Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioorg Chem ; 143: 107069, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38160477

RESUMO

Tetrandrine (TET) possesses multiple pharmacological activities and could suppress tumor proliferation via PI3K pathway inhibition. However, inferior antitumor activity and potential toxicity limit its clinical application. In the present study, a series of 14-sulfonamide and sulfonate TET derivatives were designed, synthesized, and evaluated for biological activities. Through structural-activity relationship studies, compound 3c with α, ß-unsaturated carbonyl group exhibited the most potent activity against all tested tumor cell lines (including Hela, HCT116, HepG2, MCF-7, and SHSY5Y), as well as negligible toxicity against normal cell lines LO2 and HEK293. Additionally, compound 3c effectively inhibited HCT116 and CT26 cell proliferation in vitro with increased cell proportion in the G2/M phase, activated the mitochondrial apoptosis pathway, and induced colon cancer cell apoptosis by suppressing the PI3K/AKT/mTOR pathway. The further molecular docking results confirmed that compound 3c is potentially bound to multiple residues in PI3K with a stronger binding affinity than TET. Ultimately, compound 3c dramatically suppressed tumor growth in the CT26 xenograft tumor model, without noticeable visceral toxicity detected in the high-dose group. In summary, compound 3c might present new insights for designing new PI3K inhibitors and be a potential candidate for colon cancer treatment.


Assuntos
Benzilisoquinolinas , Neoplasias do Colo , Proteínas Proto-Oncogênicas c-akt , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Fosfatidilinositol 3-Quinases/metabolismo , Simulação de Acoplamento Molecular , Células HEK293 , Serina-Treonina Quinases TOR/metabolismo , Linhagem Celular Tumoral , Apoptose , Proliferação de Células , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo
2.
Fish Shellfish Immunol ; 134: 108571, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36736844

RESUMO

The cellular transcription factors are known to play important roles in virus infection. The present study cloned and characterized a transcription factor CCAAT/Enhancer-binding protein homolog from the shrimp Penaeus vannamei (designates as PvCEBP), and explored its potential functions in white spot syndrome virus (WSSV) infection. PvCEBP has an open reading frame (ORF) of 864 bp encoding a putative protein of 287 amino acids, which contained a highly C-terminal conserved bZIP domain. Phylogenetic tree analysis showed that PvCEBP was evolutionarily clustered with invertebrate CEBPs and closely related to the CEBP of Homarus americanus. Quantitative real-time PCR (qPCR) analysis revealed that PvCEBP was expressed in all examined shrimp tissues, with transcript levels increased in shrimp hemocytes and gill upon WSSV challenge. Furthermore, knockdown of PvCEBP mediated by RNA interference significantly decreased the expression of WSSV genes and viral loads, while enhanced the shrimp survival rate under WSSV challenge. In silico prediction and reporter gene assays demonstrated that PvCEBP could activate the promoter activity of the viral immediate-early gene ie1. Collectively, our findings suggest that PvCEBP is annexed by WSSV to promote its propagation by enhancing the expression of viral immediate-early genes.


Assuntos
Penaeidae , Vírus da Síndrome da Mancha Branca 1 , Animais , Fatores de Transcrição/genética , Penaeidae/genética , Vírus da Síndrome da Mancha Branca 1/fisiologia , Filogenia , Sequência de Aminoácidos , Proteínas de Artrópodes/genética
3.
J Anim Physiol Anim Nutr (Berl) ; 107(3): 830-838, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36224721

RESUMO

Oils provide a considerable amount of energy to the swine diet, but they are prone to lipid oxidation if not properly preserved. Consumption of oxidized oils can adversely affect the animal organism and even the offspring. This study investigated the impact of oxidized soybean oil in the diets of sows from 107 days gestation to 21 days of lactation on the performance of sows and jejunum health of suckling piglets. Sixteen sows were randomly allocated into two groups: one group (n = 8) was fed with the fresh soybean oil (FSO) diet, and another group (n = 8) was treated with the oxidized soybean oil (OSO) diet. Dietary oxidized soybean oil does not affect sow performance. Antioxidant enzyme activity in the milk was reduced significantly in the OSO group, such as the superoxide dismutase (SOD), total antioxidant capacity (T-AOC), and catalase (CAT) activities (p < 0.05). On Day 21, oxidized soybean oil increased tumor necrosis factor-α (TNF-α), interleukin 6 (IL-6), and interleukin 8 (IL-8) levels in sow milk and the concentrations of TNF-α and IL-8 cytokines in plasma (p < 0.05). Suckling piglets from sows fed on OSO showed a trend towards increased IL-6 and TNF-α in plasma (p < 0.1). The mRNA expression of interleukin 1ß (IL-1ß) was augmented, whereas interleukin 10 (IL-10) was decreased, and zonula occludens-1 (ZO-1) had a tendency to be down-regulated in OSO treatment. This study revealed that the OSO of feed decreased the antioxidant capacity of milk, further contributing to the inflammatory response in the jejunum of suckling piglets.


Assuntos
Antioxidantes , Suplementos Nutricionais , Animais , Suínos , Feminino , Antioxidantes/metabolismo , Interleucina-8/metabolismo , Interleucina-8/farmacologia , Óleo de Soja/farmacologia , Interleucina-6/metabolismo , Interleucina-6/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Jejuno , Dieta/veterinária , Lactação , Leite/metabolismo , Ração Animal/análise
4.
Mol Genet Genomics ; 297(1): 75-85, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34786636

RESUMO

Brassica juncea is one of a unique vegetable in China, its tumorous stem can be processed into pickle or as fresh vegetable. For a long time, early-bolting as a main factor affects yield and quality of B. juncea, which happens about 15% all year round. As plant specific blue light receptors, FKF1/LKP2 involved in photoperiod flowering. To analyze the expression levels of BjuFKF1/BjuLKP2 and screen their interaction proteins in B. juncea, qRT-PCR and yeast two hybrid assays were recruited. qRT-PCR assays found that the expression levels of BjuFKF1 and BjuLKP2 were up-regulated expressed under both white and blue light. When under different light, BjuFKF1 was significantly increased at vegetative growth stage, but decreased in flowers under blue light. For BjuLKP2, its expression levels did not show significant changes under different light treatment. To investigate interaction proteins, BjuFKF1 and BjuLKP2 were used as bait proteins, and nine potential proteins were screened from yeast library. Yeast two hybrid assays was recruited to further verify their interaction, the results showed that both BjuFKF1 and BjuLKP2 interacted with BjuCOL, BjuCOL3, BjuCOL5, BjuAP2, BjuAP2-1 and BjuSKP1f, only BjuLKP2 interacted with BjuSVP-1 and BjuCDF1 in vivo. In this study, BjuFKF1 and BjuLKP2 were up-regulated expressed under both white and blue light. Yeast two hybrid results verified that BjuFKF1 and BjuLKP2 interacted with six and eight of those nine proteins in vivo, respectively. All of those results will provided reference genes to study BjuFKF1/BjuLKP2 regulated flowering pathway in B. juncea.


Assuntos
Proteínas CLOCK , Flores/genética , Mostardeira , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Flores/crescimento & desenvolvimento , Flores/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Mostardeira/genética , Mostardeira/crescimento & desenvolvimento , Mostardeira/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Mapas de Interação de Proteínas/fisiologia , Fatores de Tempo
5.
Fish Shellfish Immunol ; 128: 380-388, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35934241

RESUMO

White spot syndrome virus (WSSV) can cause a contagious, high virulent and pandemic disease for crustaceans, especially shrimps. However, the molecular mechanism of WSSV pathogenesis remains unclear. Flotillins are lipid raft-associated proteins, which mainly include flotillin-1 and flotillin-2. They are involved in the formation of large heteromeric protein complexes engaged in diverse signalling pathways at the membrane-cytosol interface. They defined a clathrin-independent endocytic pathway in mammalian cells. Our previous studies suggested that shrimp flotillin-2 might mediate endocytosis involved in WSSV infection. To further explore the function of shrimp flotillin, a flotillin-1 homologous, Lvflotillin-1A was identified and characterized in Litopenaeus vanamei. The transcription of Lvflotillin-1A showed a significant decline at 12h post-infection, followed by complete recovery and a slight up-regulation after the WSSV challenge. Gene silencing revealed that inhibition of Lvflotillin-1A raised the virus infection, suggesting Lvflotillin-1A might play an important role in shrimp immunity. Furthermore, co-immunoprecipitation and immunofluorescence illustrated that Lvflotillin-1A and Lvflotillin-2 could form hetero-oligomers, and co-expression promoted the accumulation of intracellular vesicles. The study revealed that WSSV might up-regulate Lvflotillin-2 expression and alter the subcellular location of Lvflotillin-1 protein to facilitate virus infection. These results will provide information for understanding the interaction between WSSV and shrimp.


Assuntos
Penaeidae , Vírus da Síndrome da Mancha Branca 1 , Animais , Proteínas de Artrópodes , Clatrina , Mamíferos/metabolismo , Microdomínios da Membrana/metabolismo , Vírus da Síndrome da Mancha Branca 1/fisiologia
6.
Int J Mol Sci ; 23(15)2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35897756

RESUMO

For DNA viruses, the immediate-early (IE) proteins are generally essential regulators that manipulate the host machinery to support viral replication. Recently, IE1, an IE protein encoded by white spot syndrome virus (WSSV), has been demonstrated to function as a transcription factor. However, the target genes of IE1 during viral infection remain poorly understood. Here, we explored the host target genes of IE1 using RNAi coupled with transcriptome sequencing analysis. A total of 429 differentially expressed genes (DEGs) were identified from penaeid shrimp, of which 284 genes were upregulated and 145 genes were downregulated after IE1 knockdown. GO and KEGG pathway enrichment analysis revealed the identified DEGs are significantly enriched in the minichromosome maintenance (MCM) complex and DNA replication, indicating that IE1 plays a critical role in DNA replication control. In addition, it was found that Penaeus vannamei MCM complex genes were remarkably upregulated after WSSV infection, while RNAi-mediated knockdown of PvMCM2 reduced the expression of viral genes and viral loads at the early infection stage. Finally, we demonstrated that overexpression of IE1 promoted the expression of MCM complex genes as well as cellular DNA synthesis in insect High-Five cells. Collectively, our current data suggest that the WSSV IE1 protein is a viral effector that modulates the host DNA replication machinery for viral replication.


Assuntos
Proteínas Imediatamente Precoces , Penaeidae , Vírus da Síndrome da Mancha Branca 1 , Animais , Replicação do DNA/genética , Perfilação da Expressão Gênica , Regulação Viral da Expressão Gênica , Proteínas Imediatamente Precoces/genética , Proteínas Imediatamente Precoces/metabolismo , Penaeidae/metabolismo , Transcriptoma , Vírus da Síndrome da Mancha Branca 1/genética
7.
Int J Mol Sci ; 23(18)2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-36142431

RESUMO

Acute hepatopancreatic necrosis disease (AHPND), caused by a unique strain of Vibrio parahaemolyticus (Vp (AHPND)), has become the world's most severe debilitating disease in cultured shrimp. Thus far, the pathogenesis of AHPND remains largely unknow. Herein, in Litopenaeus vannamei, we found that a Vp (AHPND) infection significantly increased the expression of lipid droplets (LDs) protein LvPerilipin, as well as promoted the formation of LDs. In addition, the knockdown of LvPerilipin increased the shrimp survival rate in response to the Vp (AHPND) infection, and inhibited the proliferation of Vp (AHPND). Furthermore, we demonstrated that LvPerilipin depletion could increase the production of reactive oxygen species (ROS), which may be responsible for the decreased Vp (AHPND) proliferation. Taken together, our current data for the first time reveal that the shrimp lipid droplets protein Perilipin is involved in the pathogenesis of Vp (AHPND) via promoting LDs accumulation and decreasing ROS production.


Assuntos
Penaeidae , Vibrio parahaemolyticus , Animais , Gotículas Lipídicas , Perilipina-1 , Espécies Reativas de Oxigênio , Vibrio parahaemolyticus/fisiologia
8.
J Sci Food Agric ; 102(8): 3119-3129, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34791653

RESUMO

BACKGROUND: Cooking oil is an indispensable component of the human diet. However, oils usually undergo thermal oxidation. Oxidized soybean oil (OSO) has been shown to have detrimental effects on humans and has emerged as a root cause of many chronic diseases. The objective of this work was to evaluate the effects of puerpera exposure to OSO on kidney damage in the mother and offspring using lactating rats as an experimental model. RESULTS: Pathological sections and ultrastructure showed that OSO exposure resulted in various levels of damage to lactating rats and their offspring. OSO induced oxidative stress in the kidneys of lactating rats, as evidenced by increased levels of hydrogen peroxide, interleukin (IL)-1ß, and IL-8. OSO increased the activities of glutathione peroxidase and superoxide dismutase. OSO upregulated the expression of apoptosis-related genes, nuclear factor-erythroid 2-related factor 2 (Nrf2), and nuclear factor κB-related inflammatory factor genes. In the offspring of the OSO-exposed mothers, hydrogen peroxide, malondialdehyde, IL-6, and tumor necrosis factor-alpha contents were increased. Furthermore, OSO enhanced the levels of Nrf2, NAD(P)H quinone oxidoreductase 1, heme oxygenase 1, and p65 and decreased B-cell lymphoma 2. CONCLUSION: These findings indicated that the kidneys of two generations of rats were compromised by oxidative damage when fed OSO during lactation. This study provides evidence for increasing the genes expression of the Nrf2/heme oxygenase 1 pathway to alleviate the kidney damage caused by OSO in the mother and offspring. © 2021 Society of Chemical Industry.


Assuntos
Fator 2 Relacionado a NF-E2 , NF-kappa B , Animais , Feminino , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Peróxido de Hidrogênio/metabolismo , Rim/metabolismo , Lactação , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Estresse Oxidativo , Ratos , Transdução de Sinais , Óleo de Soja/química
9.
J Am Chem Soc ; 143(28): 10793-10803, 2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34250803

RESUMO

Chromophores that absorb in the tissue-penetrant far-red/near-infrared window have long served as photocatalysts to generate singlet oxygen for photodynamic therapy. However, the cytotoxicity and side reactions associated with singlet oxygen sensitization have posed a problem for using long-wavelength photocatalysis to initiate other types of chemical reactions in biological environments. Herein, silicon-Rhodamine compounds (SiRs) are described as photocatalysts for inducing rapid bioorthogonal chemistry using 660 nm light through the oxidation of a dihydrotetrazine to a tetrazine in the presence of trans-cyclooctene dienophiles. SiRs have been commonly used as fluorophores for bioimaging but have not been applied to catalyze chemical reactions. A series of SiR derivatives were evaluated, and the Janelia Fluor-SiR dyes were found to be especially effective in catalyzing photooxidation (typically 3%). A dihydrotetrazine/tetrazine pair is described that displays high stability in both oxidation states. A protein that was site-selectively modified by trans-cyclooctene was quantitatively conjugated upon exposure to 660 nm light and a dihydrotetrazine. By contrast, a previously described methylene blue catalyst was found to rapidly degrade the protein. SiR-red light photocatalysis was used to cross-link hyaluronic acid derivatives functionalized by dihydrotetrazine and trans-cyclooctenes, enabling 3D culture of human prostate cancer cells. Photoinducible hydrogel formation could also be carried out in live mice through subcutaneous injection of a Cy7-labeled hydrogel precursor solution, followed by brief irradiation to produce a stable hydrogel. This cytocompatible method for using red light photocatalysis to activate bioorthogonal chemistry is anticipated to find broad applications where spatiotemporal control is needed in biological environments.


Assuntos
Ciclo-Octanos/química , Corantes Fluorescentes/química , Rodaminas/química , Silício/química , Tetrazóis/síntese química , Animais , Catálise , Humanos , Raios Infravermelhos , Camundongos , Estrutura Molecular , Processos Fotoquímicos , Tetrazóis/química , Células Tumorais Cultivadas
10.
Bioinformatics ; 36(6): 1779-1784, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31647523

RESUMO

MOTIVATION: Scaling by sequencing depth is usually the first step of analysis of bulk or single-cell RNA-seq data, but estimating sequencing depth accurately can be difficult, especially for single-cell data, risking the validity of downstream analysis. It is thus of interest to eliminate the use of sequencing depth and analyze the original count data directly. RESULTS: We call an analysis method 'scale-invariant' (SI) if it gives the same result under different estimates of sequencing depth and hence can use the original count data without scaling. For the problem of classifying samples into pre-specified classes, such as normal versus cancerous, we develop a deep-neural-network based SI classifier named scale-invariant deep neural-network classifier (SINC). On nine bulk and single-cell datasets, the classification accuracy of SINC is better than or competitive to the best of eight other classifiers. SINC is easier to use and more reliable on data where proper sequencing depth is hard to determine. AVAILABILITY AND IMPLEMENTATION: This source code of SINC is available at https://www.nd.edu/∼jli9/SINC.zip. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Neoplasias , RNA-Seq , Humanos , Redes Neurais de Computação , Análise de Célula Única , Software
11.
Sensors (Basel) ; 20(20)2020 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-33080811

RESUMO

In the field of robot path planning, aiming at the problems of the standard genetic algorithm, such as premature maturity, low convergence path quality, poor population diversity, and difficulty in breaking the local optimal solution, this paper proposes a multi-population migration genetic algorithm. The multi-population migration genetic algorithm randomly divides a large population into several small with an identical population number. The migration mechanism among the populations is used to replace the screening mechanism of the selection operator. Operations such as the crossover operator and the mutation operator also are improved. Simulation results show that the multi-population migration genetic algorithm (MPMGA) is not only suitable for simulation maps of various scales and various obstacle distributions, but also has superior performance and effectively solves the problems of the standard genetic algorithm.


Assuntos
Algoritmos , Genética Populacional , Robótica , Simulação por Computador
12.
Angew Chem Int Ed Engl ; 59(9): 3439-3443, 2020 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-31765069

RESUMO

Metabolomics is a powerful systems biology approach that monitors changes in biomolecule concentrations to diagnose and monitor health and disease. However, leading metabolomics technologies, such as NMR and mass spectrometry (MS), access only a small portion of the metabolome. Now an approach is presented that uses the high sensitivity and chemical specificity of surface-enhanced Raman scattering (SERS) for online detection of metabolites from tumor lysates following liquid chromatography (LC). The results demonstrate that this LC-SERS approach has metabolite detection capabilities comparable to the state-of-art LC-MS but suggest a selectivity for the detection of a different subset of metabolites. Analysis of replicate LC-SERS experiments exhibit reproducible metabolite patterns that can be converted into barcodes, which can differentiate different tumor models. Our work demonstrates the potential of LC-SERS technology for metabolomics-based diagnosis and treatment of cancer.


Assuntos
Metaboloma , Metabolômica/métodos , Neoplasias/diagnóstico , Animais , Cromatografia Líquida de Alta Pressão , Modelos Animais de Doenças , Camundongos , Neoplasias/metabolismo , Análise Espectral Raman , Proteína Wnt1/metabolismo
13.
J Anim Physiol Anim Nutr (Berl) ; 103(4): 1207-1217, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30994244

RESUMO

This study examined the influence of adding different amounts of maternal dietary l-carnitine and two fat types on fatty acid (FA) composition and the expression of lipid metabolism-related genes in piglets. The experiment was designed as a 2 × 2 factorial with two fat types (3.5% soyabean oil, SO, and 3.5% fish oil, FO) and two levels of l-carnitine (0 and 100 mg/kg) added to the sows' diets. A higher proportion of n-3 polyunsaturated fatty acids (PUFA) and a lower ratio of n-6/n-3 PUFA in sow milk and piglet tissues were observed in the FO groups than in the SO groups. Adding l-carnitine increased the proportion of C16:1 in sow milk and decreased n-3 PUFA in piglet subcutaneous fat. Hepatic peroxisome proliferator-activated receptor α (PPAR-α) was more abundantly expressed in piglets from the FO groups than from the SO groups (p < 0.05), whereas stearoyl-CoA-desaturase (SCD), sterol regulatory element binding protein-1 (SREBP1) and ∆6-desaturase (D6D) genes were less expressed in the FO groups compared with piglets from the SO groups. The expression of fatty acid synthase (FAS) genes was decreased in the SO groups with l-carnitine compared to that of the other dietary treatments. No differences among dietary treatments were observed with regard to the expression of acetyl-CoA carboxylase (ACC). In conclusion, FO and l-carnitine supplementation in sows affect FA composition and hepatic gene expression in piglets.


Assuntos
Ração Animal/análise , Carnitina/farmacologia , Dieta/veterinária , Gorduras na Dieta/administração & dosagem , Metabolismo dos Lipídeos/efeitos dos fármacos , Suínos , Fenômenos Fisiológicos da Nutrição Animal , Animais , Carnitina/administração & dosagem , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Lactação , Fenômenos Fisiológicos da Nutrição Materna , Leite/química , Gravidez
14.
Fish Shellfish Immunol ; 74: 318-324, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29325710

RESUMO

The Wnt signaling mediated by Wnt proteins that orchestrate and influence a myriad of cellular processes, such as cell proliferation, differentiation, tumorigenesis, apoptosis, and participation in immune defense during microbe infection. Wnt5b is one of the Wnt signaling molecules that initiate the cascade. In this study, we cloned and characterized a Wnt5b homolog from Litopenaeus vannamei designed as LvWnt5b. The full length of LvWnt5b transcript was 1726 bp with an 1107 bp open reading frame that encoded a 368 aa protein, which contained 24 discontinuous and highly conserved cysteine. Real-time quantitative PCR showed that the transcriptional level of LvWnt5b was down-regulated when infected with white spot syndrome virus (WSSV). Knock-down of LvWnt5b resulted in inhibition of the transcriptional level of WSSV gene ie1, indicating that LvWnt5b mediated signaling pathway may play an important role in defense against WSSV infection. When LvWnt5b was silenced, caspase3/7 activity in hemocytes was increased significantly, and the transcription of viral gene was decreased as well. Moreover, overexpression of LvWnt5b in HEK293T cells led to inhibition of caspase3/7 activity, which further proved the role of LvWnt5b in restraining apoptosis. The study showed that the shrimp may decrease the expression of LvWnt5b initiatively to act as an immune defense mechanism against WSSV infection via promoting apoptosis. It will be helpful for understanding the function of Wnt signaling pathway in virus invasion and host defense.


Assuntos
Apoptose/genética , Imunidade Inata/genética , Penaeidae/genética , Penaeidae/imunologia , Vírus da Síndrome da Mancha Branca 1/fisiologia , Proteínas Wnt/genética , Proteínas Wnt/imunologia , Sequência de Aminoácidos , Animais , Proteínas de Artrópodes/química , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/imunologia , Sequência de Bases , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/imunologia , Células HEK293 , Humanos , Filogenia , Transdução de Sinais , Proteínas Wnt/química
15.
Fish Shellfish Immunol ; 54: 247-53, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27079424

RESUMO

Flotillin-2, an important protein of vesicular endocytosis, plays an essential role in a large number of cellular processes, including viruses and pathogen infection. In the present study, a flotillin-2 homolog in Litopenaeus vannamei, designed as Lvflotillin-2, was cloned and characterized. To analyze the putative role of Lvflotillin-2 during white spot syndrome virus (WSSV) infection, real-time quantitative PCR was performed. The result showed that the transcriptional level of Lvflotillin-2 was up-regulated significantly after virus challenge. Furthermore, upon WSSV stimulation, Lvflotillin-2 in shrimp cells could translocate from the plasma membrane to intracellular compartments, and unexpectedly, also into nucleus. Additionally, depletion of Lvflotillin-2 inhibited WSSV gene ie1 transcription. It suggested that Lvflotillin-2 could be hijacked by WSSV. These observations indicated that Lvflotillin-2 was involved in WSSV infection, and presented here should be useful for gaining insight into shrimp immunity and WSSV pathogenesis.


Assuntos
Proteínas de Artrópodes/genética , Proteínas de Membrana/genética , Penaeidae/genética , Penaeidae/imunologia , Sequência de Aminoácidos , Animais , Proteínas de Artrópodes/química , Proteínas de Artrópodes/metabolismo , Clonagem Molecular , DNA Complementar/genética , DNA Complementar/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Penaeidae/classificação , Penaeidae/virologia , Filogenia , Regulação para Cima , Vírus da Síndrome da Mancha Branca 1/fisiologia
16.
ACS Omega ; 9(11): 12835-12849, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38524473

RESUMO

Thick coal seam fracture stimulations were conducted to enhance pre-gas drainage efficiency through the use of a highly pressurized multidischarge carbon dioxide gas fracturing technique. This method also offers potential as a strategy for carbon dioxide sequestration, aiding in the reduction of atmospheric carbon dioxide levels and thereby contributing to the fight against climate change. This paper discusses findings from both field experiments and numerical simulations. Data from the field show that the multidischarge fracturing approach significantly improves permeability in thick coal seams, thereby boosting gas drainage effectiveness. Additionally, the impact of increasing the number of fracturing devices is more pronounced at distances of 2.5 or 7.5 m from the borehole but becomes more complex at 12.5 m or further. The numerical simulations reveal that this technique primarily enhances coal seam gas drainage by improving the seam permeability and establishing a gas pressure gradient within the seam. It is noted that the radius of failure around the borehole wall expands with higher discharge pressures, while the radius of effective drainage narrows as the gap between discharge heads increases. Moreover, adding more discharge sets significantly influences the deformation and permeability of the coal seam within a 5 m radius of the fracturing borehole, but the influence is not obvious after 10 m from the fracturing borehole.

17.
Animals (Basel) ; 14(2)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38254475

RESUMO

In this experiment, glucose master liquor and corn steep liquor were used as carbon and nitrogen sources, and Candida utilis was used as a strain to ferment yeast feed. The OD value and number of yeast cells were used as response values to optimize the medium components of the yeast feed through a response surface methodology. The optimal medium components were a glucose master liquor concentration of 8.3%, a corn steep liquor concentration of 1.2%, and a KH2PO4 concentration of 0.14%. Under this condition of fermentation, the OD value was 0.670 and the number of yeast cells was 2.72 × 108/mL. Then, we fed Candida utilis feed to Dongliao black piglets, and the effects of the yeast feed on the piglets' growth performance, fecal microbiota, and plasma metabolic levels were investigated through 16S rDNA sequencing and metabolomics. In total, 120 black piglets with an average initial weight of 6.90 ± 1.28 kg were randomly divided into two groups. One group was fed the basic diet (the CON group), and the other was supplemented with 2.5% Candida utilis add to the basic diet (the 2.5% CU group). After a pre-feeding period, the formal experiments were performed for 21 days. The results showed that the addition of Candida utilis to the diet did not affect growth performance compared with the control group. Meanwhile, no significant differences were observed in the serum biochemical indices. However, piglets in the 2.5% CU group had a significantly altered fecal microbiota, with an increased abundance of Clostridium_sensu_stricto_1, Lactobacillus, and Muribaculaceae_unclassified. Regarding the plasma metabolome, the 12 differential metabolites detected were mainly enriched in the histidine, tryptophan, primary bile acid, and caffeine metabolic pathways. Regarding the integrated microbiome-metabolome analysis, differential metabolites correlated with fecal flora to variable degrees, but most of them were beneficial bacteria of Firmicutes. Collectively, dietary Candida utilis feed had no adverse effect on growth performance; however, it played an important role in regulating fecal flora and maintaining metabolic levels.

18.
Front Vet Sci ; 11: 1349754, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38711539

RESUMO

Introduction: This study investigated the effects of storage japonica brown rice (SJBR) and bile acids (BA) on the growth performance, meat quality, and intestinal microbiota of growing-finishing Min pigs. Methods: A total of 24 healthy Min pigs with a similar body weight of 42.25 ± 2.13 kg were randomly divided into three groups with eight replicates of one pig each. The groups were as follows: CON (50% corn), SJBR (25% corn +25% SJBR), and SJBR + BA (25% corn +25% SJBR +0.025% hyodeoxycholic acid). The experimental period lasted from day 90 (the end of the nursery phase) to day 210 (the end of the finishing phase). Results: The results showed the following: (1) Compared with the CON group, there was no significant difference in the average daily gain (ADG) and average daily feed intake (ADFI) of the SJBR and SJBR + BA groups, and the feed conversion ratio (FCR) was significantly decreased (p < 0.05). (2) Compared with the CON group, the total protein (TP) content in the serum was significantly increased, and the blood urea nitrogen (BUN) content was significantly decreased (p < 0.05) in the SJBR and SJBR + BA groups; moreover, HDL-C was significantly higher by 35% (p < 0.05) in the SJBR + BA group. (3) There were no significant differences in carcass weight, carcass length, pH, drip loss, cooking loss, and shear force among the groups; the eye muscle area was significantly increased in the SJBR group compared with the CON group (p < 0.05); back fat thickness was significantly decreased in the SJBR + BA group compared with the SJBR group (p < 0.05); and the addition of SJBR significantly increased the mRNA expression of MyHC I in the longissimus dorsi (LD) muscle of growing-finishing Min pigs (p < 0.05). (4) The cecal bacteria were detected using 16S rDNA, and the proportion of Lactobacillus was increased gradually at the genus level, but there was no significant difference among the different groups. Conclusion: In conclusion, 25% SJBR can improve the growth performance and increase the abundance of intestinal beneficial bacteria, and based on this, adding bile acids can reduce the back fat thickness of growing-finishing Min pigs.

19.
RSC Adv ; 14(26): 18453-18458, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38860250

RESUMO

Asymmetric catalytic processes promoted by N-heterocyclic carbenes (NHCs) hold great potential for the sustainable preparation of chiral molecules. However, catalyzing the reactions by manipulating the reactive intermediates is challenging. We report herein that the known NHC-catalyzed [3 + 2] annulation reaction between ketimine and enal can also be turned into a [2 + 3] annulation reaction for the highly enantioselective direct synthesis of trifluoroethyl 3,2'-spirooxindole γ-lactams (4) through timely catalysis of the intermediates. DFT calculations revealed that this transformation included the key step of the nucleophilic attack of the Breslow intermediate M2 derived from NHC and enal (2) to the unattacked ketimine (1). Our study demonstrates that it is possible to tune the desired selectivities through the dynamic catalysts of the reactive intermediates.

20.
Eur J Med Chem ; 267: 116183, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38354520

RESUMO

Triggering ferroptosis is a potential therapeutic pathway and strategy for the prospective treatment of lethal hepatocellular carcinoma (HCC). The asialo-glycoprotein receptor (ASGPR) is an over-expressed receptor on the membranes of hepatocellular carcinoma cells (HCCs) and binds specifically to galactose (Gal) ligand. Celastrol (CE) is a potent anticancer natural product, but its poor water solubility and severe toxicity restrict its clinical application. In this study, a carrier-free self-assembled nanoparticles, CE-Gal-NPs, were designed and prepared by nanoprecipitation method, which could recognize ASGPR receptor by active targeting (Gal ligand) and passive targeting (EPR effect), access to the cell through the clathrin pathway and finally internalize to lysosomes. CE-Gal-NPs triggered reactive oxygen species (ROS)-mediated ferroptosis pathway and exerted anti-HCC effects in vitro and in vivo by down-regulating GPX4 and up-regulating COX-2 expression, depleting glutathione (GSH) levels, and increasing lipid peroxidation levels in cells and tumor tissues. In the H22 xenograft mouse model, the CE-Gal-NPs group exhibited dramatically superior tumor inhibition than the CE group, while Gal conjugating diminished the systemic toxicity of CE. Consequently, this study presented a promising strategy for CE potentiation and toxicity reduction, as well as a potential guideline for the development of clinically targeted therapeutic agents for HCC.


Assuntos
Carcinoma Hepatocelular , Ferroptose , Neoplasias Hepáticas , Triterpenos Pentacíclicos , Humanos , Camundongos , Animais , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Galactose , Nanomedicina , Ligantes , Células Hep G2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA