Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
BMC Genomics ; 25(1): 558, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38834950

RESUMO

BACKGROUND: Indigenous Chinese cattle have abundant genetic diversity and a long history of artificial selection, giving local breeds advantages in adaptability, forage tolerance and resistance. The detection of selective sweeps and comparative genome analysis of selected breeds and ancestral populations provide a basis for understanding differences among breeds and for the identification and utilization of candidate genes. We investigated genetic diversity, population structure, and signatures of selection using genome-wide sequencing data for a new breed of Qinchuan cattle (QNC, n = 21), ancestral Qinchuan cattle (QCC, n = 20), and Zaosheng cattle (ZSC, n = 19). RESULTS: A population structure analysis showed that the ancestry components of QNC and ZSC were similar. In addition, the QNC and ZSC groups showed higher proportions of European taurine ancestry than that of QCC, and this may explain the larger body size of QNC, approaching that of European cattle under long-term domestication and selection. A neighbor-joining tree revealed that QCC individuals were closely related, whereas QNC formed a distinct group. To search for signatures of selection in the QNC genome, we evaluated nucleotide diversity (θπ), the fixation index (FST) and Tajima's D. Overlapping selective sweeps were enriched for one KEGG pathway, the apelin signaling pathway, and included five candidate genes (MEF2A, SMAD2, CAMK4, RPS6, and PIK3CG). We performed a comprehensive review of genomic variants in QNC, QCC, and ZSC using whole-genome sequencing data. QCC was rich in novel genetic diversity, while diversity in QNC and ZSC cattle was reduced due to strong artificial selection, with divergence from the original cattle. CONCLUSIONS: We identified candidate genes associated with production traits. These results support the success of selective breeding and can guide further breeding and resource conservation of Qinchuan cattle.


Assuntos
Variação Genética , Seleção Genética , Animais , Bovinos/genética , Genômica/métodos , Polimorfismo de Nucleotídeo Único , Genética Populacional , Estudo de Associação Genômica Ampla , Genoma , Cruzamento
2.
Anim Biotechnol ; 35(1): 2339406, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38634284

RESUMO

Fat deposition affects beef quantity and quality via preadipocyte proliferation. Beta-sitosterol, a natural small molecular compound, has various functions, such as anti-inflammation, antibacterial, and anticancer properties. The mechanism of action of Beta-sitosterol on bovine preadipocytes remains unclear. This study, based on RNA-seq, reveals the impact of Beta -sitosterol on the proliferation of bovine preadipocytes. Compared to the control group, Beta-sitosterol demonstrated a more pronounced inhibitory effect on cell proliferation after 48 hours of treatment than after 24 hours, as evidenced by the results of EdU staining and flow cytometry. RNA-seq and Western Blot analyses further substantiated these findings. Our results suggest that the impact of Beta-sitosterol on the proliferation of bovine preadipocytes is not significant after a 24-hour treatment. It is only after extending the treatment time to 48 hours that Beta-sitosterol may induce cell cycle arrest at the G2/M phase by suppressing the expression of CCNB1, thereby inhibiting the proliferation of bovine preadipocytes.


Assuntos
Adipócitos , Proliferação de Células , Sitosteroides , Animais , Bovinos , Sitosteroides/farmacologia , Proliferação de Células/efeitos dos fármacos , Adipócitos/efeitos dos fármacos , Adipócitos/citologia , Perfilação da Expressão Gênica , Células Cultivadas , Transcriptoma/efeitos dos fármacos
3.
J Anim Breed Genet ; 141(3): 235-256, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38146089

RESUMO

In the past few decades, genomic selection and other refined strategies have been used to increase the growth rate and lean meat production of beef cattle. Nevertheless, the fast growth rates of cattle breeds are often accompanied by a reduction in intramuscular fat (IMF) deposition, impairing meat quality. Transcription factors play vital roles in regulating adipogenesis and lipogenesis in beef cattle. Meanwhile, understanding the role of transcription factors in regulating adipogenesis and lipogenesis in beef cattle has gained significant attention to increase IMF deposition and meat quality. Therefore, the aim of this paper was to provide a comprehensive summary and valuable insight into the complex role of transcription factors in adipogenesis and lipogenesis in beef cattle. This review summarizes the contemporary studies in transcription factors in adipogenesis and lipogenesis, genome-wide analysis of transcription factors, epigenetic regulation of transcription factors, nutritional regulation of transcription factors, metabolic signalling pathways, functional genomics methods, transcriptomic profiling of adipose tissues, transcription factors and meat quality and comparative genomics with other livestock species. In conclusion, transcription factors play a crucial role in promoting adipocyte development and fatty acid biosynthesis in beef cattle. They control adipose tissue formation and metabolism, thereby improving meat quality and maintaining metabolic balance. Understanding the processes by which these transcription factors regulate adipose tissue deposition and lipid metabolism will simplify the development of marbling or IMF composition in beef cattle.


Assuntos
Adipogenia , Lipogênese , Bovinos/genética , Animais , Lipogênese/genética , Adipogenia/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Epigênese Genética , Tecido Adiposo/metabolismo , Músculo Esquelético/metabolismo
4.
Anim Biotechnol ; : 1-10, 2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36441630

RESUMO

The myosin heavy chain 3 (MYH3) gene is an essential gene that affects muscle development. This study aimed to discuss the expression characteristics of the MYH3 gene and its effect on the proliferation and differentiation of bovine myoblasts. Quantitative real time-PCR results display that the expression level of MYH3 was higher in muscle tissue, and the expression increased in the early stage of myoblast differentiation. Interfering with the MYH3 gene in myoblasts resulted in fewer EDU-positive cells and decreased expression of proliferation marker genes. Interference with MYH3 can also affect the differentiation process of myoblasts. Regarding phenotype, myotube differentiation in the interference group was slowed or even stopped. Interference with the expression of MYH3 could significantly reduce the expression of myogenic differentiation marker genes. The above results show that MYH3 is mainly expressed in muscle tissue and is highly expressed in the early stage of differentiation of bovine myoblasts, and interfering with the MYH3 can promote the proliferation and inhibit the differentiation of bovine myoblasts. This study provides a theoretical basis for revealing the regulatory process of bovine myoblast proliferation and differentiation and bovine molecular breeding.

5.
Genomics ; 112(1): 831-836, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31145994

RESUMO

Copy number variation (CNV) refers to a kind of structural variation, having functional and evolutionary effects on phenotypes. Thus far, further elucidation of the CNVs in different Chinese indigenous cattle breeds by whole genome sequencing have yet not been done. In this study, a comprehensive genomic analysis was performed on 75 cattle individuals including six Chinese indigenous cattle breeds and two non-native specialized beef cattle breeds. Based on the 11,486 CNVRs discovered, population analysis was performed, showed that all the cattle breeds clustered in to three clades, consistent with their lineages Bos taurus, Bos taurus × Bos indicus and Bos indicus. Importantly, a set of CNVRs related genes were found to be associated with the traits of interest, which include meat production or quality (CAST, ACTC1, etc.), adaption (BLA-DQB, EGLN2, etc.) and coat color (KIT, MITF, etc.). These results provide valuable full genome variation resources for Chinese bovine genome research and would be helpful for cattle breeding and selection programs in the future.


Assuntos
Bovinos/genética , Variações do Número de Cópias de DNA , Animais , Bovinos/crescimento & desenvolvimento , Bovinos/imunologia , China , Análise por Conglomerados , Cabelo/crescimento & desenvolvimento , Carne , Locos de Características Quantitativas , Sequenciamento Completo do Genoma
6.
J Cell Physiol ; 235(7-8): 5796-5810, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32003022

RESUMO

MicroRNAs are small, single stranded, and noncoding RNAs that have been proven to be potent regulators of adipogenesis. However, the role of bta-miR-149-5p in regulating bovine adipogenesis is still unclear. Expression profiling in different stages of adipogenesis revealed that bta-miR-149-5p was enriched in the proliferation stage, and also on Day 9 of differentiation in bovine adipocytes. Our gain of function study showed that bta-miR-149-5p can negatively regulate both bovine adipocyte proliferation and differentiation. Overexpression of bta-miR-149-5p suppressed the expression of proliferation marker genes at both the messenger RNA (mRNA) and protein levels, markedly decreased the percentage of S-phase cells, decreased the number of EdU-stained cells, and substantially reduced adipocyte proliferation vitality in the cell count assay. Collectively, these findings elucidated that bta-miR-149-5p inhibits adipocyte proliferation. Furthermore, overexpression of bta-miR-149-5p also suppressed the expression of adipogenic genes at both the mRNA and protein levels, inhibited lipid accumulation, and reduced the secretion of adiponectin in bovine adipocytes. Furthermore, a luciferase activity assay explored how bta-miR-149-5p targeted CRTCs (CRTC1 and CRTC2) directly. This targeting was further validated by the mRNA and protein level expression of CRTC1 and CRTC2, which were down regulated by bta-miR-149-5p overexpression. Moreover, bta-miR-149-5p indirectly targeted CRTC1 and CRTC2 through regulating their key transcription factors. Overexpression of bta-miR-149-5p suppressed the expression of SMAD3, while enriched the expression of NRF1, which are the key transcription factors and proven regulators of CRTC1. Overexpression of bta-miR-149-5p also repressed the expression of C/EBPγ, XBP1, INSM1, and ZNF263, which are the key regulators of CRTCs, at both the mRNA and protein levels. These findings suggest that bta-miR-149-5p is a negative regulator of CRTC1 and CRTC2 both at transcriptional and posttranscriptional level. Taken together, these findings suggest that bta-miR-149-5p can regulate adipogenesis, which implies that bta-miR-149-5p could be a target for increasing intramuscular fat in beef cattle.


Assuntos
Adipócitos/metabolismo , MicroRNAs/genética , Fatores de Transcrição/genética , Adipogenia/genética , Animais , Bovinos , Diferenciação Celular/genética , Proliferação de Células/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , PPAR gama/genética , Proteína Smad3/genética
7.
Arch Biochem Biophys ; 680: 108236, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31893525

RESUMO

Low intramuscular adipose tissue (marbling) continues to be challenge for improving beef quality in Chinese cattle. Highly marbled meat is very desirable; hence, methods to increase IMF content have become a key aspect of improving meat quality. Therefore, research on the mechanism of adipogenesis provides invaluable information for the improvement of meat quality. This study investigated the effect of TORC2 and its underlying mechanism on lipid metabolism in bovine adipocytes. The TORC2 gene was downregulated in bovine adipocytes by siRNA, and RNA sequencing was performed. Downregulation of TORC2 negatively affected bovine adipocyte differentiation. In addition, a total of 577 DEGs were found, containing 146 up-regulated and 376 down-regulated genes. KEGG pathway analysis revealed that the DEGs were linked with neuroactive ligand-receptor interaction pathway, calcium signaling pathway, cAMP pathway, chemokine signaling pathway and Wnt signaling pathway. Gene Ontology (GO) term analysis of the DEGs showed that down-regulation of TORC2 gene significantly suppressed the genes regulating important GO terms of adipogenesis-related processes in bovine adipocytes, especially regulation of biological activity, regulation of primary metabolic process, regulation of multicellular organismal process, cell adhesion, lipid metabolic process, secretion, chemical homeostasis, regulation of transport, cell-cell signaling, cAMP metabolic process, cellular calcium ion homeostasis, fat cell differentiation, and cell maturation. In conclusion, our results suggest that TORC2 at least in part regulates lipid metabolism in bovine adipocytes. The results of this study provide a basis for studying the function and molecular mechanism of the TORC2 gene in regulating adipogenesis.


Assuntos
Adipogenia , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Adipócitos/citologia , Adipócitos/metabolismo , Animais , Sinalização do Cálcio , Bovinos , Células Cultivadas , Regulação para Baixo , Ontologia Genética , Redes Reguladoras de Genes , Metabolismo dos Lipídeos , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , RNA-Seq , Transcriptoma , Via de Sinalização Wnt
8.
Genomics ; 111(6): 1736-1744, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-30529539

RESUMO

CREB-regulated transcription coactivator 3 (CRTC3) plays an extensive role in glucose and lipid metabolism. This study investigated the genetic variation and haplotype combination in CRTC3 and verified their contribution to bovine growth traits. Firstly, investigated the mRNA expression of CRTC3 in adult Qinchuan cattle and evaluated the effects that genetic variation of CRTC3 had on conformation and carcass traits in two Chinese cattle breeds (Qinchuan and Jiaxian). Four SNPs (single nucleotide polymorphisms) were identified including two in introns (SNP1: g.62652 A > G and SNP4: g.91297C > T) and two in exons (SNP2 g.62730C > T and SNP3: g.66478G > C). The association and haplotype combination results showed that there was an association with some growth and carcass traits(P < 0.05). Individuals with haplotype combination H1H1 (-AACCCCTT-) were associated with a conformation of a larger framed animal and an animal that produced a larger loin area. Variations in the CRTC3 genes and the haplotype combination H1H1 may be considered as molecular markers for carcass traits that are associated with more lean meat yield for use in cattle breeding programs in China.


Assuntos
Cruzamento , Bovinos/genética , Éxons , Haplótipos , Polimorfismo de Nucleotídeo Único , Fatores de Transcrição/genética , Animais , China , Característica Quantitativa Herdável
9.
Genomics ; 111(6): 1201-1208, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-30300672

RESUMO

A new strain of Qinchuan cattle (QNS) has been obtained after more than forty years of selective breeding, and it shows good performance and production traits. To characterize the genetic changes that have resulted from breeding, we sequenced 10 QNS and 10 of the original breed Qinchuan cattle (QCC) for the first time, with average of 12.5-fold depth. A total of 31,242,284 and 29,612,517 SNPs were identified in the QCC and QNS genomes, 47.81% and 44.36% of which were found to be novel, respectively. Furthermore, population structure analysis revealed the selection that these cattle had experienced. Then, 332 and 571 potential selected genes were obtained, associated with enhanced immunity and acclimatization in QCC (CD5, SMARCA2, CATHL2, etc.) and production or meat quality traits in QNS (PLCD3, MB, PPARGC1A, etc.). These results revealed the efforts of selective breeding for Chinese Qinchuan cattle, and will be helpful for future cattle breeding.


Assuntos
Bovinos/genética , Carne , Animais , Cruzamento , Variação Genética , Mutação INDEL , Anotação de Sequência Molecular , Fenótipo , Polimorfismo de Nucleotídeo Único , Sequenciamento Completo do Genoma
10.
Mol Biol Evol ; 35(3): 688-699, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29294071

RESUMO

The bovine genetic resources in China are diverse, but their value and potential are yet to be discovered. To determine the genetic diversity and population structure of Chinese cattle, we analyzed the whole genomes of 46 cattle from six phenotypically and geographically representative Chinese cattle breeds, together with 18 Red Angus cattle genomes, 11 Japanese black cattle genomes and taurine and indicine genomes available from previous studies. Our results showed that Chinese cattle originated from hybridization between Bos taurus and Bos indicus. Moreover, we found that the level of genetic variation in Chinese cattle depends upon the degree of indicine content. We also discovered many potential selective sweep regions associated with domestication related to breed-specific characteristics, with selective sweep regions including genes associated with coat color (ERCC2, MC1R, ZBTB17, and MAP2K1), dairy traits (NCAPG, MAPK7, FST, ITFG1, SETMAR, PAG1, CSN3, and RPL37A), and meat production/quality traits (such as BBS2, R3HDM1, IGFBP2, IGFBP5, MYH9, MYH4, and MC5R). These findings substantially expand the catalogue of genetic variants in cattle and reveal new insights into the evolutionary history and domestication traits of Chinese cattle.

11.
Mol Cell Probes ; 44: 29-36, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30703449

RESUMO

In this study, the potential functions of miR-224 in regulating adipogenic differentiation were explored in bovine preadipocytes. Comparative transcriptome analysis between castrated male cattle with increased intramuscular fat (IMF) and intact male cattle revealed that miR-224 and LPL were abnormally expressed, correlating negatively, and LPL was a predicted target of miR-224. A dual luciferase reporter assay confirmed the negative targeting regulatory relationship between miR-224 and LPL. When miR-224 was either overexpressed or silenced, qRT-PCR showed a negative regulatory effect on LPL. mRNA expression levels of the fat-formation-related biomarkers C/EBPα, C/EBPß, PPARγ, FASN and PLIN1 decreased when miR-224 was overexpressed, while the opposite effect occurred and adipogenic differentiation followed when miR-224 was inhibited. Oil Red O staining. Triglyceride (TG) levels and immunostaining revealed that the accumulation of lipid droplets decreased or increased accordingly. Taken together, our data demonstrated that miR-224 regulated the adipogenic differentiation of bovine preadipocytes by targeting LPL. This provides insight into the molecular basis of IMF deposition in beef cattle.


