchange membrane water electrolysis (PEMWE) is a promising technology for green hydrogen production. However, its large-scale commercial application is limited by its high precious metal loading, because low catalyst loading leads to reduced electron transport channels and decreased water transportation, etc. Herein, we study the electrode level strategy for reducing Ir loading by the optimization of the micro-structure of the anode catalyst layer via SnO2 doping. The pore structure and electron conductive network of the anode catalyst layer can be simultaneously improved by SnO2 doping, under appropriate conditions. Therefore, mass transfer polarization and ohmic polarization of the single cell are reduced. Moreover, the enhanced pore structure and improved electron conduction network collectively contribute to a decreased occurrence of charge transfer polarization. By this strategy, the performance of the single cell with the Ir loading of 1.5 mg cm-2 approaches the single cell with the higher Ir loading of 2.0 mg cm-2, which means that SnO2 doping saves about 25% loading of Ir. This paper provides a perspective at the electrode level to reduce the precious metal loading of the anode in PEMWE.

13.
Water Res ; 253: 121323, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38377927

RESUMO

Aggregation is the primary step prior to fungal biofilm development. Understanding the attributes of aggregation is of great significance to better control the emergence of waterborne fungi. In this study, the aggregation of Aspergills spores (A. flavus and A. fumigatus) under various salt, culture medium, and humic acid (HA) conditions was investigated for the first time, and the inactivation via low-pressure ultraviolet (LPUV) upon aggregated Aspergillus spores was also presented. The aggregation efficiency and size of aggregates increased over time and at low salt (NaCl and CaCl2) concentration (10 mM) while decreasing with the continuous increase of salt concentration (100 and 200 mM). Increasing the concentration of culture medium and HA promoted the aggregation of fungal spores. Spores became hydrated, swelled, and secreted more viscous substances during the growth period, which accelerated the aggregation process. Results also suggested that fungal spores aggregated more easily in actual water, posing a high risk of biohazard in real-life scenarios. Inactivation efficiency by LPUV decreased with higher aggregation degrees due to the protection from the damaged spores on the outer layer and the shielding of pigments in the cell wall. Compared to chlorine-based disinfection, the aggregation resulted in the extension of shoulder length yet neglectable change of inactivation rate constant under LPUV treatment. Further investigation of cell membrane integrity and intracellular reactive oxygen species was conducted to elucidate the difference in mechanisms between various techniques. This study provides insight into the understanding and controlling of the aggregation of fungal spores.


Assuntos
Desinfecção , Purificação da Água , Desinfecção/métodos , Cloro/farmacologia , Aspergillus , Esporos Fúngicos , Água , Raios Ultravioleta
14.
Drug Des Devel Ther ; 18: 781-799, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38500692

RESUMO

Purpose: This study aimed to elucidate the protective mechanism of Traditional Chinese Medicine (TCM) Qifu Yixin formula (QFYXF) to improve heart failure (HF) by promoting ß-arrestin2 (ß-arr2)-mediated SERCA2a SUMOylation. Materials and Methods: The transverse aortic constriction (TAC)-induced HF mice were treated with QFYXF or carvedilol for 8 weeks. ß-arr2-KO mice and their littermate wild-type (WT) mice were used as controls. Neonatal rat cardiomyocytes (NRCMs) were used in vitro. Cardiac function was evaluated by echocardiography and serum NT-proBNP. Myocardial hypertrophy and myocardial fibrosis were assessed by histological staining. ß-arr2, SERCA2a, SUMO1, PLB and p-PLB expressions were detected by Western blotting, immunofluorescence and immunohistochemistry. SERCA2a SUMOylation was detected by Co-IP. The molecular docking method was used to predict the binding ability of the main active components of QFYXF to ß-arr2, SERCA2a, and SUMO1, and the binding degree of SERCA2a to SUMO1 protein. Results: The HF model was constructed 8 weeks after TAC. QFYXF ameliorated cardiac function, inhibiting myocardial hypertrophy and fibrosis. QFYXF promoted SERCA2a expression and SERCA2a SUMOylation. Further investigation showed that QFYXF promoted ß-arr2 expression, whereas Barbadin (ß-arr2 inhibitor) or ß-arr2-KO reduced SERCA2a SUMOylation and attenuated the protective effect of QFYXF improved HF. Molecular docking showed that the main active components of QFYXF had good binding activities with ß-arr2, SERCA2a, and SUMO1, and SERCA2a had a high binding degree with SUMO1 protein. Conclusion: QFYXF improves HF by promoting ß-arr2 mediated SERCA2a SUMOylation and increasing SERCA2a expression.


Assuntos
Insuficiência Cardíaca , Sumoilação , Ratos , Camundongos , Animais , Simulação de Acoplamento Molecular , Miócitos Cardíacos , Cardiomegalia/tratamento farmacológico , Cardiomegalia/metabolismo
15.
Water Res ; 243: 120378, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37482005

RESUMO

Peroxymonosulfate(PMS)-based advanced oxidation process have been recognized as efficient disinfection processes. This study comprehensively investigated the role of sulfate radical (SO4•-) and hydroxyl radical (•OH)-driven disinfection of bacteria and fungal spores by the PMS/metals ions (Me(II)) systems and modeled the CT value based on the relationship between survival and ∫[Radical]dt, with the aim to provide an accurate and quantitative kinetic data of inactivation processes. The results indicated that •OH played a more central role than SO4•- in the inactivation process, and bacteria were more vulnerable to radical attack than fungal spores due to the differences in antioxidant mechanisms and external structures. The k value of •OH -induced inactivation of E. coli was approximately 3-fold higher than that of A. niger, and the shoulder length of •OH -induced inactivation of E. coli was closely 52-fold shorter than that of A. niger after treated with the PMS/Co(II) system. The morphological and biochemical changes revealed that PMS/Me(II) treatment caused membrane damage, intracellular ROS accumulation and esterase activity loss in microorganisms. This study significantly improved the understanding of the contribution of radicals in the process of microbial inactivation by PMS/Me(II) and would provide important implications for the further development of technologies to cope with the highly resistant fungal spores in drinking water.


Assuntos
Radical Hidroxila , Purificação da Água , Radical Hidroxila/química , Desinfecção/métodos , Esporos Fúngicos , Cinética , Escherichia coli , Peróxidos/química , Oxirredução , Bactérias , Purificação da Água/métodos
16.
Sci Total Environ ; 860: 160536, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36574558

RESUMO

Recently, the contamination of fungi in water has aroused widespread concern, which will pose a threat to water quality and safety, and raise diseases risk in the immunocompromised individuals. In this review, the characteristics and different physiological state of fungi in water are summarized. A comprehensive evaluation of the control efficiency and mechanism of waterborne fungi by the commonly used disinfection methods is provided as well. During the disinfection processes of chlorine, chlorine dioxide, chloramine and advanced disinfection processes (ADPs) such as O3-based ADPs and UV-based ADPs, the fungal spores firstly lost their culturability, followed by membrane integrity, and the intracellular reactive oxygen species level increased at the same time, eventually the fungal spores were completely inactivated. The security strategies of drinking water against the contamination of fungi are also discussed in terms of water sources, water treatment plants and pipe network. Finally, future researches need to be explored are proposed: the rapid detection methods, the production laws and control of mycotoxin, and the outbreak conditions of fungi in water. Specifically, exploring efficient, safe and economical technologies, especially ADPs, is still the main direction in the disinfection of fungi in future studies. This review can offer a comprehensive understanding on the occurrence and control of fungi in water to fill the knowledge gap and provide guidance for the future research.


Assuntos
Desinfetantes , Água Potável , Purificação da Água , Humanos , Fungos , Desinfecção , Esporos Fúngicos , Cloro
17.
J Hazard Mater ; 435: 128924, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35483263

RESUMO

Recently, the viabilities changes of fungal spores in the water supply system during different disinfection processes have been revealed. SYBR Green I (SG), a nucleic acid stain, its fluorescence intensity is correlated with the amount of double-stranded DNA. This study established a new method through successive SG-SG-PI staining (PI: Propidium Iodide) with flow cytometry (FCM). It could successfully distinguish DNA damage and membrane damage of fungal spores, clearly elucidating the intrinsic disinfection mechanism during the chemical disinfection. This method was briefly described as follows: firstly, (1) the fungal spores were stained with SG and washed by centrifugation; and then, (2) the washed spores were treated with disinfectants and terminated; after that, (3) the disinfected spores were re-stained with SG and analyzed by FCM; finally, (4) the SG re-stained spores were stained with PI and analyzed by FCM. The percentages of spores with DNA damage and membrane damage were determined by the fluorescence intensity obtained from steps (3) and (4), respectively. The repeatability and applicability of this developed method were confirmed. It was further applied to explore the inactivation mechanism during chlorine-based disinfection, and results demonstrated that chloramine attacked the DNA more seriously than the membrane, while chlorine and chlorine dioxide worked in a reverse way.


Assuntos
Desinfetantes , Desinfecção , Cloro , DNA , Desinfetantes/farmacologia , Citometria de Fluxo/métodos , Esporos Fúngicos
18.
J Hazard Mater ; 439: 129611, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-35863220

RESUMO

The disinfection of pathogenic microorganisms in water treatment by peracetic acid (PAA)-based advanced oxidation processes (AOPs) has been gaining increasing concern. In this work, the inactivation mechanism, influencing factors and regrowth of two pathogenic Aspergillus species in the system of CuO-activated PAA were studied for the first time. The k values of A. niger and A. flavus inactivated by PAA/CuO system were 3.9 and 2.1-fold higher than those inactivated by PAA alone. PAA concentration and CuO dose were positively correlated with the inactivation efficiency, while humic acid and pH were negatively correlated. The main active species that contributed to the inactivation of fungal spores in PAA/CuO system were •OH, CH3C(O)OO• and 1O2. PAA/CuO system had more intense oxidative stimulation and more serious damage to fungal spores according to the analysis of cell membrane integrity and intracellular ROS levels. In addition, the PAA/CuO system was less impacted by the water matrix and kept a good inactivation efficiency in real water samples. The regrowth potential of fungal spores after disinfection was also reduced in PAA/CuO system so as to avoid the risk of biological regrowth. This study provides a feasible PAA-based advanced oxidation method for activating PAA and inactivating fungal spores.


Assuntos
Ácido Peracético , Purificação da Água , Cobre , Desinfecção/métodos , Cinética , Ácido Peracético/farmacologia , Esporos Fúngicos
19.
Water Res ; 223: 119039, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36084430

RESUMO

Melanin is a critical component of fungal cell wall which protect fungi from adverse environmental tress. However, the role of melanin for fungi during the disinfection with chlorine-based disinfectants has not been elucidated. The results showed that the inactivation rate constants of Aspergillus niger with chlorine and chlorine dioxide decreased from 0.08 to 2.10 min-1 to 0 after addition of 0.32 mg/L melanin. The results indicated addition of extracted fungal melanin inhibited the inactivation efficiency of chlorine and chlorine dioxide. In contrast, the k of Aspergillus niger after inactivation with monochloramine ranged from 1.50 to 1.78 min-1 after addition of melanin which indicated effect of melanin on the inactivation efficiency of monochloramine was negligible. In addition, the extracted fungal melanin exhibited high reactivity with chlorine and chlorine dioxide but very low reactivity with monochloramine. The different inactivation mechanisms of chlorine-based disinfectants and different reactivity of melanin with chlorine-based disinfectants led to the different protective mechanism of melanin for A. niger and A. flavus spores against disinfection with chlorine-based disinfectants. The chlorine and chlorine dioxide appeared to react with functional groups of melanin in cell wall of spores, so sacrificial reactions between melanin and disinfectants decreased the available disinfectants and limited the diffusion of disinfectants to the reactive site on cell membrane, which led to the decrease of the disinfection efficiency for chlorine and chlorine dioxide. The monochloramine could penetrate into cell and damage DNA without the effect of melanin due to its strong penetration and low reactivity with melanin. Our results systematically demonstrate the protective roles of melanin on the fungal spores against chlorine-based disinfectants and the underlying mechanisms in resisting the environmental stress caused by chlorine-based disinfectants, which provides important implications for the control of fungi, especially for fungi producing melanin.


Assuntos
Cloro , Desinfetantes , Aspergillus , Aspergillus flavus , Aspergillus niger , Cloraminas , Cloretos , Cloro/farmacologia , Compostos Clorados , DNA , Desinfetantes/farmacologia , Desinfecção/métodos , Melaninas , Óxidos
20.
Water Res ; 222: 118964, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35970005

RESUMO

This work demonstrated that the solar inactivation of fungal spores was enhanced by addition of low-dose chlorine. Although the effect of low-dose chlorine alone (2.0 mg/L) on culturability of fungal spores was negligible, the solar/chlorine inactivation on fungal spores performed better than solar alone inactivation, with a lower shoulder length and a higher maximum inactivation rate constant. The enhanced inactivation of Aspergillus niger can be ascribed to the membrane oxidation by chlorine, and the enhanced inactivation of Penicillium polonicum can be ascribed to the membrane oxidation by chlorine and ·OH (·OH plays a major role). The oxidization by chlorine and ·OH led to an increase in membrane permeability of fungal spores, which enhanced the solar inactivation, resulting in an increase in intracellular ROS and more serious morphological damage. Due to the presence of background substances such as dissolved organic matter and metal ions (Fe2+, Mn2+, etc.), the inactivation efficiency in real water matrices was decreased. The main disinfection by-products (DBPs) produced in the inactivation of fungal spores in chlorine alone and solar/chlorine treatments were dichloroacetic acid, trichloroacetic acid, trichloroacetone and trichloromethane. Generally, DBPs formation in solar/chlorine treatment was lower than those in chlorine alone treatment. Moreover, the regrowth potential of the two genera of fungal spores in R2A medium could be inhibited by adding low-dose chlorine.


Assuntos
Cloro , Purificação da Água , Cloro/farmacologia , Desinfecção/métodos , Esporos Fúngicos , Água/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA