RESUMO
Anaplasma capra is an emerging tickborne human pathogen initially recognized in China in 2015; it has been reported in ticks and in a wide range of domestic and wild animals worldwide. We describe whole-genome sequences of 2 A. capra strains from metagenomic sequencing of purified erythrocytes from infected goats in China. The genome of A. capra was the smallest among members of the genus Anaplasma. The genomes of the 2 A. capra strains contained comparable G+C content and numbers of pseudogenes with intraerythrocytic Anaplasma species. The 2 A. capra strains had 54 unique genes. The prevalence of A. capra was high among goats in the 2 endemic areas. Phylogenetic analyses revealed that the A. capra strains detected in this study were basically classified into 2 subclusters with those previously detected in Asia. Our findings clarify details of the genomic characteristics of A. capra and shed light on its genetic diversity.
Assuntos
Genômica , Cabras , Animais , Humanos , Prevalência , Filogenia , Anaplasma/genética , China/epidemiologiaRESUMO
Ethylhexyl methoxycinnamate (EHMC) is frequently employed as a photoprotective agent in sunscreen formulations. EHMC has been found to potentially contribute to health complications as a result of its propensity to produce irritation and permeate the skin. A microgel carrier, consisting of poly(ethylene glycol dimethacrylate) (pEDGMA), was synthesized using interfacial polymerization with the aim of reducing the irritation and penetration of EHMC. The thermogravimetric analysis (TGA) indicated that the EHMC content accounted for 75.72% of the total composition. Additionally, the scanning electron microscopy (SEM) images depicted the microgel as exhibiting a spherical morphology. In this study, the loading of EHMC was demonstrated through FTIR and contact angle tests. The UV resistance, penetration, and skin irritation of the EHMC-pEDGMA microgel were additionally assessed. The investigation revealed that the novel sunscreen compound, characterized by limited dermal absorption, had no irritant effects and offered sufficient protection against ultraviolet radiation.
RESUMO
Dermacentor nuttalli, a member of family Ixodidae and genus Dermacentor, is predominantly found in North Asia. It transmits various pathogens of human and animal diseases, such as Lymphocytic choriomeningitis mammarenavirus and Brucella ovis, leading to severe symptoms in patients and posing serious hazards to livestock husbandry. To profile pathogen abundances of wild D. nuttalli, metagenomic sequencing was performed of four field-collected tick samples, revealing that Rickettsia, Streptomyces, and Pseudomonas were the most abundant bacterial genera in D. nuttalli. Specifically, four nearly complete Rickettsia genomes were assembled, closely relative to Rickettsia conorii subsp. raoultii. Then, a comprehensive meta-analysis was performed to evaluate its potential threats based on detected pathogens and geographical distribution positions reported in literature, reference books, related websites, and field surveys. At least 48 pathogens were identified, including 20 species of bacteria, seven species of eukaryota, and 21 species of virus. Notably, Rickettsia conorii subsp. raoultii, Coxiella burnetii, and Brucella ovis displayed remarkably high positivity rates, which were known to cause infectious diseases in both humans and livestock. Currently, the primary distribution of D. nuttalli spans China, Mongolia, and Russia. However, an additional 14 countries in Asia and America that may also be affected by D. nuttalli were identified in our niche model, despite no previous reports of its presence in these areas. This study provides comprehensive data and analysis on the pathogens carried by D. nuttalli, along with documented and potential distribution, suggesting an emerging threat to public health and animal husbandry. Therefore, there is a need for heightened surveillance and thorough investigation of D. nuttalli.
RESUMO
Soft ticks (Ixodida: Argasidae) are ectoparasites of terrestrial vertebrates with worldwide distributions. As one representative group of Argasidae, the genus Argas has an important vectorial role in transmitting zoonotic diseases. However, our knowledge of the subgenus Argas in China is still limited, as most literature only lists occurrence records or describes specific case reports without providing detailed morphological characteristics and further molecular data. This study aims to characterize Argas vulgaris through complete mitochondrial sequencing and morphological diagnostic techniques based on a batch of adult specimens collected from Ningxia Hui Autonomous Regions (NXHAR), North China. The morphology and microstructures of Ar. vulgaris and other lectotypes of argasid ticks in the subgenus Argas were also observed using a stereomicroscope. Following DNA extraction and sequencing, a complete mitochondrial sequence of Ar. vulgaris was assembled and analyzed within a phylogenetic context. The 14,479 bp mitogenome of Ar. vulgaris consists of 37 genes, including 13 genes for protein coding, two for ribosomal RNA, 22 for transfer RNA, and one for control region (D-loops). Phylogenetic analysis of Ar. vulgaris showed 98.27%-100% nucleotide identity with Ar. japonicus, indicating a close relationship between the two tick species. The morphological diagnostic features to differentiate Ar. vulgaris from other ticks within the subgenus Argas included the location of the anus and setae on the anterior lip of the female genital aperture. This study provided high-resolution scanning electron microscope images of female Ar. vulgaris and corresponding molecular data, representing valuable resources for future accurate species identification.
RESUMO
Ticks are important vectors of zoonotic pathogens, and represent an increasing threat for human and animal health. Considering the complex natural environments of Ningxia Hui Autonomous Region, China, we expect the diverse tick species in this region. Here, we conduct a field survey on parasitic and host-seeking ticks. A total of 10,419 ticks were collected, which belonged to nine species of four genera. There were significant differences in terms of vegetation index, altitude, and seven climatic factors among the four tick genera -Hyalomma, Dermacentor, Haemaphysalis, and Ixodes, except between Haemaphysalis and Ixodes, where no significant differences were observed in these factors. The ecological niche modelling revealed that the suitable habitats for Hyalomma asiaticum was in the northwest Ningxia, with annual ground surface temperature as the most important factor. The suitable area for Dermacentor nuttalli was in the southwest and eastern regions of Ningxia with elevation as the highest contribution. D. silvarum was best suited to the southern Ningxia also with elevation as the most important factor. The four tick species including Haemaphysalis longicornis, Hae. qinghaiensis, Hae. japonica, and Ixodes persulcatus were best suited to the southernmost Ningxia with annual precipitation as the main factors for Hae. longicornis and elevation for the other three ticks. The results of predicted potential distribution of different tick species provide a scientific basis for the prevention and control of ticks and tick-borne diseases in the region. Furthermore, the subsequent impacts of the Greening Program to regain forests and grasslands from former agricultural lands in Ningxia on tick population dynamics deserve further investigation.
RESUMO
BACKGROUND: Haemaphysalis longicornis is drawing attentions for its geographic invasion, extending population, and emerging disease threat. However, there are still substantial gaps in our knowledge of viral composition in relation to genetic diversity of H. longicornis and ecological factors, which are important for us to understand interactions between virus and vector, as well as between vector and ecological elements. RESULTS: We conducted the meta-transcriptomic sequencing of 136 pools of H. longicornis and identified 508 RNA viruses of 48 viral species, 22 of which have never been reported. Phylogenetic analysis of mitochondrion sequences divided the ticks into two genetic clades, each of which was geographically clustered and significantly associated with ecological factors, including altitude, precipitation, and normalized difference vegetation index. The two clades showed significant difference in virome diversity and shared about one fifth number of viral species that might have evolved to "generalists." Notably, Bandavirus dabieense, the pathogen of severe fever with thrombocytopenia syndrome was only detected in ticks of clade 1, and half number of clade 2-specific viruses were aquatic-animal-associated. CONCLUSIONS: These findings highlight that the virome diversity is shaped by internal genetic evolution and external ecological landscape of H. longicornis and provide the new foundation for promoting the studies on virus-vector-ecology interaction and eventually for evaluating the risk of H. longicornis for transmitting the viruses to humans and animals. Video Abstract.
Assuntos
Ixodidae , Phlebovirus , Carrapatos , Animais , Humanos , Ixodidae/genética , Haemaphysalis longicornis , Viroma/genética , Filogenia , Phlebovirus/genéticaRESUMO
There has been increasing global concern about the spillover transmission of pangolin-associated microbes. To assess the risk of these microbes for emergence as human pathogens, we integrated data from multiple sources to describe the distribution and spectrum of microbes harbored by pangolins. Wild and trafficked pangolins have been mainly recorded in Asia and Africa, while captive pangolins have been reported in European and North American countries. A total of 128 microbes, including 92 viruses, 25 bacteria, eight protists, and three uncharacterized microbes, have been identified in five pangolin species. Out of 128 pangolin-associated microbes, 31 (including 13 viruses, 15 bacteria, and three protists) have been reported in humans, and 54 are animal-associated viruses. The phylogenetic analysis of human-associated viruses carried by pangolins reveals that they are genetically close to those naturally circulating among human populations in the world. Pangolins harbor diverse microbes, many of which have been previously reported in humans and animals. Abundant viruses initially detected in pangolins might exhibit risks for spillover transmission.
Assuntos
Pangolins , Animais , Humanos , Filogenia , Ásia , África , América do NorteRESUMO
Theileria, a tick-borne intracellular protozoan, can cause infections of various livestock and wildlife around the world, posing a threat to veterinary health. Although more and more Theileria species have been identified, genomes have been available only from four Theileria species to date. Here, we assembled a whole genome of Theileria luwenshuni, an emerging Theileria, through next-generation sequencing of purified erythrocytes from the blood of a naturally infected goat. We designated it T. luwenshuni str. Cheeloo because its genome was assembled by the researchers at Cheeloo College of Medicine, Shandong University, China. The genome of T. lunwenshuni str. Cheeloo was the smallest in comparison with the other four Theileria species. T. luwenshuni str. Cheeloo possessed the fewest gene gains and gene family expansion. The protein count of each category was always comparable between T. luwenshuni str. Cheeloo and T. orientalis str. Shintoku in the Eukaryote Orthologs annotation, though there were remarkable differences in genome size. T. luwenshuni str. Cheeloo had lower counts than the other four Theileria species in most categories at level 3 of Gene Ontology annotation. Kyoto Encyclopedia of Genes and Genomes annotation revealed a loss of the c-Myb in T. luwenshuni str. Cheeloo. The infection rate of T. luwenshuni str. Cheeloo was up to 81.5% in a total of 54 goats from three flocks. The phylogenetic analyses based on both 18S rRNA and cox1 genes indicated that T. luwenshuni had relatively low diversity. The first characterization of the T. luwenshuni genome will promote better understanding of the emerging Theileria. IMPORTANCE Theileria has led to substantial economic losses in animal husbandry. Whole-genome sequencing data of the genus Theileria are currently limited, which has prohibited us from further understanding their molecular features. This work depicted whole-genome sequences of T. luwenshuni str. Cheeloo, an emerging Theileria species, and reported a high prevalence of T. luwenshuni str. Cheeloo infection in goats. The first assembly and characterization of T. luwenshuni genome will benefit exploring the infective and pathogenic mechanisms of the emerging Theileria to provide scientific basis for future control strategies of theileriosis.
Assuntos
Theileria , Theileriose , Animais , Bovinos , Theileria/genética , Filogenia , Cabras , GenômicaRESUMO
BACKGROUND: Peroral endoscopic myotomy (POEM) is an established treatment option for esophageal achalasia. However, technical challenges and failures exist. Submucosal fibrosis is a rare cause of aborted POEM procedures. CASE SUMMARY: We performed POEM with an elastic ring for achalasia with obvious submucosal fibrosis. The short-term outcome was excellent, surgery time was significantly shorter, and success rate was higher with POEM for achalasia with obvious submucosal fibrosis. CONCLUSION: POEM performed with an elastic ring is a feasible and effective endoscopic treatment modality for achalasia with obvious submucosal fibrosis.