Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Small ; : e2402529, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38767079

RESUMO

Unlocking CO2 capture potential remains a complex and challenging endeavor. Here, a blueprint is crafted for optimizing materials through CO2 capture and developing a synergistic hybridization strategy that involves synthesizing CO2-responsive hydrogels by integrating polymeric networks interpenetrated with polyethyleneimine (PEI) chains and inorganic CaCl2. Diverging from conventional CO2 absorbents, which typically serve a singular function in CO2 capture, these hybrid PEAC hydrogels additionally harness its presence to tune their optical and mechanical properties once interacting with CO2. Such synergistic functions entail two significant steps: (i) rapid CO2-fixing through PEI chains to generate abundant carbamic acid and carbamate species and (ii) mineralization via CaCl2 to induce the formation of CaCO3 micro-crystals within the hydrogel matrix. Due to the reversible bonding, the PEAC hydrogels enable the decoupling of CO2 through an acid fumigation treatment or a heating process, achieving dynamic CO2 capture-release cycles up to 8 times. Furthermore, the polyethyleneimine-acrylamide-calcium chloride (PEAC) hydrogel exhibits varying antibacterial attributes and high interfacial adhesive strength, which can be modulated by fine-tuning the compositions of PEI and CaCl2. This versatility underscores the promising potential of PEAC hydrogels, which not only unlocks CO2 capture capabilities but also offers opportunities in diverse biological and biomedical applications.

2.
J Exp Bot ; 72(10): 3723-3738, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33624763

RESUMO

Phloem loading is the first step in sucrose transport from source leaves to sink organs. The phloem loading strategy in rice remains unclear. To determine the potential phloem loading mechanism in rice, yeast invertase (INV) was overexpressed by a 35S promoter specifically in the cell wall to block sugar transmembrane loading in rice. The transgenic lines exhibited obvious phloem loading suppression characteristics accompanied by the accumulation of sucrose and starch, restricted vegetative growth and decreased grain yields. The decreased sucrose exudation rate with p-chloromercuribenzenesulfonic acid (PCMBS) treatment also indicated that rice actively transported sucrose into the phloem. OsSUT1 (SUCROSE TRANSPORTER 1) showed the highest mRNA levels of the plasma membrane-localized OsSUTs in source leaves. Cross sections of the OsSUT::GUS transgenic plants showed that the expression of OsSUT1 and OsSUT5 occurred in the phloem companion cells. Rice ossut1 mutants showed reduced growth and grain yield, supporting the hypothesis of OsSUT1 acting in phloem loading. Based on these results, we conclude that apoplastic phloem loading plays a major role in the export of sugar from rice leaves.


Assuntos
Oryza , Floema , Folhas de Planta , Transporte Biológico , Oryza/genética , Oryza/metabolismo , Floema/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Sacarose
3.
Sensors (Basel) ; 19(21)2019 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-31684123

RESUMO

α-MoO3 has been used as a hydrogen sensing material due to its excellent properties and unique crystalline layer structure. However, the low repeatability of α-MoO3 based hydrogen sensor restricts its practical application. In this paper, the effect of intercalated ion species and the amount in α-MoO3 is experimentally investigated and discussed. It is concluded that the repeatability of the sensor depends on the radius of intercalated ions and amount of ionic bonds. The optimal ion species is Na+ and the optimal amount of precursor is 1 mmol.

4.
Plant Cell Rep ; 37(5): 789-798, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29476246

RESUMO

KEY MESSAGE: Sucrose signaling pathways were rapidly induced in response to early iron deficiency in rice plants, and the change of sucrose contents in plants was essential for the activation of iron deficiency responses. Sucrose is the main product of photosynthesis in plants, and it functions not only as an energy metabolite but also a signal molecule. However, a few studies have examined the involvement of sucrose in mediating iron deficiency responses in rice. In this study, we found that the decrease in photosynthesis and total chlorophyll concentration (SPAD values) in leaves occurred at a very early stage under iron deficiency. In addition, the sucrose was increased in leaves but decreased in roots of rice plants under iron deficiency, and also the sucrose transporter (SUT) encoded genes' expression levels in leaves were all inhibited, including OsSUT1, OsSUT2, OsSUT3, OsSUT4, and OsSUT5. The carbohydrate distribution was changed under iron deficiency and sucrose might be involved in the iron deficiency responses of rice plants. Furthermore, exogenous application of sucrose or dark treatment experiments were used to test the hypothesis; we found that the increased endogenous sucrose would cause the repression of iron acquisition-related genes in roots, while further stimulated iron transport-related genes in leaves. Compared to the exogenous application of sucrose, the dark treatment had the opposite effects. All the above results highlighted the important role of sucrose in regulating the responses of rice plants to iron deficiency.


Assuntos
Deficiências de Ferro , Oryza/metabolismo , Sacarose/farmacologia , Transporte Biológico/efeitos dos fármacos , Biomassa , Clorofila/metabolismo , Escuridão , Oryza/efeitos dos fármacos , Oryza/fisiologia , Floema/efeitos dos fármacos , Floema/metabolismo , Fotossíntese/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo
5.
Appl Opt ; 57(27): 8011-8015, 2018 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-30462077

RESUMO

Self-referenced demodulating methods of fiber optic hydrogen sensors based on WO3-Pd2Pt-Pt composite film are studied in this paper. By employing the proper baseline intensity as sensing parameters, fluctuations of the sensing signal of the hydrogen sensor can be obviously depressed, and sensitivity can be greatly improved. Experimental results show that the resolution of the hydrogen sensor can reach 3 parts per million (ppm) when the hydrogen concentration is lower than 1000 ppm. Additionally, the hydrogen sensor shows better sensitivity toward lower concentrations of hydrogen, enabling a hydrogen threshold down to 10 ppm in air at room temperature. To the best of our knowledge, this is the lowest threshold reported for an optical hydrogen sensor operated at room temperature in air. Moreover, the sensor has good repeatability during hydrogen response. This work proposes a simple and novel method to improve the performance of fiber optic hydrogen sensors, which can greatly promote their potential application in various fields.

6.
Opt Express ; 25(3): 2009-2015, 2017 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-29519049

RESUMO

A novel fiber optic hydrogen concentration detection platform with significantly enhanced performance is proposed and demonstrated in this paper. The hydrogen sensing probe was prepared by depositing WO3-Pd2Pt-Pt composite film on the fiber tip of two Bragg gratings paired with high-low reflectivity. At a room temperature of 25°C, the hydrogen sensor has a significant response towards 10 ppm hydrogen in nitrogen atmosphere, and may detect tens of ppb hydrogen changes when the hydrogen concentration is between 10~60 ppm. Besides, the proposed system shows quick response when the hydrogen concentration is above 40 ppm. Moreover, the hydrogen sensor shows good repeatability during the hydrogen response. This work proposes a new concept to develop hydrogen sensing technology with ultra-high sensitivity, which can significantly promote its potential application in various fields, especially for ultra-low hydrogen detection in oxygen-free environment.

7.
Sensors (Basel) ; 17(7)2017 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-28672872

RESUMO

A multi-parameter measurement system based on ultra-weak fiber Bragg grating (UFBG) array with sensitive material was proposed and experimentally demonstrated. The UFBG array interrogation principle is time division multiplex technology with two semiconductor optical amplifiers as timing units. Experimental results showed that the performance of the proposed UFBG system is almost equal to that of traditional FBG, while the UFBG array system has obvious superiority with potential multiplexing ability for multi-point and multi-parameter measurement. The system experimented on a 144 UFBG array with the reflectivity of UFBG ~0.04% for the four target parameters: hydrogen, humidity, temperature and salinity. Moreover, a uniform solution was customized to divide the cross-sensitivity between temperature and other target parameters. It is expected that this scheme will be capable of handling thousands of multi-parameter sensors in a single fiber.

8.
Sensors (Basel) ; 17(3)2017 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-28287499

RESUMO

In terms of hydrogen sensing and detection, optical fiber hydrogen sensors have been a research issue due to their intrinsic safety and good anti-electromagnetic interference. Among these sensors, hydrogen sensors consisting of fiber grating coated with sensitive materials have attracted intensive research interests due to their good reliability and distributed measurements. This review paper mainly focuses on optical fiber hydrogen sensors associated with fiber gratings and various materials. Their configurations and sensing performances proposed by different groups worldwide are reviewed, compared and discussed in this paper. Meanwhile, the challenges for fiber grating hydrogen sensors are also addressed.

9.
Opt Express ; 24(4): 3230-7, 2016 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-26906986

RESUMO

A novel relative humidity (RH) sensing network based on ultra-weak fiber Bragg gratings (FBGs) is proposed and demonstrated. Experiment is demonstrated on a 5 serial ultra-weak FBGs sensing network chopped from a fiber array with 1124 FBGs. Experimental results show that the corresponding RH sensitivity varies from 1.134 to 1.832 pm/%RH when ambient environmental RH changes from 23.8%RH to 83.4%RH. The low-reflectance FBGs and time-division multiplexing (TDM) technology makes it possible to multiplex thousands of RH sensors in single optical fiber.

10.
Opt Express ; 23(17): 22826-35, 2015 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-26368250

RESUMO

Dual-cavity microstructure fiber optic hydrogen sensor based on evaporated Pt/WO(3) film was proposed and experimentally explored in this paper, which provides a novel solution to detect high hydrogen concentration (10-30% H(2)). Dual-cavity microstructure fabricated by splicer is composed of an inner air-cavity and a collapsed photonic crystal fiber cavity. The proposed sensor has the advantages of miniature structure, stable configuration, low cost. Based on three-beam interference model and verification experiments, the compensation function to the fluctuation of light source and fiber loss is proved from the theoretical simulation and experimental investigation. The sensor has a short response time (1min), good repeatability and reliability. Besides, the change of temperature affects the response value of the hydrogen sensor, but the impact can be neglected in 10-30% H(2).

11.
ACS Appl Mater Interfaces ; 16(26): 34125-34134, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38888298

RESUMO

Bilayer hydrogels, endowed with multiresponsive and switchable color-changing properties, have garnered significant attention for bioinspired artificial intelligent materials. However, the design and fabrication of such hydrogels that can fully mimic the adaptation of the live organism, i.e., simultaneous changes in shape, fluorescent, and/or visible color, still remain significant challenges. Herein, a multiresponsive (e.g., temperature, salt, and pH) and multiadaptive (shape, fluorescent color, and visible color changes) hydrogel was fabricated by employing monomers featuring pH-responsive fluorescence 4-(2-(4-(dimethylamino) phenyl)-1-isocyanovinyl) phenol (DP) and switchable color-changing 4-(2-sulfethyl) -1-(4-vinylbenzyl) pyridinium betaine (VPES). The bilayer hydrogel comprises a temperature- and pH-responsive gel layer, poly(N-isopropylacrylamide-co-2-(dimethylamino) ethyl methacrylate), along with a pH-, temperature-, and salt-responsive gel layer, poly(acrylamide-co-2-(dimethylamino)ethyl methacrylate-co-VPES)@DP. Due to the opposite swelling/shrinking behavior between the two layers, the prepared hydrogel exhibits shape changes in response to thermal, salt, and pH stimuli, along with switchable fluorescent color and visible color change that originate from DP and polyVPES, respectively. Apart from multiresponsive behavior, this hydrogel also shows an excellent antifatigue property and high sensitivity, which makes it hold significant potential in many applications. We anticipate that this strategy to realize multiresponsive capability in this work can also inspire the design of the biomimetic smart materials.

12.
Sci Rep ; 14(1): 7005, 2024 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-38523143

RESUMO

Metabolic Syndrome (MetS) and bone mineral density (BMD) have shown a controversial link in some studies. This research aims to study their association in males over 50 and postmenopausal females using National Health and Nutrition Examination Survey (NHANES) data. Postmenopausal females and males over 50 were included in the study. MetS was defined by the National Cholesterol Education Program Adult Treatment Panel III guidelines. BMD values were measured at the thoracic spine, lumbar spine, and pelvis as the primary outcome. Weighted multivariate general linear models have been employed to explore the status of BMD in patients with MetS. Additionally, interaction tests and subgroup analyses were conducted. Utilizing the NHANES database from 2003 to 2006 and 2011-2018, we included 1924 participants, with 1029 males and 895 females. In postmenopausal women, after adjusting for covariates, we found a positive correlation between MetS and pelvic (ß: 0.030 [95%CI 0.003, 0.06]) and thoracic (ß: 0.030 [95%CI 0.01, 0.06]) BMD, though not for lumbar spine BMD (ß: 0.020 [95%CI - 0.01, 0.05]). In males over 50 years old, MetS was positively correlated with BMD in both Model 1 (without adjusting for covariates) and Model 2 (considering age and ethnicity). Specifically, Model 2 revealed a positive correlation between MetS and BMD at the pelvis (ß: 0.046 [95%CI 0.02, 0.07]), thoracic spine (ß: 0.047 [95%CI 0.02, 0.07]), and lumbar spine (ß: 0.040 [95%CI 0.02, 0.06]). Subgroup analysis demonstrated that the relationship between MetS and BMD remained consistent in all strata, underscoring the stability of the findings. In postmenopausal women, after adjusting for all covariates, a significant positive correlation was observed between MetS and BMD in the pelvis and thoracic spine, whereas this correlation was not significant for lumbar spine BMD. Conversely, in males, positive correlations between MetS and BMD at the lumbar spine, thoracic spine, and pelvis were identified in Model 2, which adjusted for age and ethnicity; however, these correlations disappeared after fully adjusting for all covariates. These findings highlight the potential moderating role of gender in the impact of MetS on BMD.


Assuntos
Síndrome Metabólica , Osteoporose , Adulto , Masculino , Humanos , Feminino , Pessoa de Meia-Idade , Densidade Óssea , Síndrome Metabólica/epidemiologia , Inquéritos Nutricionais , Pós-Menopausa , Vértebras Lombares/diagnóstico por imagem , Absorciometria de Fóton/métodos
13.
Biol Trace Elem Res ; 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38196053

RESUMO

This article aims to study the correlation between dietary magnesium intake and pulmonary function, utilizing data from the National Health and Nutrition Examination Survey (NHANES) database. This cross-sectional study examined representative samples of adults from the USA (n = 818; NHANES 2007-2012) to explore the correlation between magnesium intake and pulmonary function. We obtained the average magnesium intake over 2 days, as well as measured pulmonary function parameters, including forced expiratory volume in the first second (FEV1), forced vital capacity (FVC), FEV1/FVC, peak expiratory flow rate (PEF), and forced expiratory flow between 25 and 75% of FVC (FEF25-75%). Weighted multivariable linear regression was used to investigate the relationship between magnesium intake and pulmonary function. Additionally, subgroup analyses, interaction tests, and sensitivity analyses were conducted. Weighted multiple linear regression models revealed a significant positive correlation between magnesium and pulmonary function, even after adjusting for all included confounding variables. When we categorized magnesium intake into tertiles, we found that participants in the highest tertile of magnesium intake had significantly higher values for FVC (ß: 898.54, 95%CI: 211.82-1585.25), FEV1 (ß: 858.16, 95%CI: 212.41-1503.91), FEV1/FVC (ß: 0.024, 95%CI: 0.004-0.044), PEF (ß: 1324.52, 95%CI: 481.71-2167.33), and FEF25-75% (ß: 831.39, 95%CI: 84.93-1577.84). Upon stratifying the data by age and sex, it was observed that this positive correlation was particularly pronounced among men aged 40-79. At the same time, the stability of the results was further confirmed by sensitivity analyses. This study suggested that dietary magnesium intake may improve pulmonary function.

14.
Mol Hortic ; 3(1): 22, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37899482

RESUMO

We previously reported that ABA inhibits stomatal closure through AtNAP-SAG113 PP2C regulatory module during leaf senescence. The mechanism by which this module exerts its function is unknown. Here we report the identification and functional analysis of SAG114, a direct target of the regulatory module. SAG114 encodes SnRK3.25. Both bimolecular fluorescence complementation (BiFC) and yeast two-hybrid assays show that SAG113 PP2C physically interacts with SAG114 SnRK3.25. Biochemically the SAG113 PP2C dephosphorylates SAG114 in vitro and in planta. RT-PCR and GUS reporter analyses show that SAG114 is specifically expressed in senescing leaves in Arabidopsis. Functionally, the SAG114 knockout mutant plants have a significantly bigger stomatal aperture and a much faster water loss rate in senescing leaves than those of wild type, and display a precocious senescence phenotype. The premature senescence phenotype of sag114 is epistatic to sag113 (that exhibits a remarkable delay in leaf senescence) because the sag113 sag114 double mutant plants show an early leaf senescence phenotype, similar to that of sag114. These results not only demonstrate that the ABA-AtNAP-SAG113 PP2C regulatory module controls leaf longevity by dephosphorylating SAG114 kinase, but also reveal the involvement of the SnRK3 family gene in stomatal movement and water loss during leaf senescence.

15.
Sci Rep ; 13(1): 23043, 2023 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-38155299

RESUMO

This study aimed to investigate the relationship between the dietary approaches to stop hypertension (DASH) dietary patterns and bone mineral density (BMD) in adults residing in the United States. To achieve this, data from the National Health and Nutrition Examination Survey (NHANES) database for 2011-2018 were utilized. This study utilized the NHANES database from 2011 to 2018, with a sample size of 8,486 US adults, to investigate the relationship between the DASH diet and BMD. The DASH diet was assessed based on nine target nutrients: total fat, saturated fat, protein, fiber, cholesterol, calcium, magnesium, sodium and potassium. The primary outcome measures were BMD values at the total BMD, thoracic spine, lumbar spine, and pelvis. Multivariable linear models were employed to analyze the association between the DASH diet and BMD. Interaction tests, subgroup, and sensitivity analysis were also followed. A negative correlation was observed between the DASH diet and total BMD (OR: - 0.003 [95%CI: - 0.005, - 0.001), pelvic (OR: - 0.005 [95%CI: - 0.007, - 0.002]), and thoracic BMD (OR: - 0.003 [95%CI: - 0.005, - 0.001]). However, the DASH diet does not appear to have a particular effect on lumbar spine BMD (OR: - 0.002 [95%CI: - 0.004, 0.001]). Similarly, when the DASH diet was categorized into tertiles groups, the relationship with total BMD, pelvic BMD, thoracic BMD, and lumbar spine BMD remained consistent. Furthermore, we performed a sensitivity analysis by converting BMD to Z-scores, and the results remained unchanged. Subgroup analyses and interaction tests indicated no significant dependence of BMI, gender, smoking, hypertension, and diabetes on the observed association (all p for interactions > 0.05). The DASH diet has been identified as potentially reducing total BMD, while specifically impacting thoracic and pelvic BMD. However, it appears to have no significant effect on lumbar spine BMD.


Assuntos
Abordagens Dietéticas para Conter a Hipertensão , Hipertensão , Adulto , Humanos , Estados Unidos/epidemiologia , Inquéritos Nutricionais , Densidade Óssea , Dieta , Hipertensão/epidemiologia
16.
Mol Hortic ; 2(1): 25, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-37789486

RESUMO

FERONIA (FER) is a member of the Catharanthus roseus receptor-like kinase 1-like (CrRLK1L) protein subfamily, which participates in reproduction, abiotic stress, biotic stress, cell growth, hormone response, and other molecular mechanisms of plants. However, the mechanism by which a single RLK is capable of mediating multiple signals and activating multiple cellular responses remains unclear. Here, we summarize research progress revealing the spatial-temporal expression of FER, along with its co-receptors and ligands determined the function of FER signaling pathway in multiple organs. The specificity of the FER signaling pathway is proposed to operate under a four-layered mechanism: (1) Spatial-temporal expression of FER, co-receptors, and ligands specify diverse functions, (2) Specific ligands or ligand combinations trigger variable FER signaling pathways, (3) Diverse co-receptors confer diverse FER perception and response modes, and (4) Unique downstream components that modify FER signaling and responses. Moreover, the regulation mechanism of the signaling pathway- appears to depend on the interaction among the ligands, RLK receptors, co-receptors, and downstream components, which may be a general mechanism of RLKs to maintain signal specificity. This review will provide a insight into understanding the specificity determination of RLKs signaling in both model and horticultural crops.

17.
Adv Mater ; 33(3): e2005557, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33300215

RESUMO

Narrowband photodetectors with tunable spectral responses are highly desirable for applications in image sensing, machine vision, and optical communication. Herein, a filterless and self-driven perovskite narrowband photodetector (PNPD) based on the defect-assisted charge collection narrowing (CCN) mechanism is reported, which is enabled by a high-quality thick perovskite film. By adjusting the halide component of the perovskite layer, the bandgap is successfully modulated and the corresponding narrowband photodetectors show a wide spectral response range from the red to the near-infrared (NIR), all with full-widths at half maximum (FWHMs) below 30 nm. Specifically, the methylammonium lead iodide (MAPbI3 ) narrowband photodetector exhibits a characteristic detection peak at 800 nm with a very low noise current of ≈0.02 pA Hz-1/2 , a high specific detectivity up to 1.27 × 1012 Jones, and a fast response speed with rise/fall time of 12.7/6.9 µs. Impressively, these values are among the highest of their kind reported previously, and allow demonstration of narrowband imaging. The excellent performance of self-driven PNPDs lights up their prospect in high-efficiency optoelectronic devices without external power sources.

18.
Acta Crystallogr Sect E Struct Rep Online ; 66(Pt 8): m987, 2010 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-21588208

RESUMO

In the title polymer, [Pb(C(7)H(4)ClO(3))(2)(C(12)H(8)N(2))](n), the Pb(II) ion displays a distorted pseudo-octa-hedral coordination geometry. The metal center is coordinated by six O atoms from four 5-chloro-salicylate ligands and two N atoms from a chelating phenanthroline ligand. The polymeric structure is built up from bridging carboxyl-ate O atoms, forming chains along [100]. The crystal structure is stabilized by π-π inter-actions between the 1,10-phenanthroline and 5-chloro-salicylate ligands, the shortest centroid-centroid separation between neighbouring aromatic rings being 3.652 (1) Å.

19.
Nat Commun ; 11(1): 1006, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-32081847

RESUMO

Humidity is known to be inimical to the halide perovskites and thus typically avoided during fabrication. The poor fundamental understanding of chemical interactions between water and the precursors hampers the further development of perovskite fabrication in ambient atmosphere. Here, we disclose a key finding that the ambient water could promote the formation of lead complexes, which when uncontrolled would make their way into large intermediate fibrillar crystallites and thus discontinuous perovskite films unfavorable for photovoltaics among others. To counter this effect, a prenucleation strategy is proposed, which embodies the controlled burst of profuse intermediate nuclei. Consequently, we are able to obtain a compact and uniform perovskite layer, which affords high efficiency perovskite solar cells. More excitingly, the solar cells show high performance uniformity, demonstrating the distinctive advantages of our prenucleation strategy. This work sheds light on developing reliable and cost-effective fabrication methods for industrial production of perovskite solar cells.

20.
Front Plant Sci ; 9: 757, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29922324

RESUMO

Iron (Fe) is an essential mineral element required for plant growth, and when soil availability of Fe is low, plants show symptoms of severe deficiency. Under conditions of Fe deficiency, plants alter several processes to acquire Fe from soil. In this study, we used rice cultivars H 9405 with high Fe accumulation in seeds and Yang 6 with low Fe accumulation in seeds to study their physiological responses to different conditions of Fe availability. In both shoots and roots, the responses of ROS enzymes, leaf and root ultrastructure and photosynthetic system to iron deficiency in Yang 6 were much sensitive than those in H 9405. For the distribution of iron, the iron content was much higher in roots of Yang 6, in contrast to higher shoot content in H 9405. Differential responses were shown with the Fe content in roots and shoots, which were the opposite in the two varieties; thus, we proposed the existence of long-distance signals. Then split root and shoot removal experiments were used to demonstrate that a long-distance signal was involved in the iron-deficient rice plant, and the signal strength was highly correlated with the functional leaves.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA