RESUMO
Most tissue-resident macrophage (RTM) populations are seeded by waves of embryonic hematopoiesis and are self-maintained independently of a bone marrow contribution during adulthood. A proportion of RTMs, however, is constantly replaced by blood monocytes, and their functions compared to embryonic RTMs remain unclear. The kinetics and extent of the contribution of circulating monocytes to RTM replacement during homeostasis, inflammation, and disease are highly debated. Here, we identified Ms4a3 as a specific gene expressed by granulocyte-monocyte progenitors (GMPs) and subsequently generated Ms4a3TdT reporter, Ms4a3Cre, and Ms4a3CreERT2 fate-mapping models. These models traced efficiently monocytes and granulocytes, but no lymphocytes or tissue dendritic cells. Using these models, we precisely quantified the contribution of monocytes to the RTM pool during homeostasis and inflammation. The unambiguous identification of monocyte-derived cells will permit future studies of their function under any condition.
Assuntos
Proteínas de Ciclo Celular/genética , Expressão Gênica , Células Progenitoras de Granulócitos e Macrófagos/metabolismo , Granulócitos/metabolismo , Macrófagos/metabolismo , Proteínas de Membrana/genética , Monócitos/metabolismo , Animais , Células Progenitoras de Granulócitos e Macrófagos/citologia , Granulócitos/citologia , Hematopoese/fisiologia , Homeostase/fisiologia , Inflamação/metabolismo , Macrófagos/citologia , Camundongos , Monócitos/citologiaRESUMO
Conventional dendritic cells (cDCs) are professional antigen-presenting cells that control the adaptive immune response. Their subsets and developmental origins have been intensively investigated but are still not fully understood as their phenotypes, especially in the DC2 lineage and the recently described human DC3s, overlap with monocytes. Here, using LEGENDScreen to profile DC vs. monocyte lineages, we found sustained expression of FLT3 and CD45RB through the whole DC lineage, allowing DCs and their precursors to be distinguished from monocytes. Using fate mapping models, single-cell RNA sequencing and adoptive transfer, we identified a lineage of murine CD16/32+CD172a+ DC3, distinct from DC2, arising from Ly6C+ monocyte-DC progenitors (MDPs) through Lyz2+Ly6C+CD11c- pro-DC3s, whereas DC2s develop from common DC progenitors (CDPs) through CD7+Ly6C+CD11c+ pre-DC2s. Corresponding DC subsets, developmental stages, and lineages exist in humans. These findings reveal DC3 as a DC lineage phenotypically related to but developmentally different from monocytes and DC2s.
Assuntos
Monócitos , Células-Tronco , Camundongos , Humanos , Animais , Fenótipo , Células Cultivadas , Células Dendríticas , Diferenciação CelularRESUMO
Psoriasis is a chronic inflammatory disease whose etiology is multifactorial. The contributions of cellular metabolism to psoriasis are unclear. Here, we report that interleukin-17 (IL-17) downregulated Protein Phosphatase 6 (PP6) in psoriatic keratinocytes, causing phosphorylation and activation of the transcription factor C/EBP-ß and subsequent generation of arginase-1. Mice lacking Pp6 in keratinocytes were predisposed to psoriasis-like skin inflammation. Accumulation of arginase-1 in Pp6-deficient keratinocytes drove polyamine production from the urea cycle. Polyamines protected self-RNA released by psoriatic keratinocytes from degradation and facilitated the endocytosis of self-RNA by myeloid dendritic cells to promote toll-like receptor-7 (TLR7)-dependent RNA sensing and IL-6 production. An arginase inhibitor improved skin inflammation in murine and non-human primate models of psoriasis. Our findings suggest that urea cycle hyperreactivity and excessive polyamine generation in psoriatic keratinocytes promote self-RNA sensation and PP6 deregulation in keratinocytes is a pivotal event that amplifies the inflammatory circuits in psoriasis.
Assuntos
Células Dendríticas/imunologia , Queratinócitos/metabolismo , Fosfoproteínas Fosfatases/deficiência , Poliaminas/metabolismo , Psoríase/patologia , RNA/imunologia , Células 3T3 , Animais , Arginase/antagonistas & inibidores , Arginase/metabolismo , Arginina/metabolismo , Autoantígenos/imunologia , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Linhagem Celular , Modelos Animais de Doenças , Células HEK293 , Células HaCaT , Humanos , Interleucina-17/metabolismo , Macaca fascicularis , Glicoproteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Fosfoproteínas Fosfatases/genética , Fosforilação , Pele/patologia , Receptor 7 Toll-Like/imunologiaRESUMO
Idiopathic pulmonary fibrosis (IPF) is a severe form of lung fibrosis with a high mortality rate. However, the etiology of IPF remains unknown. Here, we report that alterations in lung microbiota critically promote pulmonary fibrosis pathogenesis. We found that lung microbiota was dysregulated, and the dysregulated microbiota in turn induced production of interleukin-17B (IL-17B) during bleomycin-induced mouse lung fibrosis. Either lung-microbiota depletion or IL-17B deficiency ameliorated the disease progression. IL-17B cooperated with tumor necrosis factor-α to induce expression of neutrophil-recruiting genes and T helper 17 (Th17)-cell-promoting genes. Three pulmonary commensal microbes, which belong to the genera Bacteroides and Prevotella, were identified to promote fibrotic pathogenesis through IL-17R signaling. We further defined that the outer membrane vesicles (OMVs) that were derived from the identified commensal microbes induced IL-17B production through Toll-like receptor-Myd88 adaptor signaling. Together our data demonstrate that specific pulmonary symbiotic commensals can promote lung fibrosis by regulating a profibrotic inflammatory cytokine network.
Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/microbiologia , Interleucina-17/metabolismo , Pulmão/metabolismo , Pulmão/microbiologia , Microbiota/fisiologia , Animais , Bacteroides/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fator 88 de Diferenciação Mieloide/metabolismo , Neutrófilos/metabolismo , Prevotella/metabolismo , Transdução de Sinais/fisiologia , Receptores Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismoRESUMO
Micropeptides encoded by short open reading frames (sORFs) within long noncoding RNAs (lncRNAs) are beginning to be discovered and characterized as regulators of biological and pathological processes. Here, we find that lncRNA Dleu2 encodes a 17-amino-acid micropeptide, which we name Dleu2-17aa, that is abundantly expressed in T cells. Dleu2-17aa promotes inducible regulatory T (iTreg) cell generation by interacting with SMAD Family Member 3 (Smad3) and enhancing its binding to the Foxp3 conserved non-coding DNA sequence 1 (CNS1) region. Importantly, the genetic deletion of Dleu2-17aa in mice by start codon mutation impairs iTreg generation and worsens experimental autoimmune encephalomyelitis (EAE). Conversely, the exogenous supplementation of Dleu2-17aa relieves EAE. Our findings demonstrate an indispensable role of Dleu2-17aa in maintaining immune homeostasis and suggest therapeutic applications for this peptide in treating autoimmune diseases.
Assuntos
Encefalomielite Autoimune Experimental , RNA Longo não Codificante , Animais , Camundongos , Autoimunidade , Peptídeos/metabolismo , RNA Longo não Codificante/genética , Linfócitos T Reguladores/metabolismoRESUMO
Psoriasis is a common inflammatory skin disorder with no cure. Mesenchymal stem cells (MSCs) have immunomodulatory properties for psoriasis, but the therapeutic efficacies varied, and the molecular mechanisms were unknown. In this study, we improved the efficacy by enhancing the immunomodulatory effects of umbilical cord-derived MSCs (UC-MSCs). UC-MSCs stimulated by TNF-α and IFN-γ exhibited a better therapeutic effect in a mouse model of psoriasis. Single-cell RNA sequencing revealed that the stimulated UC-MSCs overrepresented a subpopulation expressing high tryptophanyl-tRNA synthetase 1 (WARS1). WARS1-overexpressed UC-MSCs treat psoriasis-like skin inflammation more efficiently than control UC-MSCs by restraining the proinflammatory macrophages. Mechanistically, WARS1 maintained a RhoA-Akt axis and governed the immunomodulatory properties of UC-MSCs. Together, we identify WARS1 as a master regulator of UC-MSCs with enhanced immunomodulatory capacities, which paves the way for the directed modification of UC-MSCs for escalated therapeutic efficacy.
Assuntos
Imunomodulação , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/imunologia , Animais , Camundongos , Humanos , Transplante de Células-Tronco Mesenquimais/métodos , Triptofano-tRNA Ligase/genética , Psoríase/imunologia , Psoríase/terapia , Modelos Animais de Doenças , Análise de Célula Única , Análise de Sequência de RNA , Cordão Umbilical/citologia , Cordão Umbilical/imunologia , Camundongos Endogâmicos C57BL , Células CultivadasRESUMO
Male crickets attract females by producing calls with their forewings. Louder calls travel further and are more effective at attracting mates. However, crickets are much smaller than the wavelength of their call, and this limits their power output. A small group called tree crickets make acoustic tools called baffles which reduce acoustic short-circuiting, a source of dipole inefficiency. Here, we ask why baffling is uncommon among crickets. We hypothesize that baffling may be rare because like other tools they offer insufficient advantage for most species. To test this, we modelled the calling efficiencies of crickets within the full space of possible natural wing sizes and call frequencies, in multiple acoustic environments. We then generated efficiency landscapes, within which we plotted 112 cricket species across 7 phylogenetic clades. We found that all sampled crickets, in all conditions, could gain efficiency from tool use. Surprisingly, we also found that calling from the ground significantly increased efficiency, with or without a baffle, by as much as an order of magnitude. We found that the ground provides some reduction of acoustic short-circuiting but also halves the air volume within which sound is radiated. It simultaneously reflects sound upwards, allowing recapture of a significant amount of acoustic energy through constructive interference. Thus, using the ground as a reflective baffle is an effective strategy for increasing calling efficiency. Indeed, theory suggests that this increase in efficiency is accessible not just to crickets but to all acoustically communicating animals whether they are dipole or monopole sound sources.
Assuntos
Críquete , Gryllidae , Animais , Feminino , Filogenia , Acústica , Som , Asas de Animais , Vocalização Animal , Estimulação AcústicaRESUMO
Vitiligo is a disease featuring distinct white patches that result from melanocyte destruction. The overall pathogenesis of vitiligo remains to be elucidated. Nevertheless, considerable research indicates that adaptive immune activation plays a key role in this process. Specifically, the interferon-gamma (IFN-γ), C-X-C motif chemokine ligands (CXCL9/10), and C-X-C motif chemokine receptor (CXCR3) signaling axis, collectively referred to as IFN-γ-CXCL9/10-CXCR3 or ICC axis, has emerged as a key mediator responsible for the recruitment of autoimmune CXCR3+ CD8+ T cells. These cells serve as executioners of melanocytes by promoting their detachment and apoptosis. Moreover, IFN-γ is generated by activated T cells to create a positive feedback loop, exacerbating the autoimmune response. This review not only delves into the mechanistic insights of the ICC axis but also explores the significant immunological effects of associated cytokines and their receptors. Additionally, the review provides a thorough comparison of existing and emerging treatment options that target the ICC axis for managing vitiligo. This review aims to foster further advancements in basic research within related fields and facilitate a deeper understanding of alternative treatment strategies targeting different elements of the axis.
Assuntos
Vitiligo , Humanos , Vitiligo/terapia , Linfócitos T CD8-Positivos , Interferon gama , Quimiocina CXCL10 , Quimiocina CXCL9 , Receptores CXCR3RESUMO
SUMMARY: vSPACE is a web-based application presenting a spatial representation of scRNAseq data obtained from human articular cartilage by emulating the concept of spatial transcriptomics technology, but virtually. This virtual 2D plot presentation of human articular cartage cells generates several zonal distribution patterns, for one or multiple genes at a time, revealing patterns that scientists can appreciate as imputed spatial distribution patterns along the zonal axis. AVAILABILITY AND IMPLEMENTATION: vSPACE is implemented in Python Dash as a web-based toolbox designed for data visualization of zonal gene expression patterns in articular cartilage chondrocytes. This tool is freely accessible at: https://vspace.cse.uconn.edu/The source code and extra materials for this service can be downloaded from: https://github.com/zhacheny/vSPACE.
Assuntos
Cartilagem Articular , Condrócitos , Análise de Célula Única , Software , Condrócitos/metabolismo , Condrócitos/citologia , Humanos , Cartilagem Articular/citologia , Cartilagem Articular/metabolismo , Análise de Célula Única/métodos , Transcriptoma , Perfilação da Expressão Gênica/métodosRESUMO
BACKGROUND: Insulin like growth factor II mRNA binding protein 3 (IGF2BP3) has been implicated in numerous inflammatory and cancerous conditions. However, its precise molecular mechanisms in endometriosis (EMs) remains unclear. The aim of this study is to examine the influence of IGF2BP3 on the occurrence and progression of EMs and to elucidate its underlying molecular mechanism. METHODS: Efects of IGF2BP3 on endometriosis were confrmed in vitro and in vivo. Based on bioinformatics analysis, RNA immunoprecipitation (RIP), RNA pull-down assays and Fluorescent in situ hybridization (FISH) were used to show the association between IGF2BP3 and UCA1. Single-cell spatial transcriptomics analysis shows the expression distribution of glutaminase 1 (GLS1) mRNA in EMs. Study the effect on glutamine metabolism after ectopic endometriotic stromal cells (eESCs) were transfected with Sh-IGF2BP3 and Sh-UCA1 lentivirus. RESULTS: Immunohistochemical staining have revealed that IGF2BP3 was upregulated in ectopic endometriotic lesions (EC) compared to normal endometrial tissues (EN). The proliferation and migration ability of eESCs were greatly reduced by downregulating IGF2BP3. Additionally, IGF2BP3 has been observed to interact with urothelial carcinoma associated 1 (UCA1), leading to increased stability of GLS1 mRNA and subsequently enhancing glutamine metabolism. Results also demonstrated that IGF2BP3 directly interacts with the 3' UTR region of GLS1 mRNA, influencing its expression and stability. Furthermore, UCA1 was able to bind with c-MYC protein, stabilizing c-MYC mRNA and consequently enhancing GLS1 expression through transcriptional promotion. CONCLUSION: These discoveries underscored the critical involvement of IGF2BP3 in the elevation and stability of GLS1 mRNA in the context of glutamine metabolism by interacting with UCA1 in EMs. The implications of our study extended to the identification of possible therapeutic targets for individuals with EMs.
Assuntos
Endometriose , Glutaminase , Glutamina , Estabilidade de RNA , RNA Longo não Codificante , Proteínas de Ligação a RNA , Feminino , Humanos , Glutaminase/metabolismo , Glutaminase/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Endometriose/metabolismo , Endometriose/genética , Endometriose/patologia , Glutamina/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proliferação de Células , Adulto , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Regulação da Expressão Gênica , Ligação ProteicaRESUMO
Atopic dermatitis (AD) is a common inflammatory skin disorder. Mast cells play an important role in AD because they regulate allergic reactions and inflammatory responses. However, whether and how the modulation of mast cell activity affects AD has not been determined. In this study, we aimed to determine the effects and mechanisms of 3-O-cyclohexanecarbonyl-11-keto-ß-boswellic acid (CKBA). This natural compound derivative alleviates skin inflammation by inhibiting mast cell activation and maintaining skin barrier homeostasis in AD. CKBA markedly reduced serum IgE levels and alleviated skin inflammation in calcipotriol (MC903)-induced AD mouse model. CKBA also restrained mast cell degranulation both in vitro and in vivo. RNA-seq analysis revealed that CKBA downregulated the extracellular signal-regulated kinase (ERK) signaling in BM-derived mast cells activated by anti-2,4-dinitrophenol/2,4-dinitrophenol-human serum albumin. We proved that CKBA suppressed mast cell activation via ERK signaling using the ERK activator (t-butyl hydroquinone) and inhibitor (selumetinib; AZD6244) in AD. Thus, CKBA suppressed mast cell activation in AD via the ERK signaling pathway and could be a therapeutic candidate drug for AD.
Assuntos
Dermatite Atópica , Camundongos , Humanos , Animais , Dermatite Atópica/tratamento farmacológico , Mastócitos/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Imunoglobulina E/metabolismo , Transdução de Sinais , Inflamação/metabolismo , Dinitrofenóis/metabolismo , Dinitrofenóis/farmacologia , Dinitrofenóis/uso terapêutico , Citocinas/metabolismoRESUMO
BACKGROUND: Obesity has emerged as a growing global public health concern over recent decades. Obesity prevalence exhibits substantial global variation, ranging from less than 5% in regions like China, Japan, and Africa to rates exceeding 75% in urban areas of Samoa. AIM: To examine the involvement of metabolism-related genes. METHODS: Gene expression datasets GSE110729 and GSE205668 were accessed from the GEO database. DEGs between obese and lean groups were identified through DESeq2. Metabolism-related genes and pathways were detected using enrichment analysis, WGCNA, Random Forest, and XGBoost. The identified signature genes were validated by real-time quantitative PCR (qRT-PCR) in mouse models. RESULTS: A total of 389 genes exhibiting differential expression were discovered, showing significant enrichment in metabolic pathways, particularly in the propanoate metabolism pathway. The orangered4 module, which exhibited the highest correlation with propanoate metabolism, was identified using Weighted Correlation Network Analysis (WGCNA). By integrating the DEGs, WGCNA results, and machine learning methods, the identification of two metabolism-related genes, Storkhead Box 1 (STOX1), NACHT and WD repeat domain-containing protein 2(NWD2) was achieved. These signature genes successfully distinguished between obese and lean individuals. qRT-PCR analysis confirmed the downregulation of STOX1 and NWD2 in mouse models of obesity. CONCLUSION: This study has analyzed the available GEO dataset in order to identify novel factors associated with obesity metabolism and found that STOX1 and NWD2 may serve as diagnostic biomarkers.
Assuntos
Tecido Adiposo , Biomarcadores , Biologia Computacional , Aprendizado de Máquina , Obesidade , Obesidade/genética , Obesidade/metabolismo , Animais , Biomarcadores/metabolismo , Biologia Computacional/métodos , Tecido Adiposo/metabolismo , Camundongos Endogâmicos C57BL , Perfilação da Expressão Gênica , Bases de Dados Genéticas , Redes Reguladoras de Genes , Masculino , Humanos , Camundongos , Regulação da Expressão GênicaRESUMO
The intestinal epithelial barrier plays a critical role in the mucosal immunity. However, it remains largely unknown how the epithelial barrier is maintained after damage. Here we show that growth factor FGF2 synergized with interleukin-17 (IL-17) to induce genes for repairing of damaged epithelium. FGF2 or IL-17 deficiency resulted in impaired epithelial proliferation, increased pro-inflammatory microbiota outgrowth, and consequently worse pathology in a DSS-induced colitis model. The dysregulated microbiota in the model induced transforming growth factor beta 1 (TGFß1) expression, which in turn induced FGF2 expression mainly in regulatory T cells. Act1, an essential adaptor in IL-17 signaling, suppressed FGF2-induced ERK activation through binding to adaptor molecule GRB2 to interfere with its association with guanine nucleotide exchange factor SOS1. Act1 preferentially bound to IL-17 receptor complex, releasing its suppressive effect on FGF2 signaling. Thus, microbiota-driven FGF2 and IL-17 cooperate to repair the damaged intestinal epithelium through Act1-mediated direct signaling cross-talk.
Assuntos
Fator 2 de Crescimento de Fibroblastos/imunologia , Interleucina-17/imunologia , Intestinos/imunologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Western Blotting , Linhagem Celular Tumoral , Células Cultivadas , Colite/genética , Colite/imunologia , Colite/metabolismo , Fator 2 de Crescimento de Fibroblastos/genética , Fator 2 de Crescimento de Fibroblastos/metabolismo , Perfilação da Expressão Gênica/métodos , Células HEK293 , Células HT29 , Células HeLa , Humanos , Interleucina-17/genética , Interleucina-17/metabolismo , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Intestinos/microbiologia , Intestinos/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Microbiota/genética , Microbiota/imunologia , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/imunologia , Fator de Crescimento Transformador beta/metabolismo , Cicatrização/imunologiaRESUMO
Recent evidence has revealed that small polypeptides (containing fewer than 100 amino acids) can be translated from noncoding RNAs (ncRNAs), which are usually defined as RNA molecules that do not encode proteins. However, studies on functional products translated from primary transcripts of microRNA (pri-miRNA) are quite limited. Here, we describe a peptide termed miPEP31 that is encoded by pri-miRNA-31. miPEP31 is highly expressed in Foxp3+ regulatory T cells (Tregs ) and significantly promotes the differentiation of Tregs without affecting their inhibitory ability. Our results show that miPEP31 is a cell-penetrating peptide both in vitro and in vivo. miPEP31 downregulates miR-31 expression, enhances peripheral Treg induction, and dramatically suppresses experimental autoimmune encephalomyelitis. Mechanistically, we show that miPEP31 acts as a transcriptional repressor inhibiting the expression of miRNA-31, a negative regulator of Tregs . Our results reveal an indispensable role of miPEP31 in maintaining immune homeostasis by promoting Treg differentiation and also present a potential therapeutic peptide for modulating miRNA expression and treating autoimmune diseases.
Assuntos
Encefalomielite Autoimune Experimental , MicroRNAs , Animais , Autoimunidade/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Peptídeos/genética , Peptídeos/metabolismo , Peptídeos/farmacologia , Linfócitos T Reguladores/metabolismoRESUMO
BACKGROUND: The long-term sequelae of Coronavirus disease 2019 (COVID-19) in children are unclear. We investigated COVID-19 symptoms in school-aged children to determine their impact on patients and their families. METHODS: This cross-sectional study, conducted on February 25-28, 2023, selected a representative kindergarten and 9-year school from Shenzhen, China. There were randomly two classes each for the 12 grades from kindergarten to junior high school. The school-aged children were aged 3-16 years. Literate parents completed an online questionnaire related to their children's COVID-19 symptoms since December 1, 2022. Descriptive statistics were computed as necessary. Univariate and multivariable linear regression analyses were performed, and variables with a p-value < 0.05 were considered to have a significant association with the subjective feeling scores for COVID-19 infection. RESULTS: We included 936 school-aged children, with a COVID-19 infection rate of 68.5%. The prevalence of LC 28 (illness with symptoms lasting for 28 days) was 3.4%. During acute infection, the median number of the 641 children's symptoms was 3.0 (IQR: 1.0-5.0) and the median score of subjective feelings was 15.0 (IQR: 11.0-24.5). The top three symptoms were fever, cough/expectoration, and rhinobyon. Age of 13-16 years (adjusted beta: 3.60, 95% CI: 0.32-6.88) and comorbidities (adjusted beta: 3.47, 95% CI: 1.20-5.73) were independently associated with higher subjective feelings (p < 0.05). The top three characteristics associated with LC 28 were alopecia (33.3%, 5/15), cognitive dysfunction (29.2%, 7/24), and emotional problem (28.6%, 6/21). CONCLUSIONS: Children with COVID-19 have a short duration of symptoms and milder symptoms, so they can self-medicate to minimize hospital crowding. Children with basic diseases require prompt attention. Although LC 28 is uncommon in children, mental and psychological problems after COVID-19 recovery should not be ignored.
Assuntos
COVID-19 , Criança , Humanos , COVID-19/epidemiologia , Estudos Retrospectivos , SARS-CoV-2 , Estudos Transversais , Comorbidade , China/epidemiologiaRESUMO
Objective: To analyze the effects of thalassemia minor on the incidence of amniotic fluid abnormalities and the blood loss of pregnant women during delivery based on the database. Methods: PubMed, EMBASE, EBSCO, Web of Knowledge and Ovid databases were searched for articles on the incidence of amniotic fluid abnormalities and the amount of bleeding during delivery in pregnant women with mild thalassemia; it can also be combined with manual retrieval for literature review. The data retrieval period was from the establishment of the database to June 2022. According to the Newcastle Ottawa scale score, the quality of the six included literature was evaluated, and the Revman processing software was used for meta-analysis. Results: The 6 included articles are all high-quality literature, including 364 cases in the case group and 689 cases in the control group. The publication years of the literature are mainly from 2013 to 2021, and they are all high-quality literature. All literature was blinded, and a total of 4 pregnancy outcomes were extracted from the 6 included literature, including oligohydramnios/oligohydramnios, postpartum hemorrhage, preterm delivery, and cesarean section. Compared to normal pregnant women, the level of postpartum bleeding in thalassemia pregnant women was significantly increased [RR = 2.40, 95% CI (1.63-3.54), P < .05], and the difference was statistically significant. Compared to normal pregnant women, thalassemia pregnant women have a significantly higher risk of developing excessive/insufficient amniotic fluid [RR = 2.71, 95% CI (2.52-2.81), P < .01], and the difference is statistically significant. Compared to normal pregnant women, pregnant women with thalassemia have a significantly higher risk of premature birth [RR = 3.02, 95% CI (1.84~4.96), P < .05], and the difference is statistically significant. Compared to normal pregnant women, the risk of cesarean section in thalassemia pregnant women is significantly increased [RR = 1.68, 95% CI (1.39-2.02), P < .05], and the difference is statistically significant. Conclusion: Thalassemia minor can increase the incidence of amniotic fluid abnormalities and the amount of bleeding during labor. In the future, we should strengthen the health education of pregnant women, improve the understanding of the disease, avoid or reduce the impact of thalassemia on newborns, improve the pregnancy outcome, and provide a more reliable basis for clinical decision-making.However, there are still certain limitations: (1) the literature selected in the study for the past 5 years is relatively small, and they are all single center, retrospective studies, and have a small sample size, resulting in insufficient accuracy of the results of the meta-analysis; (2) Some literature lacks blind methods, which may lead to language bias and implementation bias in the results; (3) The research time is still short, and it has not been clear how different types of thalassemia affect abnormal amniotic fluid volume and postpartum bleeding.
Assuntos
Oligo-Hidrâmnio , Complicações na Gravidez , Talassemia beta , Gravidez , Recém-Nascido , Feminino , Humanos , Cesárea , Oligo-Hidrâmnio/epidemiologia , Estudos Retrospectivos , Incidência , Líquido AmnióticoRESUMO
Endometriosis is a gynaecological condition characterized by the growth of endometrium-like tissues within and outside of the pelvic cavity. Recent studies have demonstrated that aberrant infiltration of M2 macrophages is mainly responsible for the establishment of endometriotic lesions. A growing body of evidence shows that glycolysis and lactate accumulation have great impact on the regulation of immunomicroenvironment. However, the communication signal between glycolysis and macrophages is poorly defined in endometriosis. Hereby, we investigate the correlation between glycolysis and M2 macrophage infiltration in endometriosis. Next, we confirm that lactate is pivotal factor that drives macrophage M2-polarization to promote endometriotic stromal cells invasion in vitro and in vivo. In addition, we also identify that the activation of Mettl3 and its target gene Trib1 promote M2 macrophage polarization. Moreover, we also demonstrate that Trib1 induce M2 macrophage polarization via the activation of ERK/STAT3 signalling pathway. Finally, by injecting 2-DG into endometriosis mice model, we show that the restrain of glycolysis significantly reduces the progression of endometriosis, which provides evidence for lactate as a potential therapeutic strategy for the prevention and treatment of endometriosis.
Assuntos
Endometriose , Ácido Láctico , Humanos , Feminino , Animais , Camundongos , Endometriose/metabolismo , Endometriose/patologia , Transdução de Sinais , Macrófagos/metabolismo , Células Estromais , Metiltransferases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fator de Transcrição STAT3/genéticaRESUMO
AIMS: Diabetic cardiomyopathy (DCM) is a major complication of diabetes and a risk factor for cardiovascular disease. Endothelial dysfunction is central to DCM, and endothelial-to-mesenchymal transition (EndMT) is a key form of endothelial dysfunction in diabetes. EndMT in DCM has been well-studied in model systems and has been found to be epigenetically regulated by non-coding RNAs (ncRNAs). However, EndMT in DCM and its associated epigenetic changes need further characterization in human patients. It is also not known if ncRNAs are affected by changes in DNA methylation in DCM. This study aims to confirm in human hearts, the findings from animal and cell studies, and potentially provide novel insight into interactions between DNA methylation and ncRNAs in EndMT in DCM. METHODS AND RESULTS: Heart tissues were collected from autopsy patients, fixed in formalin, and embedded in paraffin. Thin sections from paraffin-embedded tissues were used for histology and immunofluorescence analyses, where we confirmed that diabetic patients showed increased cardiac fibrosis that EndMT had occurred. Tissue curls from the paraffin-embedded tissues were used for RT-qPCR and methylation analyses. RT-qPCR quantitatively showed that EndMT occurs in the hearts of diabetics, and that EndMT in human hearts corresponded to changes in key ncRNAs. Methylation analysis showed that some of the EndMT-related ncRNAs were regulated by DNA promoter methylation, while others may be regulated through different epigenetic mechanisms. CONCLUSIONS: We show that EndMT is a relevant pathological process in human hearts during DCM, and that its occurrence coincides with changes in relevant ncRNAs. We further find that interplay between DNA methylation and certain ncRNAs involved in the regulation of EndMT may contribute to the observed changes in ncRNA expression. These findings reinforce the role of EndMT in patients afflicted with DCM and underscore the complexities and importance of the interactions between different facets of epigenetic regulation.
Assuntos
Diabetes Mellitus , Cardiomiopatias Diabéticas , Animais , Humanos , Metilação de DNA , Cardiomiopatias Diabéticas/genética , Epigênese Genética , Endotélio , RNA não Traduzido/genética , Transição Epitelial-Mesenquimal , Diabetes Mellitus/genéticaRESUMO
IL-17-secreting Th17 cells play an important role in the pathogenesis of various inflammatory and autoimmune diseases. IL-17-targeted biologics and small molecules are becoming promising treatments for these diseases. In this study, we report that SZB120, a derivative of the natural compound 3-acetyl-ß-boswellic acid, inhibits murine Th17 cell differentiation by interacting with the α-subunit of eukaryotic initiation factor 2 (eIF2α). We showed that SZB120 directly interacts with eIF2α and contributes to serine 51 phosphorylation of eIF2α. The suppressive effect of SZB120 on Th17 cell differentiation was reversed by GSK2606414, an inhibitor of eIF2α phosphokinase. Phosphorylation of eIF2α induced by SZB120 decreased the protein expression of IκBζ, which is important for Th17 cell differentiation. Notably, interaction with eIF2α by SZB120 also impaired glucose uptake and glycolysis in T cells. In vivo, SZB120 treatment of C57BL/6 mice significantly attenuated IL-17/Th17-mediated autoimmune disease. Our study indicates that SZB120 is a promising drug candidate for IL-17/Th17-mediated inflammatory diseases.
Assuntos
Produtos Biológicos/farmacologia , Diferenciação Celular/efeitos dos fármacos , Fator de Iniciação 2 em Eucariotos/metabolismo , Fatores Imunológicos/farmacologia , Células Th17/efeitos dos fármacos , Triterpenos/farmacologia , Animais , Doenças Autoimunes/imunologia , Doenças Autoimunes/metabolismo , Células Cultivadas , Feminino , Interleucina-17/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação/efeitos dos fármacos , Células Th17/metabolismoRESUMO
The photosystem II (PSII) outer antenna LHCB3 protein plays critical roles in distributing the excitation energy and modulating the rate of state transition for photosynthesis. Here, OsLHCB3 knockdown mutants were produced using the RNAi system. Phenotypic analyses showed that OsLHCB3 knockdown led to pale green leaves and lower chlorophyll contents at both tillering and heading stages. In addition, mutant lines exhibited decreased non-photochemical quenching (NPQ) capacity and net photosynthetic rate (Pn) by downregulating the expression of PSII-related genes. Moreover, RNA-seq experiments were performed at both tillering and heading stages. The differentially expressed genes (DEGs) mainly involved in chlorophyll binding response to abscisic acid, photosystem II, response to chitin, and DNA-binding transcription factor. Besides, our transcriptomic and physiological data indicated that OsLHCB3 was essential for binding chlorophyll, but not for the metabolism of chlorophyll in rice. OsLHCB3 RNAi knockdown plants affected the expression of PS II-related genes, but not PS I-related genes. Overall, these results suggest that OsLHCB3 also plays vital roles in regulating photosynthesis and antenna proteins in rice as well as responses to environment stresses. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-023-01387-z.