Assuntos
Adipócitos/metabolismo , Adipogenia/genética , Lipase Lipoproteica/metabolismo , MicroRNAs/metabolismo , Adipócitos/citologia , Animais , Sequência de Bases , Bovinos , Células HEK293 , Humanos , Metabolismo dos Lipídeos/genética , Lipase Lipoproteica/genética , Luciferases/metabolismo , Masculino , MicroRNAs/genética , Plasmídeos/metabolismo
12.
BMC Emerg Med ; 19(1): 31, 2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-31046724

RESUMO

BACKGROUND: The substantial increase in cardiovascular diseases (CVD) in China over the last three decades warrants comprehensive preventive primary and secondary strategies. Prolonged prehospital delay (PHD) has been identified as a substantial barrier to timely therapeutic interventions for acute myocardial infarction (AMI). Despite worldwide efforts to decrease the patient's decision-making time, minimal change has been achieved so far. Here, we aim to describe the conceptual framework and methods and outline key data of the MEDEA FAR-EAST Study, which aimed to elucidate in-depth barriers contributing to delay in Chinese AMI-patients. METHODS: Data sources of this multicenter cross-sectional observational study are a standardized bedside interview, a self-administered tailored questionnaire tool and the patient chart. PHD was defined as the main outcome and triangulated at bedside. Standard operation procedures ensured uniform data collection by trained study personnel. The study was ethically approved by Tongji-Hospital and applied to all participating hospitals. RESULTS: Among 379 consecutively screened patients, 296 (78.1%) fulfilled eligibility criteria. A total of 241 (81.4%) AMI-patients were male and 55 (18.6%) female. Mean age was 62.9 years. Prehospital delay time was assessed for 294 (99.3%) patients. Overall median PHD was 151 min with no significant sex difference. Symptom mismatch was present in 200 (69.7%) patients and 106 (39.0%) patients did not attribute their symptoms to cardiac origin. A total of 33 (12.4%) patients suffered from depression, 31 (11.7%) from anxiety and 141 (53.2%) patients employed denial as their major coping style. CONCLUSION: This is the first study on prehospital delay with emphasis on psychological variables in Chinese AMI-patients. A comprehensive assessment tool to measure clinical and psychological factors was successfully implemented. Socio-demographic key data proved a good fit into preexisting Chinese literature. Potential barriers including cardiac denial and symptom-mismatch were assessed for the first time in Chinese AMI-patients. The pretested selection of instruments allows future in depth investigations into barriers to delay of Chinese AMI-patients and enables inter-cultural comparisons.


Assuntos
Tomada de Decisões , Conhecimentos, Atitudes e Prática em Saúde , Infarto do Miocárdio/psicologia , Adulto , Idoso , China , Estudos Transversais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Infarto do Miocárdio/diagnóstico , Distribuição por Sexo , Inquéritos e Questionários , Tempo para o Tratamento
13.
Int J Mol Sci ; 20(11)2019 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-31167510

RESUMO

Understanding the molecular mechanisms of skeletal myoblast differentiation is essential for studying muscle developmental biology. In our previous study, we reported that knockdown of myocyte enhancer factor 2A (MEF2A) inhibited myoblast differentiation. Here in this study, we further identified that MEF2A controlled this process through regulating the maternally expressed 3 (MEG3)-iodothyronine deiodinase 3 (DIO3) miRNA mega cluster and protein phosphatase 2A (PP2A) signaling. MEF2A was sufficient to induce MEG3 expression in bovine skeletal myoblasts. A subset of miRNAs in the MEG3-DIO3 miRNA cluster was predicted to target PP2A subunit genes. Consistent with these observations, MEF2A regulated PP2A signaling through its subunit gene protein phosphatase 2 regulatory subunit B, gamma (PPP2R2C) during bovine myoblast differentiation. MiR-758 and miR-543 in the MEG3-DIO3 miRNA cluster were down-regulated in MEF2A-depleted myocytes. Expression of miR-758 and miR-543 promoted myoblast differentiation and repressed PPP2R2C expression. Luciferase activity assay showed that PPP2R2C was post-transcriptionally targeted by miR-758 and miR-543. Taken together, these results reveal that the MEG3-DIO3 miRNAs function at downstream of MEF2A to modulate PP2A signaling in bovine myoblast differentiation.


Assuntos
Iodeto Peroxidase/genética , Fatores de Transcrição MEF2/genética , Família Multigênica , Mioblastos Esqueléticos/citologia , Mioblastos Esqueléticos/metabolismo , Proteína Fosfatase 2/metabolismo , RNA Longo não Codificante/genética , Animais , Bovinos , Diferenciação Celular , Regulação da Expressão Gênica , Modelos Biológicos , Interferência de RNA , Transdução de Sinais
14.
Arch Biochem Biophys ; 659: 1-12, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30243709

RESUMO

Sirtuin6 (SIRT6) is an ADP-ribosyltransferase and NAD+-dependent deacylase of acetyl groups and long-chain fatty acyl groups, and has been shown as a regulator of insulin secretion, glucose metabolism, lipid metabolism, and cancer. In this study, we determined that the bovine SIRT6 showed higher levels of mRNA expression in the testis, longissimus thoracis, and subcutaneous fat tissue. To elucidate the molecular regulation mechanism of bovine SIRT6 expression, we obtained a 2-kb fragment containing the 5'-regulatory region, and the functional proximal minimal promoter of bovine SIRT6 was identified in the -472/-73 bp region. The CCAAT enhancer binding protein beta (CEBPß), paired box 6 (PAX6), Kruppel-like factor 2 (KLF2), myb proto-oncogene protein (CMYB), nuclear respiratory factor 1 (NRF1), and E2F transcription factor 1 (E2F1) binding sites, as transcriptional activators or repressors in the core promoter region of SIRT6, were determined by electrophoretic mobility shift assay (EMSA) experiments and luciferase reporter assays. In addition, the results from methylation assay and luciferase report assay showed that the bovine SIRT6 promoter activity was coordinately regulated by methylation and NRF1 or E2F1 during bovine adipocyte differentiation. Taken together, this study illuminated the underlying mechanism of methylation and transcription regulation of SIRT6 expression in bovine adipocytes.


Assuntos
Adipócitos/metabolismo , Metilação de DNA , Regiões Promotoras Genéticas/genética , Sirtuínas/genética , Fatores de Transcrição/metabolismo , Células 3T3-L1 , Adipócitos/citologia , Animais , Bovinos , Diferenciação Celular , Regulação da Expressão Gênica , Espaço Intracelular/metabolismo , Camundongos , Filogenia , Transporte Proteico , Análise de Sequência , Sirtuínas/metabolismo
15.
Mol Cell Probes ; 42: 10-17, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30336279

RESUMO

Deposition of intramuscular fat (IMF) is one of the most important traits for the evaluation of beef carcass quality grade. MicroRNA (miRNA) is an endogenous non-coding RNA that can play a role in the post-transcriptional regulation of mammalian preadipocyte differentiation. Previously, we identified that bta-miR-130a regulates milk fat biosynthesis by targeting PPARG mRNA. However, the role of miR-130 in the regulation of bovine adipocyte differentiation remains unknown. In this study, we found that overexpression of bta-miR-130a/b led to significantly decreased cellular triacylglycerol (TAG) levels during adipogenesis process as well as reduced lipid droplet formation. In contrast, the inhibition of bta-miR-130a/b resulted in larger lipid droplets and TAG accumulation. In addition, overexpression of bta-miR-130a/b inhibited the expression of adipocyte differentiation-related genes, including PPARG, C/EBPα, C/EBPß, FABP4, LPIN1, and LPL. Western blot analysis verified qPCR results on the expression of PPARG and CYP2U1. A luciferase reporter assay further verified bta-miR-130a/b significantly affects PPARG and CYP2U1 expression by directly binding to their 3'-untranslated regions (UTR). We conducted in vitro rescue assay to confirm that bta-miR-130a/b affect bovine adipocyte differentiation by targeting PPARG and CYP2U1. This study shows that bta-miR-130a and bta-miR-130b play similar roles in the regulation of adipocyte differentiation in beef muscles by targeting the 3'UTR of PPARG and CYP2U1. Our result provides a reference for illustrating how noncoding RNAs affects beef quality traits in cattle.


Assuntos
Adipócitos/citologia , Diferenciação Celular , Família 2 do Citocromo P450/metabolismo , MicroRNAs/metabolismo , PPAR gama/metabolismo , Carne Vermelha , Adipócitos/metabolismo , Adipogenia , Animais , Sequência de Bases , Bovinos , Gotículas Lipídicas/metabolismo , MicroRNAs/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Triglicerídeos/metabolismo
16.
Int J Mol Sci ; 19(12)2018 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-30544847

RESUMO

The miR-23a~27a~24-2 cluster is an important regulator in cell metabolism. However, the cooperative and independent functions of this cluster in bovine adipocyte adipogenesis have not been elucidated. In this study, we found that expression of the miR-23a~27a~24-2 cluster was induced during adipogenesis and this cluster acted as a negative regulator of adipogenesis. miR-27a and miR-24-2 were shown to inhibit adipogenesis by directly targeting glycerol-3-phosphate acyltransferase, mitochondrial (GPAM) and diacylglycerol O-acyltransferase 2 (DGAT2), both of which promoted adipogenesis. Meanwhile, miR-23a and miR-24-2 were shown to target decorin (DCN), glucose-6-phosphate dehydrogenase (G6PD), and lipoprotein lipase (LPL), all of which repressed adipogenesis in this study. Thus, the miR-23a~27a~24-2 cluster exhibits a non-canonical regulatory role in bovine adipocyte adipogenesis. To determine how the miR-23a~27a~24-2 cluster inhibits adipogenesis while targeting anti-adipogenic genes, we identified another target gene, fibroblast growth factor 11 (FGF11), a positive regulator of adipogenesis, that was commonly targeted by the entire miR-23a~27a~24-2 cluster. Our findings suggest that the miR-23a~27a~24-2 cluster fine-tunes the regulation of adipogenesis by targeting two types of genes with pro- or anti-adipogenic effects. This balanced regulatory role of miR-23a~27a~24-2 cluster finally repressed adipogenesis.


Assuntos
Adipócitos/citologia , Adipócitos/metabolismo , Adipogenia/genética , Bovinos/genética , MicroRNAs/genética , Família Multigênica , Animais , Sequência de Bases , Separação Celular , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Regulação da Expressão Gênica , MicroRNAs/metabolismo , Modelos Biológicos
17.
Int J Mol Sci ; 19(1)2018 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-29337851

RESUMO

DNA methylation is a major epigenetic modification of the genome and has an essential role in muscle development. The SIX1 gene is thought to play a principal role in mediating skeletal muscle development. In the present study, we determined that bovine SIX1 expression levels were significantly higher in the fetal bovine group (FB) and in undifferentiated Qinchuan cattle muscle cells (QCMCs) than in the adult bovine group (AB) and in differentiated QCMCs. Moreover, a bisulfite sequencing polymerase chain reaction (BSP) analysis of DNA methylation levels showed that three CpG sites in the core promoter region (-216/-28) of the bovine SIX1 gene exhibited significantly higher DNA methylation levels in the AB and differentiated QCMCs groups. In addition, we found that DNA methylation of SIX1 core promoter in vitro obviously influences the promoter activities. An electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) assay, in combination with site-directed mutation and siRNA interference, demonstrated that histone H4 and E2F2 bind to the -216/-28 region and play important roles in SIX1 methylation regulation during development. The results of this study provide the foundation for a better understanding of the regulation of bovine SIX1 expression via methylation and muscle developmental in beef cattle.


Assuntos
Ilhas de CpG/genética , Metilação de DNA/genética , Fator de Transcrição E2F2/metabolismo , Regulação da Expressão Gênica , Histonas/metabolismo , Proteínas de Homeodomínio/genética , Regiões Promotoras Genéticas , Animais , Sequência de Bases , Sítios de Ligação/genética , Bovinos , Imunoprecipitação da Cromatina , Ensaio de Desvio de Mobilidade Eletroforética , Proteínas de Homeodomínio/metabolismo , Proteínas Repressoras/metabolismo
18.
Int J Mol Sci ; 19(7)2018 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-30021933

RESUMO

RING1 and YY1 binding protein (Rybp) genes inhibit myogenesis in mice, but there are no reports on the effects of these genes in cattle. The aim of this study is to investigate the roles of the Rybp gene on bovine skeletal muscle development and myoblast differentiation. In the present study, the Rybp gene was overexpressed in bovine myoblasts via adenovirus. RNA-seq was performed to screen differentially expressed genes (DEGs). The results showed that overexpressing the Rybp gene inhibits the formation of myotubes. The morphological differences in myoblasts began on the second day and were very significant 6 days after adenovirus induction. A total of 1311 (707 upregulated and 604 downregulated) DEGs were screened using RNA-seq between myoblasts with added negative control adenoviruses (AD-NC) and Rybp adenoviruses (AD-Rybp) after 6 days of induction. Gene ontology (GO) and KEGG analysis revealed that the downregulated DEGs were mainly involved in biological functions related to muscle, and, of the 32 pathways, those associated with muscle development were significantly enriched for the identified DEGs. This study can not only provide a theoretical basis for the regulation of skeletal muscle development in cattle by exploring the roles of the Rybp gene in myoblast differentiation, but it can also lay a theoretical foundation for molecular breeding of beef cattle.


Assuntos
Diferenciação Celular/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Fibras Musculares Esqueléticas/citologia , Mioblastos/citologia , Adenoviridae/metabolismo , Animais , Bovinos , Forma Celular , Análise por Conglomerados , Perfilação da Expressão Gênica , Ontologia Genética , Sequenciamento de Nucleotídeos em Larga Escala , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Mioblastos/metabolismo , Recombinação Genética/genética , Reprodutibilidade dos Testes
19.
Int J Mol Sci ; 19(4)2018 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-29596388

RESUMO

Signal transducer and activator of transcription 3 (STAT3) plays a critical role in leptin-mediated regulation of energy metabolism. This study investigated genetic variation in STAT3 promoter regions and verified their contribution to bovine body size traits. We first estimated the degree of conservation in STAT3, followed by measurements of its mRNA expression during fetal and adult stages of Qinchuan cattle. We then sequenced the STAT3 promoter region to determine genetic variants and evaluate their association with body size traits. From fetus to adult, STAT3 expression increased significantly in muscle, fat, heart, liver, and spleen tissues (p < 0.01), but decreased in the intestine, lung, and rumen (p < 0.01). We identified and named five single nucleotide polymorphisms (SNPs): SNP1-304A>C, SNP2-285G>A, SNP3-209A>C, SNP4-203A>G, and SNP5-188T>C. These five mutations fell significantly outside the Hardy-Weinberg equilibrium (HWE) (Chi-squared test, p < 0.05) and significantly associated with body size traits (p < 0.05). Individuals with haplotype H3H3 (CC-GG-CC-GG-CC) were larger in body size than other haplotypes. Therefore, variations in the STAT3 gene promoter regions, most notably haplotype H3H3, may benefit marker-assisted breeding of Qinchuan cattle.


Assuntos
Tamanho Corporal/genética , Regulação da Expressão Gênica/genética , Haplótipos , Polimorfismo de Nucleotídeo Único , Característica Quantitativa Herdável , Fator de Transcrição STAT3/genética , Animais , Bovinos , Embaralhamento de DNA , Feminino , Marcadores Genéticos , Masculino , Regiões Promotoras Genéticas
20.
Int J Mol Sci ; 19(12)2018 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-30563100

RESUMO

Subcutaneous adipose tissue is a loose connective tissue specializing in the regulation of energy storage and metabolization. In domesticated pigs (Sus scrofa), the temporal development of subcutaneous adipose tissue is critical for meat production. However, the regulation of adipose tissue development remains unclear. Here, the subcutaneous adipose tissue development was characterized and compared in lean (Danish-Landrace) and obese (Min) pigs at juvenile and the juvenile-to-adult growth stages. Using RNA sequencing, we profiled the transcriptome of subcutaneous adipose tissue isolated from 4- and 16-week-old pigs and identified 24,718 expressed transcription units. Of them, 6327 genes were differentially expressed between the breeds and/or developmental stages. Compared with obese pigs, upregulated genes in lean pigs showed significant function and pathway enrichment in fatty acid degradation and mitochondrial functions. Further analysis uncovered the distinct usage preferences of the three alternative peroxisome proliferator-activated receptor γ (PPARγ) promoters associated with the development of subcutaneous adipose tissue in both breeds. Transcriptome analysis of subcutaneous adipose tissue in lean and obese pigs suggested that marker-assisted selection of fatty acid degradation and PPARγ signaling pathways could be important directions for future pork quality improvement and modern breeding.


Assuntos
Regulação da Expressão Gênica/fisiologia , PPAR gama , Regiões Promotoras Genéticas , Gordura Subcutânea/metabolismo , Animais , PPAR gama/biossíntese , PPAR gama/genética , Especificidade da Espécie , Gordura Subcutânea/citologia , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA