Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Nature ; 566(7745): 486-489, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30814709

RESUMO

Over the past decade, topological materials-in which the topology of electron bands in the bulk material leads to robust, unconventional surface states and electromagnetism-have attracted much attention. Although several theoretically proposed topological materials have been experimentally confirmed, extensive experimental exploration of topological properties, as well as applications in realistic devices, has been restricted by the lack of topological materials in which interference from trivial Fermi surface states is minimized. Here we apply our method of symmetry indicators to all suitable nonmagnetic compounds in all 230 possible space groups. A database search reveals thousands of candidate topological materials, of which we highlight 241 topological insulators and 142 topological crystalline insulators that have either noticeable full bandgaps or a considerable direct gap together with small trivial Fermi pockets. Furthermore, we list 692 topological semimetals that have band crossing points located near the Fermi level. These candidate materials open up the possibility of using topological materials in next-generation electronic devices.

2.
Phys Rev Lett ; 129(2): 027001, 2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35867454

RESUMO

The theory of symmetry indicators has enabled database searches for topological materials in normal conducting phases, which has led to several encyclopedic topological material databases. To date, such a database for topological superconductors is yet to be achieved because of the lack of information about pairing symmetries of realistic materials. In this Letter, sidestepping this issue, we tackle an alternative problem: the predictions of topological and nodal superconductivity in materials for each single-valued representation of point groups. Based on recently developed symmetry indicators for superconductors, we provide comprehensive mappings from pairing symmetries to the topological or nodal superconducting nature for nonmagnetic materials listed in the Inorganic Crystal Structure Database. We quantitatively show that around 90% of computed materials are topological or nodal superconductors when a pairing that belongs to a one-dimensional nontrivial representation of point groups is assumed. When materials are representation-enforced nodal superconductors, positions and shapes of the nodes are also identified. When combined with experiments, our results will help us understand the pairing mechanism and facilitate realizations of the long-sought Majorana fermions promising for topological quantum computations.

3.
Phys Rev Lett ; 127(1): 018001, 2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34270286

RESUMO

Self-dual structures whose dual counterparts are themselves possess unique hidden symmetry, beyond the description of classical spatial symmetry groups. Here we propose a strategy based on a nematic monolayer of attractive half-cylindrical colloids to self-assemble these exotic structures. This system can be seen as a 2D system of semidisks. By using Monte Carlo simulations, we discover two isostatic self-dual crystals, i.e., an unreported crystal with pmg space-group symmetry and the twisted kagome crystal. For the pmg crystal approaching the critical point, we find the double degeneracy of the full phononic spectrum at the self-dual point and the merging of two tilted Weyl nodes into one critically tilted Dirac node. The latter is "accidentally" located on the high-symmetry line. The formation of this unconventional Dirac node is due to the emergence of the critical flatbands at the self-dual point, which are linear combinations of "finite-frequency" floppy modes. These modes can be understood as mechanically coupled self-dual rhombus chains vibrating in some unique uncoupled ways. Our work paves the way for designing and fabricating self-dual materials with exotic mechanical or phononic properties.

4.
Nano Lett ; 20(1): 709-714, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31838853

RESUMO

Magnetic topological insulator, a platform for realizing quantum anomalous Hall effect, axion state, and other novel quantum transport phenomena, has attracted a lot of interest. Recently, it is proposed that MnBi2Te4 is an intrinsic magnetic topological insulator, which may overcome the disadvantages in the magnetic doped topological insulator, such as disorder. Here we report on the gate-reserved anomalous Hall effect (AHE) in the MnBi2Te4 thin film. By tuning the Fermi level using the top/bottom gate, the AHE loop gradually decreases to zero and the sign is reversed. The positive AHE exhibits distinct coercive fields compared with the negative AHE. It reaches a maximum inside the gap of the Dirac cone, and its amplitude exhibits a linear scaling with the longitudinal conductance. The positive AHE is attributed to the competition of the intrinsic Berry curvature and the extrinsic skew scattering. Its gate-controlled switching contributes a scheme for the topological spin field-effect transistors.

5.
Nat Mater ; 18(5): 482-488, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30886399

RESUMO

In two-dimensional (2D) systems, high mobility is typically achieved in low-carrier-density semiconductors and semimetals. Here, we discover that the nanobelts of Weyl semimetal NbAs maintain a high mobility even in the presence of a high sheet carrier density. We develop a growth scheme to synthesize single crystalline NbAs nanobelts with tunable Fermi levels. Owing to a large surface-to-bulk ratio, we argue that a 2D surface state gives rise to the high sheet carrier density, even though the bulk Fermi level is located near the Weyl nodes. A surface sheet conductance up to 5-100 S per □ is realized, exceeding that of conventional 2D electron gases, quasi-2D metal films, and topological insulator surface states. Corroborated by theory, we attribute the origin of the ultrahigh conductance to the disorder-tolerant Fermi arcs. The evidenced low-dissipation property of Fermi arcs has implications for both fundamental study and potential electronic applications.

6.
Phys Rev Lett ; 122(1): 014302, 2019 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-31012693

RESUMO

We report the experimental realization of an acoustic Chern insulator (ACI), by using an angular-momentum-biased resonator array with the broken Lorentz reciprocity. High Q-factor resonance of the constituent rotors is leveraged to reduce the required rotation speed. ACI is a new topological acoustic system analogous to the electronic quantum Hall insulator, based on an effective magnetic field. Experimental results show that the ACI featured with a stable and uniform metafluid flow bias supports one-way nonreciprocal transport of sound at its edges, which is topologically immune to various types of defects. Our work opens up opportunities for exploring unique observable topological phases and developing topological-insulator-based nonreciprocal devices in acoustics.

7.
Proc Natl Acad Sci U S A ; 113(11): 2904-9, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26929327

RESUMO

As a new type of topological materials, ZrTe5 shows many exotic properties under extreme conditions. Using resistance and ac magnetic susceptibility measurements under high pressure, while the resistance anomaly near 128 K is completely suppressed at 6.2 GPa, a fully superconducting transition emerges. The superconducting transition temperature Tc increases with applied pressure, and reaches a maximum of 4.0 K at 14.6 GPa, followed by a slight drop but remaining almost constant value up to 68.5 GPa. At pressures above 21.2 GPa, a second superconducting phase with the maximum Tc of about 6.0 K appears and coexists with the original one to the maximum pressure studied in this work. In situ high-pressure synchrotron X-ray diffraction and Raman spectroscopy combined with theoretical calculations indicate the observed two-stage superconducting behavior is correlated to the structural phase transition from ambient Cmcm phase to high-pressure C2/m phase around 6 GPa, and to a mixture of two high-pressure phases of C2/m and P-1 above 20 GPa. The combination of structure, transport measurement, and theoretical calculations enable a complete understanding of the emerging exotic properties in 3D topological materials under extreme environments.

8.
Phys Rev Lett ; 120(14): 146602, 2018 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-29694159

RESUMO

Nodal-line semimetals are topological semimetals in which band touchings form nodal lines or rings. Around a loop that encloses a nodal line, an electron can accumulate a nontrivial π Berry phase, so the phase shift in the Shubnikov-de Haas (SdH) oscillation may give a transport signature for the nodal-line semimetals. However, different experiments have reported contradictory phase shifts, in particular, in the WHM nodal-line semimetals (W=Zr/Hf, H=Si/Ge, M=S/Se/Te). For a generic model of nodal-line semimetals, we present a systematic calculation for the SdH oscillation of resistivity under a magnetic field normal to the nodal-line plane. From the analytical result of the resistivity, we extract general rules to determine the phase shifts for arbitrary cases and apply them to ZrSiS and Cu_{3}PdN systems. Depending on the magnetic field directions, carrier types, and cross sections of the Fermi surface, the phase shift shows rich results, quite different from those for normal electrons and Weyl fermions. Our results may help explore transport signatures of topological nodal-line semimetals and can be generalized to other topological phases of matter.

9.
Inorg Chem ; 57(21): 13252-13258, 2018 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-30338990

RESUMO

Iridium(IV) oxides have gained increased attention in recent years owing to the presence of competing spin-orbit coupling and Coulomb interactions, which facilitate the emergence of novel quantum phenomena. In contrast, the electronic structure and magnetic properties of IrIV-based molecular materials remain largely unexplored. In this paper, we take a fresh look at an old but puzzling compound, Na2IrCl6, which can be hydrated to form two stable phases with formulas Na2IrCl6·2H2O and Na2IrCl6·6H2O. Their crystal structures are well illustrated based on X-ray powder diffraction data. Magnetic studies reveal that Na2IrCl6 and Na2IrCl6·2H2O are canted antiferromagnets with ordering temperatures of 7.4 and 2.7 K, respectively, whereas Na2IrCl6·6H2O is paramagnetic down to 1.8 K. First-principle calculations on Na2IrCl6 reveal a Jeff = 1/2 ground state, and the band structures show that Na2IrCl6 is a spin-orbital-induced semiconductor with an indirect gap of about 0.18 eV.

10.
Nano Lett ; 17(4): 2211-2219, 2017 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-28244324

RESUMO

Three-dimensional topological Dirac semimetals have hitherto stimulated unprecedented research interests as a new class of quantum materials. Breaking certain types of symmetries has been proposed to enable the manipulation of Dirac fermions, and that was soon realized by external modulations such as magnetic fields. However, an intrinsic manipulation of Dirac states, which is more efficient and desirable, remains a significant challenge. Here, we report a systematic study of quasi-particle dynamics and band evolution in Cd3As2 thin films with controlled chromium (Cr) doping by both magneto-infrared spectroscopy and electrical transport. We observe the √B relation of inter-Landau-level resonance in Cd3As2, an important signature of ultrarelativistic massless state inaccessible in previous optical experiments. A crossover from quantum to quasi-classical behavior makes it possible to directly probe the mass of Dirac fermions. Importantly, Cr doping allows for a Dirac mass acquisition and topological phase transition enabling a desired dynamic control of Dirac fermions. Corroborating with the density-functional theory calculations, we show that the mass generation can be explained by the explicit C4 rotation symmetry breaking and the resultant Dirac gap engineering through Cr substitution for Cd atoms. The manipulation of the system symmetry and Dirac mass in Cd3As2 thin films provides a tuning knob to explore the exotic states stemming from the parent phase of Dirac semimetals.

11.
Nano Lett ; 17(2): 878-885, 2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28033014

RESUMO

Transitional metal ditelluride WTe2 has been extensively studied owing to its intriguing physical properties like nonsaturating positive magnetoresistance and being possibly a type-II Weyl semimetal. While surging research activities were devoted to the understanding of its bulk properties, it remains a substantial challenge to explore the pristine physics in atomically thin WTe2. Here, we report a successful synthesis of mono- to few-layer WTe2 via chemical vapor deposition. Using atomically thin WTe2 nanosheets, we discover a previously inaccessible ambipolar behavior that enables the tunability of magnetoconductance of few-layer WTe2 from weak antilocalization to weak localization, revealing a strong electrical field modulation of the spin-orbit interaction under perpendicular magnetic field. These appealing physical properties unveiled in this study clearly identify WTe2 as a promising platform for exotic electronic and spintronic device applications.

12.
Nano Lett ; 16(7): 4454-61, 2016 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-27302741

RESUMO

Heteroepitaxial structures based on Bi2Te3-type topological insulators (TIs) exhibit exotic quantum phenomena. For optimal characterization of these phenomena, it is desirable to control the interface structure during film growth on such TIs. In this process, adatom mobility is a key factor. We demonstrate that Pb mobility on the Bi2Te3(111) surface can be modified by the engineering local strain, ε, which is induced around the point-like defects intrinsically forming in the Bi2Te3(111) thin film grown on a Si(111)-7 × 7 substrate. Scanning tunneling microscopy observations of Pb adatom and cluster distributions and first-principles density functional theory (DFT) analyses of the adsorption energy and diffusion barrier Ed of Pb adatom on Bi2Te3(111) surface show a significant influence of ε. Surprisingly, Ed reveals a cusp-like dependence on ε due to a bifurcation in the position of the stable adsorption site at the critical tensile strain εc ≈ 0.8%. This constitutes a very different strain-dependence of diffusivity from all previous studies focusing on conventional metal or semiconductor surfaces. Kinetic Monte Carlo simulations of Pb deposition, diffusion, and irreversible aggregation incorporating the DFT results reveal adatom and cluster distributions compatible with our experimental observations.

13.
Phys Rev Lett ; 117(14): 146402, 2016 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-27740840

RESUMO

We report a new pressure-induced phase in TaAs with different Weyl fermions than the ambient structure with the aid of theoretical calculations, experimental transport and synchrotron structure investigations up to 53 GPa. We show that TaAs transforms from an ambient I4_{1}md phase (t-TaAs) to a high-pressure hexagonal P-6m2 (h-TaAs) phase at 14 GPa, along with changes of the electronic state from containing 24 Weyl nodes distributed at two energy levels to possessing 12 Weyl nodes at an isoenergy level, which substantially reduces the interference between the surface and bulk states. The new pressure-induced phase can be reserved upon releasing pressure to ambient condition, which allows one to study the exotic behavior of a single set of Weyl fermions, such as the interplay between surface states and other properties.

14.
Inorg Chem ; 55(7): 3547-52, 2016 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-26998638

RESUMO

The new bismuth chalcogenide La(0.92)Bi(1.08)S3 crystallizes in the monoclinic space group C2/m with a = 28.0447(19) Å, b = 4.0722(2) Å, c = 14.7350(9) Å, and ß = 118.493(5)°. The structure of La(0.92)Bi(1.08)S3 is built of NaCl-type Bi2S5 blocks and BiS4 and LaS5 infinitely long chains, forming a compact three-dimensional framework with parallel tunnels. Optical spectroscopy and resistivity measurements reveal a semiconducting behavior with a band gap of ∼1 eV and activation energy for transport of 0.36(1) eV. Thermopower measurements suggest the majority carriers of La(0.92)Bi(1.08)S3 are electrons. Heat capacity measurements indicate no phase transitions from 2 to 300 K. Band structure calculations at the density functional theory level confirm the semiconducting nature and the indirect gap of La(0.92)Bi(1.08)S3.

15.
J Phys Condens Matter ; 36(6)2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37879344

RESUMO

Transition metal phosphorus trichalcogenides MPX3(M = Mn, Fe, Co, Ni; X = S, Se), as layered van der Waals antiferromagnetic (AFM) materials, have emerged as a promising platform for exploring two-dimensional (2D) magnetism. Based on density functional theory, we present a comprehensive investigation of the electronic and magnetic properties of MPX3. We calculated the spin exchange interactions as well as magnetocrystalline anisotropy energy. The numerical results reveal thatJ3is AFM in all cases, andJ2is significantly smaller compared to bothJ3andJ1. This behavior can be understood with regard to exchange paths and electron filling. Compared to other materials within this family, FePS3and CoPS3demonstrate significant easy-axis anisotropy. Using the obtained parameters, we estimated the Néel temperatureTNand Curie-Weiss temperatureθCW, and the results are in good agreement with the experimental observations. We further calculated the magnon spectra and successfully reproduce several typical features observed experimentally. Finally, we give helpful suggestions for the strong constraints about the range of non-negligible magnetic interactions based on the relations between magnon eigenvalues at high-symmetrykpoints in honeycomb lattices.

16.
Sci Adv ; 9(41): eadf4170, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37824625

RESUMO

Femtosecond laser-driven photoemission source provides an unprecedented femtosecond-resolved electron probe not only for atomic-scale ultrafast characterization but also for free-electron radiation sources. However, for conventional metallic electron source, intense lasers may induce a considerable broadening of emitting energy level, which results in large energy spread (>600 milli-electron volts) and thus limits the spatiotemporal resolution of electron probe. Here, we demonstrate the coherent ultrafast photoemission from a single quantized energy level of a carbon nanotube. Its one-dimensional body can provide a sharp quantized electronic excited state, while its zero-dimensional tip can provide a quantized energy level act as a narrow photoemission channel. Coherent resonant tunneling electron emission is evidenced by a negative differential resistance effect and a field-driven Stark splitting effect. The estimated energy spread is ~57 milli-electron volts, which suggests that the proposed carbon nanotube electron source may promote electron probe simultaneously with subangstrom spatial resolution and femtosecond temporal resolution.

17.
Phys Rev Lett ; 108(14): 146601, 2012 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-22540814

RESUMO

Based on density functional calculation using the local density approximation+U method, we predict that osmium compounds such as CaOs(2)O(4) and SrOs(2)O(4) can be stabilized in the geometrically frustrated spinel crystal structure. They show ferromagnetic order in a reasonable range of the on-site Coulomb correlation U and exotic electronic properties, in particular, a large magnetoelectric coupling characteristic of axion electrodynamics. Depending on U, other electronic phases including a 3D Weyl semimetal and Mott insulator are also shown to occur.

18.
Nat Commun ; 13(1): 919, 2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35177611

RESUMO

Spin-orbit coupling (SOC), which is the core of many condensed-matter phenomena such as nontrivial band gap and magnetocrystalline anisotropy, is generally considered appreciable only in heavy elements. This is detrimental to the synthesis and application of functional materials. Therefore, amplifying the SOC effect in light elements is crucial. Herein, focusing on 3d and 4d systems, we demonstrate that the interplay between crystal symmetry and electron correlation can significantly enhance the SOC effect in certain partially occupied orbital multiplets through the self-consistently reinforced orbital polarization as a pivot. Thereafter, we provide design principles and comprehensive databases, where we list all the Wyckoff positions and site symmetries in all two-dimensional (2D) and three-dimensional crystals that could have enhanced SOC effect. Additionally, we predict nine material candidates from our selected 2D material pool as high-temperature quantum anomalous Hall insulators with large nontrivial band gaps of hundreds of meV. Our study provides an efficient and straightforward way for predicting promising SOC-active materials, relieving the use of heavy elements for next-generation spin-orbitronic materials and devices.

19.
Sci Adv ; 8(37): eabq4578, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36103530

RESUMO

The interface between magnetic material and superconductors has long been predicted to host unconventional superconductivity, such as spin-triplet pairing and topological nontrivial pairing state, particularly when spin-orbital coupling (SOC) is incorporated. To identify these unconventional pairing states, fabricating homogenous heterostructures that contain such various properties are preferred but often challenging. Here, we synthesized a trilayer-type van der Waals heterostructure of MnTe/Bi2Te3/Fe(Te, Se), which combined s-wave superconductivity, thickness-dependent magnetism, and strong SOC. Via low-temperature scanning tunneling microscopy, we observed robust zero-energy states with notably nontrivial properties and an enhanced superconducting gap size on single unit cell (UC) MnTe surface. In contrast, no zero-energy state was observed on 2-UC MnTe. First-principle calculations further suggest that the 1-UC MnTe has large interfacial Dzyaloshinskii-Moriya interaction and a frustrated AFM state, which could promote noncolinear spin textures. It thus provides a promising platform for exploring topological nontrivial superconductivity.

20.
Natl Sci Rev ; 8(12): nwaa282, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35382220

RESUMO

The plasmonic response of gold clusters with atom number (N) = 100-70 000 was investigated using scanning transmission electron microscopy-electron energy loss spectroscopy. For decreasing N, the bulk plasmon remains unchanged above N = 887 but then disappears, while the surface plasmon firstly redshifts from 2.4 to 2.3 eV above N = 887 before blueshifting towards 2.6 eV down to N = 300, and finally splitting into three fine features. The surface plasmon's excitation ratio is found to follow N 0.669, which is essentially R 2. An atomically precise evolution picture of plasmon physics is thus demonstrated according to three regimes: classical plasmon (N = 887-70 000), quantum confinement corrected plasmon (N = 300-887) and molecule related plasmon (N < 300).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA