Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Amino Acids ; 52(5): 771-780, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32372390

RESUMO

Gamma-aminobutyric acid (GABA) biosynthesis depended to a great extent on the biotransformation characterization of glutamate decarboxylase (GAD) and process conditions. In this paper, the enhancing effect of D101 macroporous adsorption resin (MAR) on the GABA production was investigated based on the whole-cell biotransformation characterization of Enterococcus faecium and adsorption characteristics of D101 MAR. The results indicated that the optimal pH for reaction activity of whole-cell GAD and pure GAD was 4.4 and 5.0, respectively, and the pH range retained at least 50% of GAD activity was from 4.8 to 5.6 and 4.0-4.8, respectively. No substrate inhibition effect was observed on both pure GAD and whole-cell GAD, and the maximum activity could be obtained when the initial L-glutamic acid (L-Glu) concentration exceeded 57.6 mmol/L and 96.0 mmol/L, respectively. Besides, GABA could significantly inhibit the activity of whole-cell GAD rather than pure GAD. When the initial GABA concentration of the reaction solution remained 100 mmol/L, 33.51 ± 9.11% of the whole-cell GAD activity was inhibited. D101 MAR exhibited excellent properties in stabilizing the pH of the conversion reaction system, supplementing free L-Glu and removing excess GABA. Comparison of the biotransformation only in acetate buffer, the GABA production, with 50 g/100 mL of D101 MAR, was significantly increased by 138.71 ± 5.73%. D101 MAR with pre-adsorbed L-Glu could significantly enhance the production of GABA by gradual replenishment of free L-Glu, removing GABA and maintaining the pH of the reaction system, which would eventually make the GABA production more economical and eco-friendly.


Assuntos
Biotransformação , Enterococcus faecium/metabolismo , Glutamato Descarboxilase/metabolismo , Ácido Glutâmico/metabolismo , Resinas Sintéticas/química , Ácido gama-Aminobutírico/metabolismo , Adsorção , Enterococcus faecium/crescimento & desenvolvimento , Concentração de Íons de Hidrogênio , Porosidade , Resinas Sintéticas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA