Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Blood ; 143(23): 2433-2437, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38518102

RESUMO

ABSTRACT: Iron-mediated induction of bone morphogenetic protein (BMP)6 expression by liver endothelial cells is essential for iron homeostasis regulation. We used multiple dietary and genetic mouse cohorts to demonstrate a minor functional role for the metal-ion transporter ZIP8 in regulating BMP6 expression under high-iron conditions.


Assuntos
Proteína Morfogenética Óssea 6 , Proteínas de Transporte de Cátions , Ferro , Animais , Proteína Morfogenética Óssea 6/metabolismo , Proteína Morfogenética Óssea 6/genética , Camundongos , Proteínas de Transporte de Cátions/metabolismo , Proteínas de Transporte de Cátions/genética , Ferro/metabolismo , Células Endoteliais/metabolismo , Camundongos Knockout , Regulação da Expressão Gênica , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Homeostase
2.
Blood ; 141(4): 422-432, 2023 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-36322932

RESUMO

Transferrin receptor 1 (TfR1) performs a critical role in cellular iron uptake. Hepatocyte TfR1 is also proposed to influence systemic iron homeostasis by interacting with the hemochromatosis protein HFE to regulate hepcidin production. Here, we generated hepatocyte Tfrc knockout mice (Tfrcfl/fl;Alb-Cre+), either alone or together with Hfe knockout or ß-thalassemia, to investigate the extent to which hepatocyte TfR1 function depends on HFE, whether hepatocyte TfR1 impacts hepcidin regulation by serum iron and erythropoietic signals, and its contribution to hepcidin suppression and iron overload in ß-thalassemia. Compared with Tfrcfl/fl;Alb-Cre- controls, Tfrcfl/fl;Alb-Cre+ mice displayed reduced serum and liver iron; mildly reduced hematocrit, mean cell hemoglobin, and mean cell volume; increased erythropoietin and erythroferrone; and unchanged hepcidin levels that were inappropriately high relative to serum iron, liver iron, and erythroferrone levels. However, ablation of hepatocyte Tfrc had no impact on iron phenotype in Hfe knockout mice. Tfrcfl/fl;Alb-Cre+ mice also displayed a greater induction of hepcidin by serum iron compared with Tfrcfl/fl;Alb-Cre- controls. Finally, although acute erythropoietin injection similarly reduced hepcidin in Tfrcfl/fl;Alb-Cre+ and Tfrcfl/fl;Alb-Cre- mice, ablation of hepatocyte Tfrc in a mouse model of ß-thalassemia intermedia ameliorated hepcidin deficiency and liver iron loading. Together, our data suggest that the major nonredundant function of hepatocyte TfR1 in iron homeostasis is to interact with HFE to regulate hepcidin. This regulatory pathway is modulated by serum iron and contributes to hepcidin suppression and iron overload in murine ß-thalassemia.


Assuntos
Proteína da Hemocromatose , Ferro , Receptores da Transferrina , Talassemia beta , Animais , Camundongos , Talassemia beta/genética , Talassemia beta/metabolismo , Eritropoetina/metabolismo , Proteína da Hemocromatose/genética , Proteína da Hemocromatose/metabolismo , Hepatócitos/metabolismo , Hepcidinas/genética , Hepcidinas/metabolismo , Homeostase , Ferro/metabolismo , Sobrecarga de Ferro/genética , Sobrecarga de Ferro/metabolismo , Camundongos Knockout , Receptores da Transferrina/genética , Receptores da Transferrina/metabolismo
3.
Blood ; 142(15): 1312-1322, 2023 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-37478395

RESUMO

Hepcidin is the master regulator of systemic iron homeostasis. The bone morphogenetic protein (BMP) signaling pathway is a critical regulator of hepcidin expression in response to iron and erythropoietic drive. Although endothelial-derived BMP6 and BMP2 ligands have key functional roles as endogenous hepcidin regulators, both iron and erythropoietic drives still regulate hepcidin in mice lacking either or both ligands. Here, we used mice with an inactivating Bmp5 mutation (Bmp5se), either alone or together with a global or endothelial Bmp6 knockout, to investigate the functional role of BMP5 in hepcidin and systemic iron homeostasis regulation. We showed that Bmp5se-mutant mice exhibit hepcidin deficiency at age 10 days, blunted hepcidin induction in response to oral iron gavage, and mild liver iron loading when fed on a low- or high-iron diet. Loss of 1 or 2 functional Bmp5 alleles also leads to increased iron loading in Bmp6-heterozygous mice and more profound hemochromatosis in global or endothelial Bmp6-knockout mice. Moreover, double Bmp5- and Bmp6-mutant mice fail to induce hepcidin in response to long-term dietary iron loading. Finally, erythroferrone binds directly to BMP5 and inhibits BMP5 induction of hepcidin in vitro. Although erythropoietin suppresses hepcidin in Bmp5se-mutant mice, it fails to suppress hepcidin in double Bmp5- and Bmp6-mutant males. Together, these data demonstrate that BMP5 plays a functional role in hepcidin and iron homeostasis regulation, particularly under conditions in which BMP6 is limited.


Assuntos
Hemocromatose , Hepcidinas , Animais , Masculino , Camundongos , Proteína Morfogenética Óssea 6/metabolismo , Hemocromatose/genética , Hepcidinas/genética , Hepcidinas/metabolismo , Homeostase , Ferro/metabolismo , Fígado/metabolismo , Camundongos Knockout
4.
EMBO Rep ; 23(8): e54265, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35766227

RESUMO

The aggressive nature and poor prognosis of lung cancer led us to explore the mechanisms driving disease progression. Utilizing our invasive cell-based model, we identified methylthioadenosine phosphorylase (MTAP) and confirmed its suppressive effects on tumorigenesis and metastasis. Patients with low MTAP expression display worse overall and progression-free survival. Mechanistically, accumulation of methylthioadenosine substrate in MTAP-deficient cells reduce the level of protein arginine methyltransferase 5 (PRMT5)-mediated symmetric dimethylarginine (sDMA) modification on proteins. We identify vimentin as a dimethyl-protein whose dimethylation levels drop in response to MTAP deficiency. The sDMA modification on vimentin reduces its protein abundance but trivially affects its filamentous structure. In MTAP-deficient cells, lower sDMA modification prevents ubiquitination-mediated vimentin degradation, thereby stabilizing vimentin and contributing to cell invasion. MTAP and PRMT5 negatively correlate with vimentin in lung cancer samples. Taken together, we propose a mechanism for metastasis involving vimentin post-translational regulation.


Assuntos
Neoplasias Pulmonares , Purina-Núcleosídeo Fosforilase , Humanos , Neoplasias Pulmonares/genética , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Purina-Núcleosídeo Fosforilase/metabolismo , Vimentina/genética
5.
J Formos Med Assoc ; 122(9): 853-861, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36964101

RESUMO

PURPOSE: This study investigates whether using group Cognitive Stimulation Therapy (CST) effectively improves functioning among middle-aged and elderly patients with chronic schizophrenia and a below-normal cognitive range. METHODS: The study included an experimental group (N = 24), which was divided into two sub-groups to receive group CST, and a control group (N = 24), who received treatment as usual (TAU). We assessed cognitive functions using the Mini-Mental Status Examination (MMSE). We evaluated the emotional status, psychotic symptoms, and quality of life using the Geriatric Depression Scale short-form 15 (GDS-15), the Brief Psychiatric Rating Scale (BPRS), and the Dementia-Quality of Life (D-QoL) instrument. We performed all measures at three-time points: pre-CST, post-CST, and 3-month follow-up. RESULTS: We found group CST can significantly improve cognitive performance, especially the ability to use new information, after group CST intervention. However, the experimental group did not maintain this effect at the 3-month follow-up. RESULTS: We found group CST can significantly improve cognitive performance, especially the ability to use new information, after group CST intervention. However, the experimental group did not maintain this effect at the 3-month follow-up. CONCLUSION: This study supports group CST can delay the degradation of some cognitive functions in long-term hospitalized patients with chronic schizophrenia for the duration of the intervention. This finding has important clinical implications for long-term institutionalized middle-aged and elderly chronic schizophrenic patients with a below-normal cognitive range in an aging society.


Assuntos
Demência , Esquizofrenia , Idoso , Pessoa de Meia-Idade , Humanos , Qualidade de Vida/psicologia , Esquizofrenia/terapia , Envelhecimento , Cognição/fisiologia
6.
Sensors (Basel) ; 23(4)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36850785

RESUMO

In the biometric field, vein identification is a vital process that is constrained by the invisibility of veins as well as other unique features. Moreover, users generally do not wish to have their personal information uploaded to the cloud, so edge computing has become popular for the sake of protecting user privacy. In this paper, we propose a low-complexity and lightweight convolutional neural network (CNN) and we design intellectual property (IP) for shortening the inference time in finger vein recognition. This neural network system can operate independently in client mode. After fetching the user's finger vein image via a near-infrared (NIR) camera mounted on an embedded system, vein features can be efficiently extracted by vein curving algorithms and user identification can be completed quickly. Better image quality and higher recognition accuracy can be obtained by combining several preprocessing techniques and the modified CNN. Experimental data were collected by the finger vein image capture equipment developed in our laboratory based on the specifications of similar products currently on the market. Extensive experiments demonstrated the practicality and robustness of the proposed finger vein identification system.


Assuntos
Algoritmos , Redes Neurais de Computação , Humanos , Biometria , Extremidades , Laboratórios
7.
Am J Hematol ; 97(12): 1548-1559, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36069607

RESUMO

Systemic iron homeostasis is regulated by the hepatic hormone hepcidin to balance meeting iron requirements while limiting toxicity from iron excess. Iron-mediated induction of bone morphogenetic protein (BMP) 6 is a central mechanism for regulating hepcidin production. Liver endothelial cells (LECs) are the main source of endogenous BMP6, but how they sense iron to modulate BMP6 transcription and thereby hepcidin is uncertain. Here, we investigate the role of endothelial cell transferrin receptor 1 (TFR1) in iron uptake, BMP6 regulation, and systemic iron homeostasis using primary LEC cultures and endothelial Tfrc (encoding TFR1) knockout mice. We show that intracellular iron regulates Bmp6 expression in a cell-autonomous manner, and TFR1 mediates iron uptake and Bmp6 expression by holo-transferrin in primary LEC cultures. In addition, endothelial Tfrc knockout mice exhibit altered iron homeostasis compared with littermate controls when fed a limited iron diet, as evidenced by increased liver iron and inappropriately low Bmp6 and hepcidin expression relative to liver iron. However, endothelial Tfrc knockout mice have a similar iron phenotype compared to littermate controls when fed an iron-rich standard diet. Finally, ferritin and non-transferrin bound iron (NTBI) are additional sources of iron that mediate Bmp6 induction in primary LEC cultures via TFR1-independent mechanisms. Together, our data demonstrate a minor functional role for endothelial cell TFR1 in iron uptake, BMP6 regulation, and hepatocyte hepcidin regulation under iron limiting conditions, and suggest that ferritin and/or NTBI uptake by other transporters have a dominant role when iron availability is high.


Assuntos
Hepcidinas , Ferro , Camundongos , Animais , Hepcidinas/genética , Hepcidinas/metabolismo , Ferro/metabolismo , Células Endoteliais/metabolismo , Proteína Morfogenética Óssea 6/genética , Proteína Morfogenética Óssea 6/metabolismo , Receptores da Transferrina/genética , Receptores da Transferrina/metabolismo , Homeostase , Hepatócitos/metabolismo , Ferritinas , Transferrina/metabolismo , Camundongos Knockout
8.
Sensors (Basel) ; 22(14)2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35891065

RESUMO

Accidents caused by fatigue occur frequently, and numerous scholars have devoted tremendous efforts to investigate methods to reduce accidents caused by fatigued driving. Accordingly, the assessment of the spirit status of the driver through the eyes blinking frequency and the measurement of physiological signals have emerged as effective methods. In this study, a drowsiness detection system is proposed to combine the detection of LF/HF ratio from heart rate variability (HRV) of photoplethysmographic imaging (PPGI) and percentage of eyelid closure over the pupil over time (PERCLOS), and to utilize the advantages of both methods to improve the accuracy and robustness of drowsiness detection. The proposed algorithm performs three functions, including LF/HF ratio from HRV status judgment, eye state detection, and drowsiness judgment. In addition, this study utilized a near-infrared webcam to obtain a facial image to achieve non-contact measurement, alleviate the inconvenience of using a contact wearable device, and for use in a dark environment. Furthermore, we selected the appropriate RGB channel under different light sources to obtain LF/HF ratio from HRV of PPGI. The main drowsiness judgment basis of the proposed drowsiness detection system is the use of algorithm to obtain sympathetic/parasympathetic nervous balance index and percentage of eyelid closure. In the experiment, there are 10 awake samples and 30 sleepy samples. The sensitivity is 88.9%, the specificity is 93.5%, the positive predictive value is 80%, and the system accuracy is 92.5%. In addition, an electroencephalography signal was used as a contrast to validate the reliability of the proposed method.


Assuntos
Condução de Veículo , Vigília , Eletroencefalografia/métodos , Fadiga , Humanos , Reprodutibilidade dos Testes , Fases do Sono/fisiologia , Vigília/fisiologia
9.
Hepatology ; 72(2): 642-655, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31778583

RESUMO

BACKGROUND AND AIMS: Bone morphogenetic proteins BMP2 and BMP6 play key roles in systemic iron homeostasis by regulating production of the iron hormone hepcidin. The homeostatic iron regulator (HFE) also regulates hepcidin through a mechanism that intersects with the BMP-mothers against decapentaplegic homolog 1/5/8 (SMAD1/5/8) pathway. However, the relative roles of BMP2 compared with BMP6 and whether HFE regulates hepcidin through a BMP2-dependent mechanism remain uncertain. APPROACH AND RESULTS: We therefore examined the iron phenotype of mice deficient for both Bmp2 and Bmp6 or both Bmp2 and Hfe compared with single knockout (KO) mice and littermate controls. Eight-week-old double endothelial Bmp6/Bmp2 KO mice exhibited a similar degree of hepcidin deficiency, serum iron overload, and tissue iron overload compared with single KO mice. Notably, dietary iron loading still induced liver SMAD5 phosphorylation and hepcidin in double Bmp6/endothelial Bmp2 KO mice, although no other BMP ligand mRNAs were increased in the livers of double KO mice, and only Bmp6 and Bmp2 mRNA were induced by dietary iron loading in wild-type mice. In contrast, double Hfe/endothelial Bmp2 KO mice exhibited reduced hepcidin and increased extrahepatic iron loading compared to single Hfe or endothelial Bmp2 KO mice. Liver phosphorylated SMAD5 and the SMAD1/5/8 target inhibitor of DNA binding 1 (Id1) mRNA were also reduced in double Hfe/endothelial Bmp2 KO compared with single endothelial Bmp2 KO female mice. Finally, hepcidin and Id1 mRNA induction by homodimeric BMP2, homodimeric BMP6, and heterodimeric BMP2/6 were blunted in Hfe KO primary hepatocytes. CONCLUSIONS: These data suggest that BMP2 and BMP6 work collaboratively to regulate hepcidin expression, that BMP2-independent and BMP6-independent SMAD1/5/8 signaling contributes a nonredundant role to hepcidin regulation by iron, and that HFE regulates hepcidin at least in part through a BMP2-independent but SMAD1/5/8-dependent mechanism.


Assuntos
Proteína Morfogenética Óssea 2/fisiologia , Proteína Morfogenética Óssea 6/fisiologia , Proteína da Hemocromatose/fisiologia , Hemocromatose/etiologia , Animais , Endotélio , Feminino , Masculino , Camundongos , Camundongos Knockout
10.
Blood ; 133(1): 18-29, 2019 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-30401708

RESUMO

The liver orchestrates systemic iron balance by producing and secreting hepcidin. Known as the iron hormone, hepcidin induces degradation of the iron exporter ferroportin to control iron entry into the bloodstream from dietary sources, iron recycling macrophages, and body stores. Under physiologic conditions, hepcidin production is reduced by iron deficiency and erythropoietic drive to increase the iron supply when needed to support red blood cell production and other essential functions. Conversely, hepcidin production is induced by iron loading and inflammation to prevent the toxicity of iron excess and limit its availability to pathogens. The inability to appropriately regulate hepcidin production in response to these physiologic cues underlies genetic disorders of iron overload and deficiency, including hereditary hemochromatosis and iron-refractory iron deficiency anemia. Moreover, excess hepcidin suppression in the setting of ineffective erythropoiesis contributes to iron-loading anemias such as ß-thalassemia, whereas excess hepcidin induction contributes to iron-restricted erythropoiesis and anemia in chronic inflammatory diseases. These diseases have provided key insights into understanding the mechanisms by which the liver senses plasma and tissue iron levels, the iron demand of erythrocyte precursors, and the presence of potential pathogens and, importantly, how these various signals are integrated to appropriately regulate hepcidin production. This review will focus on recent insights into how the liver senses body iron levels and coordinates this with other signals to regulate hepcidin production and systemic iron homeostasis.


Assuntos
Homeostase , Distúrbios do Metabolismo do Ferro/fisiopatologia , Ferro/metabolismo , Fígado/metabolismo , Humanos
11.
Hepatology ; 70(6): 1986-2002, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31127639

RESUMO

A failure of iron to appropriately regulate liver hepcidin production is central to the pathogenesis of hereditary hemochromatosis. SMAD1/5 transcription factors, activated by bone morphogenetic protein (BMP) signaling, are major regulators of hepcidin production in response to iron; however, the role of SMAD8 and the contribution of SMADs to hepcidin production by other systemic cues remain uncertain. Here, we generated hepatocyte Smad8 single (Smad8fl/fl ;Alb-Cre+ ), Smad1/5/8 triple (Smad158;Alb-Cre+ ), and littermate Smad1/5 double (Smad15;Alb-Cre+ ) knockout mice to investigate the role of SMAD8 in hepcidin and iron homeostasis regulation and liver injury. We found that Smad8;Alb-Cre+ mice exhibited no iron phenotype, whereas Smad158;Alb-Cre+ mice had greater iron overload than Smad15;Alb-Cre+ mice. In contrast to the sexual dimorphism reported for wild-type mice and other hemochromatosis models, hepcidin deficiency and extrahepatic iron loading were similarly severe in Smad15;Alb-Cre+ and Smad158;Alb-Cre+ female compared with male mice. Moreover, epidermal growth factor (EGF) failed to suppress hepcidin in Smad15;Alb-Cre+ hepatocytes. Conversely, hepcidin was still increased by lipopolysaccharide in Smad158;Alb-Cre+ mice, although lower basal hepcidin resulted in lower maximal hepcidin. Finally, unlike most mouse hemochromatosis models, Smad158;Alb-Cre+ developed liver injury and fibrosis at 8 weeks. Liver injury and fibrosis were prevented in Smad158;Alb-Cre+ mice by a low-iron diet and were minimal in iron-loaded Cre- mice. Conclusion: Hepatocyte Smad1/5/8 knockout mice are a model of hemochromatosis that encompasses liver injury and fibrosis seen in human disease. These mice reveal the redundant but critical role of SMAD8 in hepcidin and iron homeostasis regulation, establish a requirement for SMAD1/5/8 in hepcidin regulation by testosterone and EGF but not inflammation, and suggest a pathogenic role for both iron loading and SMAD1/5/8 deficiency in liver injury and fibrosis.


Assuntos
Hepatócitos/metabolismo , Sobrecarga de Ferro/etiologia , Ferro/metabolismo , Cirrose Hepática Experimental/etiologia , Proteína Smad1/fisiologia , Proteína Smad5/fisiologia , Proteína Smad8/fisiologia , Animais , Células Cultivadas , Fator de Crescimento Epidérmico/farmacologia , Feminino , Hepcidinas/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
12.
Eur J Clin Invest ; 50(3): e13204, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31990365

RESUMO

BACKGROUND: The heart is a highly oxidative tissue, thus mitochondria play a major role in maintaining optimal cardiac function. Our previous study established a dietary-induced obese minipig with cardiac fibrosis. The aim of this study was to elucidate the role of mitochondrial dynamics in cardiac fibrosis of obese minipigs. DESIGN: Four-month-old Lee-Sung minipigs were randomly divided into two groups: a control group (C) and an obese group (O) by feeding a control diet or a high-fat diet (HFD) for 6 months. Exposure of H9c2 cardiomyoblasts to palmitate was used to explore the effects of high-fat on induction of myocardial injury in vitro. RESULTS: The O pigs displayed greater heart weight and cardiac collagen accumulation. Obese pigs exhibited a lower antioxidant capacity, ATP concentration, and higher oxidative stress in the left ventricle (LV). The HFD caused downregulation in protein expression of PGC-1α and OPA1, and upregulation of DRP1, FIS1, and PINK1 in the LV of O compared to C pigs. Furthermore, palmitate induced apoptosis and decreased ATP content in H9c2 cells. Palmitate elevated the protein expression of DRP1 and PINK1 in these cells. Inhibition of DRP1 protein expression by siDRP1 in H9c2 cells resulted in enhanced ATP and decreased palmitate-induced apoptosis. CONCLUSIONS: These results suggest that mitochondrial dynamics were linked to the progression of obesity-related cardiac injury. Inhibition of DRP1 after palmitate exposure in H9c2 cells resulted in improved ATP level and decreased apoptosis in vitro suggesting that mitochondrial fission serves a key role in progression of obesity-induced cardiac fibrosis.


Assuntos
Dinaminas/metabolismo , Cardiopatias/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Dinaminas/genética , Fibrose/metabolismo , Mitocôndrias Cardíacas/metabolismo , Obesidade , Ratos , Respiração , Suínos , Porco Miniatura
13.
Proc Natl Acad Sci U S A ; 114(45): E9559-E9568, 2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-29078380

RESUMO

Alterations in the activity/levels of the extralarge G protein α-subunit (XLαs) are implicated in various human disorders, such as perinatal growth retardation. Encoded by GNAS, XLαs is partly identical to the α-subunit of the stimulatory G protein (Gsα), but the cellular actions of XLαs remain poorly defined. Following an initial proteomic screen, we identified sorting nexin-9 (SNX9) and dynamins, key components of clathrin-mediated endocytosis, as binding partners of XLαs. Overexpression of XLαs in HEK293 cells inhibited internalization of transferrin, a process that depends on clathrin-mediated endocytosis, while its ablation by CRISPR/Cas9 in an osteocyte-like cell line (Ocy454) enhanced it. Similarly, primary cardiomyocytes derived from XLαs knockout (XLKO) pups showed enhanced transferrin internalization. Early postnatal XLKO mice showed a significantly higher degree of cardiac iron uptake than wild-type littermates following iron dextran injection. In XLKO neonates, iron and ferritin levels were elevated in heart and skeletal muscle, where XLαs is normally expressed abundantly. XLKO heart and skeletal muscle, as well as XLKO Ocy454 cells, showed elevated SNX9 protein levels, and siRNA-mediated knockdown of SNX9 in XLKO Ocy454 cells prevented enhanced transferrin internalization. In transfected cells, XLαs also inhibited internalization of the parathyroid hormone and type 2 vasopressin receptors. Internalization of transferrin and these G protein-coupled receptors was also inhibited in cells expressing an XLαs mutant missing the Gα portion, but not Gsα or an N-terminally truncated XLαs mutant unable to interact with SNX9 or dynamin. Thus, XLαs restricts clathrin-mediated endocytosis and plays a critical role in iron/transferrin uptake in vivo.


Assuntos
Clatrina/metabolismo , Endocitose/fisiologia , Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Ferro/metabolismo , Animais , Sistemas CRISPR-Cas/fisiologia , Linhagem Celular , Células HEK293 , Coração/fisiologia , Humanos , Camundongos , Camundongos Knockout , Músculo Esquelético/metabolismo , Osteócitos/metabolismo , Proteômica/métodos , Receptores de Vasopressinas/metabolismo , Nexinas de Classificação/metabolismo , Transferrina/metabolismo
14.
Int J Mol Sci ; 21(22)2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33207764

RESUMO

Studies using polymeric scaffolds for various biomedical applications, such as tissue engineering, implants and medical substitutes, and drug delivery systems, have attempted to identify suitable material for tissue regeneration. This study aimed to investigate the biocompatibility and effectiveness of a gelatin scaffold seeded with human adipose stem cells (hASCs), including physical characteristics, multilineage differentiation in vitro, and osteogenic potential, in a rat model of a calvarial bone defect and to optimize its design. This functionalized scaffold comprised gelatin-hASCs layers to improve their efficacy in various biomedical applications. The gelatin scaffold exhibited excellent biocompatibility in vitro after two weeks of implantation. Furthermore, the gelatin scaffold supported and specifically regulated the proliferation and osteogenic and chondrogenic differentiation of hASCs, respectively. After 12 weeks of implantation, upon treatment with the gelatin-hASCs scaffold, the calvarial bone harboring the critical defect regenerated better and displayed greater osteogenic potential without any damage to the surrounding tissues compared to the untreated bone defect. These findings suggest that the present gelatin scaffold is a good potential carrier for stem cells in various tissue engineering applications.


Assuntos
Diferenciação Celular , Células Imobilizadas , Gelatina/química , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Crânio , Engenharia Tecidual , Alicerces Teciduais/química , Animais , Células Imobilizadas/metabolismo , Células Imobilizadas/transplante , Xenoenxertos , Humanos , Masculino , Ratos , Ratos Sprague-Dawley , Crânio/lesões , Crânio/metabolismo , Crânio/patologia
15.
Blood ; 130(1): 73-83, 2017 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-28438754

RESUMO

Anemia suppresses liver hepcidin expression to supply adequate iron for erythropoiesis. Erythroferrone mediates hepcidin suppression by anemia, but its mechanism of action remains uncertain. The bone morphogenetic protein (BMP)-SMAD signaling pathway has a central role in hepcidin transcriptional regulation. Here, we explored the contribution of individual receptor-activated SMADs in hepcidin regulation and their involvement in erythroferrone suppression of hepcidin. In Hep3B cells, SMAD5 or SMAD1 but not SMAD8, knockdown inhibited hepcidin (HAMP) messenger RNA (mRNA) expression. Hepatocyte-specific double-knockout Smad1fl/fl;Smad5fl/fl;Cre+ mice exhibited ∼90% transferrin saturation and massive liver iron overload, whereas Smad1fl/fl;Smad5fl/wt;Cre+ mice or Smad1fl/wt;Smad5fl/fl;Cre+ female mice with 1 functional Smad5 or Smad1 allele had modestly increased serum and liver iron, and single-knockout Smad5fl/fl;Cre+ or Smad1fl/fl;Cre+ mice had minimal to no iron loading, suggesting a gene dosage effect. Hamp mRNA was reduced in all Cre+ mouse livers at 12 days and in all Cre+ primary hepatocytes. However, only double-knockout mice continued to exhibit low liver Hamp at 8 weeks and failed to induce Hamp in response to Bmp6 in primary hepatocyte cultures. Epoetin alfa (EPO) robustly induced bone marrow erythroferrone (Fam132b) mRNA in control and Smad1fl/fl;Smad5fl/fl;Cre+ mice but suppressed hepcidin only in control mice. Likewise, erythroferrone failed to decrease Hamp mRNA in Smad1fl/fl;Smad5fl/fl;Cre+ primary hepatocytes and SMAD1/SMAD5 knockdown Hep3B cells. EPO and erythroferrone reduced liver Smad1/5 phosphorylation in parallel with Hamp mRNA in control mice and Hep3B cells. Thus, Smad1 and Smad5 have overlapping functions to govern hepcidin transcription. Moreover, erythropoietin and erythroferrone target Smad1/5 signaling and require Smad1/5 to suppress hepcidin expression.


Assuntos
Eritropoetina/metabolismo , Hepatócitos/metabolismo , Hepcidinas/metabolismo , Proteína Smad1/metabolismo , Proteína Smad5/metabolismo , Animais , Linhagem Celular , Citocinas/genética , Citocinas/metabolismo , Eritropoetina/genética , Hepcidinas/genética , Camundongos , Camundongos Knockout , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Proteína Smad1/genética , Proteína Smad5/genética
16.
Blood ; 129(4): 405-414, 2017 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-27864295

RESUMO

Bone morphogenetic protein 6 (BMP6) signaling in hepatocytes is a central transcriptional regulator of the iron hormone hepcidin that controls systemic iron balance. How iron levels are sensed to regulate hepcidin production is not known, but local induction of liver BMP6 expression by iron is proposed to have a critical role. To identify the cellular source of BMP6 responsible for hepcidin and iron homeostasis regulation, we generated mice with tissue-specific ablation of Bmp6 in different liver cell populations and evaluated their iron phenotype. Efficiency and specificity of Cre-mediated recombination was assessed by using Cre-reporter mice, polymerase chain reaction of genomic DNA, and quantitation of Bmp6 messenger RNA expression from isolated liver cell populations. Localization of the BMP co-receptor hemojuvelin was visualized by immunofluorescence microscopy. Analysis of the Bmp6 conditional knockout mice revealed that liver endothelial cells (ECs) expressed Bmp6, whereas resident liver macrophages (Kupffer cells) and hepatocytes did not. Loss of Bmp6 in ECs recapitulated the hemochromatosis phenotype of global Bmp6 knockout mice, whereas hepatocyte and macrophage Bmp6 conditional knockout mice exhibited no iron phenotype. Hemojuvelin was localized on the hepatocyte sinusoidal membrane immediately adjacent to Bmp6-producing sinusoidal ECs. Together, these data demonstrate that ECs are the predominant source of BMP6 in the liver and support a model in which EC BMP6 has paracrine actions on hepatocyte hemojuvelin to regulate hepcidin transcription and maintain systemic iron homeostasis.


Assuntos
Proteína Morfogenética Óssea 6/genética , Células Endoteliais/metabolismo , Hemocromatose/genética , Hepcidinas/genética , Ferro/metabolismo , Proteínas de Membrana/genética , RNA Mensageiro/genética , Animais , Proteína Morfogenética Óssea 6/deficiência , Células Endoteliais/patologia , Feminino , Proteínas Ligadas por GPI , Regulação da Expressão Gênica , Proteína da Hemocromatose , Hepatócitos/metabolismo , Hepatócitos/patologia , Hepcidinas/metabolismo , Homeostase/genética , Imunofenotipagem , Integrases/genética , Integrases/metabolismo , Células de Kupffer/metabolismo , Células de Kupffer/patologia , Fígado/metabolismo , Fígado/patologia , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Comunicação Parácrina , RNA Mensageiro/metabolismo , Transdução de Sinais , Transcrição Gênica
17.
Am J Hematol ; 94(2): 240-248, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30478858

RESUMO

The bone morphogenetic protein (BMP)-SMAD signaling pathway is a key transcriptional regulator of hepcidin in response to tissue iron stores, serum iron, erythropoietic drive and inflammation to increase the iron supply when needed for erythropoiesis, but to prevent the toxicity of iron excess. Recently, BMP2 was reported to play a non-redundant role in hepcidin regulation in addition to BMP6. Here, we used a newly validated BMP2 ELISA assay and mice with a global or endothelial conditional knockout (CKO) of Bmp2 or Bmp6 to examine how BMP2 is regulated and functionally contributes to hepcidin regulation by its major stimuli. Erythropoietin (EPO) did not influence BMP2 expression in control mice, and still suppressed hepcidin in Bmp2 CKO mice. Lipopolysaccharide (LPS) reduced BMP2 expression in control mice, but still induced hepcidin in Bmp2 CKO mice. Chronic dietary iron loading that increased liver iron induced BMP2 expression, whereas acute oral iron gavage that increased serum iron without influencing liver iron did not impact BMP2. However, hepcidin was still induced by both iron loading methods in Bmp2 CKO mice, although the degree of hepcidin induction was blunted relative to control mice. Conversely, acute oral iron gavage failed to induce hepcidin in Bmp6 -/- or CKO mice. Thus, BMP2 has at least a partially redundant role in hepcidin regulation by serum iron, tissue iron, inflammation and erythropoietic drive. In contrast, BMP6 is absolutely required for hepcidin regulation by serum iron.


Assuntos
Proteína Morfogenética Óssea 2/fisiologia , Proteína Morfogenética Óssea 6/fisiologia , Hepcidinas/metabolismo , Animais , Proteína Morfogenética Óssea 2/deficiência , Proteína Morfogenética Óssea 6/deficiência , Eritropoetina/farmacologia , Hepcidinas/efeitos dos fármacos , Inflamação , Ferro/sangue , Ferro/farmacologia , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Knockout
18.
Am J Physiol Renal Physiol ; 315(1): F173-F185, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29384414

RESUMO

We recently reported that nuclear receptor coactivator 7 (Ncoa7) is a vacuolar proton pumping ATPase (V-ATPase) interacting protein whose function has not been defined. Ncoa7 is highly expressed in the kidney and partially colocalizes with the V-ATPase in collecting duct intercalated cells (ICs). Here, we hypothesized that targeted deletion of the Ncoa7 gene could affect V-ATPase activity in ICs in vivo. We tested this by analyzing the acid-base status, major electrolytes, and kidney morphology of Ncoa7 knockout (KO) mice. We found that Ncoa7 KO mice, similar to Atp6v1b1 KOs, did not develop severe distal renal tubular acidosis (dRTA), but they exhibited a persistently high urine pH and developed hypobicarbonatemia after acid loading with ammonium chloride. Conversely, they did not develop significant hyperbicarbonatemia and alkalemia after alkali loading with sodium bicarbonate. We also found that ICs were larger and with more developed apical microvilli in Ncoa7 KO compared with wild-type mice, a phenotype previously associated with metabolic acidosis. At the molecular level, the abundance of several V-ATPase subunits, carbonic anhydrase 2, and the anion exchanger 1 was significantly reduced in medullary ICs of Ncoa7 KO mice, suggesting that Ncoa7 is important for maintaining high levels of these proteins in the kidney. We conclude that Ncoa7 is involved in IC function and urine acidification in mice in vivo, likely through modulating the abundance of V-ATPase and other key acid-base regulators in the renal medulla. Consequently, mutations in the NCOA7 gene may also be involved in dRTA pathogenesis in humans.


Assuntos
Equilíbrio Ácido-Base , Acidose Tubular Renal/genética , Deleção de Genes , Túbulos Renais/metabolismo , Coativadores de Receptor Nuclear/genética , Acidose Tubular Renal/patologia , Acidose Tubular Renal/fisiopatologia , Acidose Tubular Renal/urina , Animais , Proteína 1 de Troca de Ânion do Eritrócito/genética , Proteína 1 de Troca de Ânion do Eritrócito/metabolismo , Anidrase Carbônica II/genética , Anidrase Carbônica II/metabolismo , Predisposição Genética para Doença , Concentração de Íons de Hidrogênio , Túbulos Renais/patologia , Túbulos Renais/fisiopatologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Coativadores de Receptor Nuclear/deficiência , Fenótipo , Urina/química , ATPases Vacuolares Próton-Translocadoras/genética , ATPases Vacuolares Próton-Translocadoras/metabolismo
19.
Eur J Clin Invest ; 48(7): e12942, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29682734

RESUMO

BACKGROUND: Pericardial adipose tissue (PAT) volume is highly associated with the presence and severity of cardiometabolic diseases, but the underlying mechanism is unknown. We previously demonstrated that a high-fat diet (HFD) induced metabolic dysregulation, cardiac fibrosis and accumulation of more PAT in minipigs. This study used our obese minipig model to investigate the characteristics of PAT and omental visceral fat (VAT) induced by a HFD, and the potential link between PAT and HFD-related myocardial fibrosis. MATERIALS AND METHODS: Five-month-old Lee-Sung minipigs were made obese by feeding a HFD for 6 months. RESULTS: The HFD induced dyslipidemia, cardiac fibrosis and more fat accumulation in the visceral and pericardial depots. The HFD changes the fatty acid composition in the adipose tissue by decreasing the portion of linoleic acid in the VAT and PAT. No arachidonic acid was detected in the VAT and PAT of control pigs, whereas it existed in the same tissues of obese pigs fed the HFD. Compared with the control pigs, elevated levels of malondialdehyde and TNFα were exhibited in the plasma and PAT of obese pigs. HFD induced greater size of adipocytes in VAT and PAT. Higher levels of GH, leptin, OPG, PDGF, resistin, SAA and TGFß were observed in obese pig PAT compared to VAT. CONCLUSION: This study demonstrated the similarities and dissimilarities between PAT and VAT under HFD stimulus. In addition, this study suggested that alteration in PAT contributed to the myocardial damage.


Assuntos
Tecido Adiposo/fisiologia , Obesidade/fisiopatologia , Adipócitos/patologia , Adipocinas/metabolismo , Tecido Adiposo/patologia , Animais , Composição Corporal/fisiologia , Tamanho Celular , Dieta Hiperlipídica , Dislipidemias/etiologia , Dislipidemias/patologia , Dislipidemias/fisiopatologia , Ácidos Graxos/química , Feminino , Fibrose/fisiopatologia , Gordura Intra-Abdominal/patologia , Gordura Intra-Abdominal/fisiologia , Metabolismo dos Lipídeos/fisiologia , Masculino , Miocárdio/patologia , Obesidade/patologia , Estresse Oxidativo/fisiologia , Pericárdio/fisiologia , Suínos , Porco Miniatura
20.
BMC Ophthalmol ; 18(1): 90, 2018 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-29649988

RESUMO

BACKGROUND: To investigate function and morphology of the meibomian gland (MG) in patients with thyroid eye disease (TED). METHODS: In this prospective case series study, patients with unilateral or bilateral TED were consecutively enrolled. The diagnosis of TED was based on the typical orbital findings and/or radiographic evidence. The disease activity of TED was classified according to the clinical activity score (CAS). Degrees of lagophthalmos and exophthalmos, blinking rates, and results of the Schirmer test 1 were also recorded. All patients completed the SPEED questionnaire and underwent MG assessment, including lipid layer thickness (LLT), MG dropout (MGd), and MG expression. RESULTS: In total 31 eyes from 17 patients with unilateral or bilateral TED were included. Patients were divided into inactive TED (CAS 0-1; 20 eyes from 11 patients) and active TED (CAS 2-3, 11 eyes from 6 patients) groups. MGd was significantly more severe in the active TED than the inactive TED group [Median (Inter-quartile region): 3.0 (2.0-3.0) vs. 2.0 (1.0-2.0) degree, P = 0.04]. However, patients with active TED had thicker LLT than those with inactive TED (90.0 [80.0-100.0] vs. 65.0 [47.8-82.5] nm, P = 0.02), and LLT was positively correlated with lagophthalmos (r = 0.37, P = 0.04). CONCLUSIONS: Patients with active TED had more severe MGd, but thicker LLT. Active TED may cause periglandular inflammation of MGs, leading to MGd, but compensatory secretion from residual MGs and lagophthalmos-induced forceful blinking might temporarily release more lipids over the tear film.


Assuntos
Oftalmopatia de Graves/fisiopatologia , Glândulas Tarsais/fisiologia , Adulto , Idoso , Piscadela/fisiologia , Pálpebras/patologia , Feminino , Oftalmopatia de Graves/metabolismo , Oftalmopatia de Graves/patologia , Humanos , Lipídeos/análise , Masculino , Glândulas Tarsais/metabolismo , Glândulas Tarsais/patologia , Pessoa de Meia-Idade , Estudos Prospectivos , Lágrimas/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA