Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Cell Mol Biol (Noisy-le-grand) ; 70(5): 132-138, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38814223

RESUMO

We investigated the influence of 17ß-estradiol (17ß-E2) on cartilage extracellular matrix (ECM) homeostasis in postmenopausal women. We focused on the roles of estrogen receptors (ESR) and SOX6 in 17ß-E2-mediated stimulation of ECM metabolism during chondrocyte (CH) degeneration. We compared the expression of anabolic genes (collagen II and aggrecan) and catabolic genes (MMPs and TIMPs) in IL-1ß-induced CH degeneration in vitro, with and without 17ß-E2 supplementation. We separately silenced the SOX6, ESR1, and ESR2 genes in CHs to determine their impact on 17ß-E2 treatment. Additionally, we used Chromatin immunoprecipitation followed by DNA sequencing (ChIP-seq) and luciferase assays to investigate protein-DNA interactions within ESR2 and SOX6-promoter complexes. After three days of IL-1ß treatment, ESR1/2, SOX6, collagen II, aggrecan, and TIMP1/3 were decreased, while MMP3/9/13 were increased. The addition of 17ß-E2 partially reversed these effects, but silencing SOX6, ESR1, or ESR2 weakened the protective effects of 17ß-E2. Silencing ESR2, but not ESR1, abolished the upregulation of SOX6 induced by 17ß-E2. ESR2 was found to bind the SOX6 promoter and regulate SOX6 expression. 17ß-E2 upregulates SOX6 through ESR2 mediation, and the synergistic effect of 17ß-E2 and ESR2 on SOX6 balances ECM metabolism in CHs.


Assuntos
Condrócitos , Estradiol , Receptor beta de Estrogênio , Matriz Extracelular , Interleucina-1beta , Fatores de Transcrição SOXD , Condrócitos/metabolismo , Condrócitos/efeitos dos fármacos , Estradiol/farmacologia , Humanos , Receptor beta de Estrogênio/metabolismo , Receptor beta de Estrogênio/genética , Feminino , Matriz Extracelular/metabolismo , Matriz Extracelular/efeitos dos fármacos , Fatores de Transcrição SOXD/metabolismo , Fatores de Transcrição SOXD/genética , Interleucina-1beta/metabolismo , Interleucina-1beta/farmacologia , Receptor alfa de Estrogênio/metabolismo , Receptor alfa de Estrogênio/genética , Regiões Promotoras Genéticas/genética , Células Cultivadas
2.
Environ Res ; 252(Pt 4): 119072, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38729411

RESUMO

BACKGROUND: Per- and poly-fluorinated compounds (PFAS) and heavy metals constitute two classes of environmental exposures with known immunotoxicant effects. In this pilot study, we aimed to evaluate the impact of exposure to heavy metals and PFAS on COVID-19 severity. We hypothesized that elevated plasma-PFAS concentrations and urinary heavy metal concentrations would be associated with increased odds of ICU admission in COVID-19 hospitalized individuals. METHODS: Using the University of Southern California Clinical Translational Sciences Institute (SC-CTSI) biorepository of hospitalized COVID-19 patients, urinary concentrations of 15 heavy metals and urinary creatinine were measured in n = 101 patients and plasma concentrations of 13 PFAS were measured in n = 126 patients. COVID-19 severity was determined based on whether a patient was admitted to the ICU during hospitalization. Associations of metals and PFAS with ICU admission were assessed using logistic regression models, controlling for age, sex, ethnicity, smoking status, and for metals, urinary dilution. RESULTS: The average age of patients was 55 ± 14.2 years. Among SC-CTSI participants with urinary measurement of heavy metals and blood measures of PFAS, 54.5% (n = 61) and 54.8% (n = 80) were admitted to the ICU, respectively. For heavy metals, we observed higher levels of Cd, Cr, and Cu in ICU patients. The strongest associations were with Cadmium (Cd). After accounting for covariates, each 1 SD increase in Cd resulted in a 2.00 (95% CI: 1.10-3.60; p = 0.03) times higher odds of admission to the ICU. When including only Hispanic or Latino participants, the effect estimates between cadmium and ICU admission remained similar. Results for PFAS were less consistent, with perfluorodecanesulfonic acid (PFDS) exhibiting a positive but non-significant association with ICU admission (Odds ratio, 95% CI: 1.50, 0.97-2.20) and perfluorodecanoic acid (PFDA) exhibiting a negative association with ICU admission (0.53, 0.31-0.88). CONCLUSIONS: This study supports the hypothesis that environmental exposures may impact COVID-19 severity.


Assuntos
COVID-19 , Exposição Ambiental , Poluentes Ambientais , Hispânico ou Latino , Metais Pesados , Humanos , Pessoa de Meia-Idade , Masculino , Feminino , Hispânico ou Latino/estatística & dados numéricos , Poluentes Ambientais/urina , Poluentes Ambientais/sangue , Idoso , Adulto , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Metais Pesados/urina , Metais Pesados/sangue , Fatores de Risco , Projetos Piloto , Fluorocarbonos/sangue , Fluorocarbonos/urina , Hospitalização/estatística & dados numéricos , Unidades de Terapia Intensiva/estatística & dados numéricos , SARS-CoV-2
3.
Environ Res ; 259: 119496, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38936497

RESUMO

BACKGROUND: Per- and polyfluoroalkyl substances (PFAS) are synthetic chemicals that persist in the environment and can accumulate in humans, leading to adverse health effects. MicroRNAs (miRNAs) are emerging biomarkers that can advance the understanding of the mechanisms of PFAS effects on human health. However, little is known about the associations between PFAS exposures and miRNA alterations in humans. OBJECTIVE: To investigate associations between PFAS concentrations and miRNA levels in children. METHODS: Data from two distinct cohorts were utilized: 176 participants (average age 17.1 years; 75.6% female) from the Teen-Longitudinal Assessment of Bariatric Surgery (Teen-LABS) cohort in the United States, and 64 participants (average age 6.5 years, 39.1% female) from the Rhea study, a mother-child cohort in Greece. PFAS concentrations and miRNA levels were assessed in plasma samples from both studies. Associations between individual PFAS and plasma miRNA levels were examined after adjusting for covariates. Additionally, the cumulative effects of PFAS mixtures were evaluated using an exposure burden score. Ingenuity Pathways Analysis was employed to identify potential disease functions of PFAS-associated miRNAs. RESULTS: Plasma PFAS concentrations were associated with alterations in 475 miRNAs in the Teen-LABs study and 5 miRNAs in the Rhea study (FDR p < 0.1). Specifically, plasma PFAS concentrations were consistently associated with decreased levels of miR-148b-3p and miR-29a-3p in both cohorts. Pathway analysis indicated that PFAS-related miRNAs were linked to numerous chronic disease pathways, including cardiovascular diseases, inflammatory conditions, and carcinogenesis. CONCLUSION: Through miRNA screenings in two independent cohorts, this study identified both known and novel miRNAs associated with PFAS exposure in children. Pathway analysis revealed the involvement of these miRNAs in several cancer and inflammation-related pathways. Further studies are warranted to enhance our understanding of the relationships between PFAS exposure and disease risks, with miRNA emerging as potential biomarkers and/or mediators in these complex pathways.

4.
Neurosurg Rev ; 47(1): 140, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578529

RESUMO

In recent years, nonsteroidal anti-inflammatory drug (NSAIDs), which are considered to affect the prognosis of spinal surgery, have been widely used in perioperative analgesia in spinal surgery, but the relationship between these two factors remains unclear. The purpose of this study was to explore the effect of perioperative use of NSAIDs on the prognosis of patients treated with spinal surgery. We systematically searched PubMed, Embase, and Cochrane Library for relevant articles published on or before July 14, 2023. We used a random-effect model for the meta-analysis to calculate the standardized mean difference (SMD) with a 95% confidence interval (CI). Sensitivity analyses were conducted to analyze stability. A total of 23 randomized clinical trials including 1457 participants met the inclusion criteria. Meta-analysis showed that NSAIDs were significantly associated with postoperative morphine use (mg) (SMD = -0.90, 95% CI -1.12 to -0.68) and postoperative pain (SMD = -0.71, 95% CI -0.85 to -0.58). These results were further confirmed by the trim-and-fill procedure and leave-one-out sensitivity analyses. The current study shows that perioperative use of NSAIDs appears to be an important factor in reducing postoperative pain and morphine use in patients undergoing spinal surgery. However, well-designed, high-quality randomized controlled trials (RCTs) are still required.


Assuntos
Anti-Inflamatórios não Esteroides , Dor Pós-Operatória , Coluna Vertebral , Humanos , Anti-Inflamatórios não Esteroides/uso terapêutico , Derivados da Morfina/uso terapêutico , Dor Pós-Operatória/tratamento farmacológico , Ensaios Clínicos Controlados Aleatórios como Assunto , Coluna Vertebral/cirurgia
5.
J Environ Manage ; 351: 119858, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38118346

RESUMO

Microplastic (MP) can significantly affect soil behaviour and the ecosystem. This paper presents an experimental study to investigate the effects of MP contamination and leachate exposure on the desiccation cracks, hydraulic conductivity, and water retention properties of the natural black clay. The leachate was from a landfill in Australia. The black clay was incorporated with up to 2.0% MPs by weight (w/w) with diverse dimensions and mixed with water/leachate. The measured properties include saturated hydraulic conductivity (ksat), soil-water characteristic curves, moisture evaporation rates, and crack intensity factors. The results suggest that the inclusion of MPs significantly increases ksat, and this increase is more obvious for soils with larger dimensions and contents of MPs, e.g., ksat of the black clay with 2.0% of 500 µm MP increases significantly by 206% (p < 0.05). The black clay exposed to leachate exhibits a slight increase in ksat due to the low viscosity of leachate. The existence of MPs decreases the residual moisture contents and air-entry pressures, and so does the water retention capacity (v/v %) of the black clay. The exposure to leachate increases the air-entry pressures by 6.0%-15.8% of the clay. The evaporation rates increase with the dimensions and concentrations of MPs. The highest evaporation rate (0.96 g/h) can be observed in samples exposed to 2.0% 500 µm MP with water addition. For all samples, the crack intensity factors increase when MP content is between 0.2% and 1.0% and decreases slightly after that. After being exposed to leachate, the evaporation rates and crack intensity factors of the black clay are decreased by 2.4%-12.6% and 3.6%-13.7%, respectively.


Assuntos
Microplásticos , Plásticos , Argila , Ecossistema , Dessecação , Silicatos de Alumínio , Solo , Água
6.
Small Methods ; 8(6): e2300820, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38150645

RESUMO

Aqueous lithium-ion batteries offer promising advantages such as low cost, enhanced safety, high rate capability, and the ability to deliver considerable capacity at 1.8 V, making them ideal candidates for large-scale reserve power sources for renewable energy. However, the practical application of aqueous lithium-ion batteries has been hindered by the poor cycle stability of layered cathode materials, including LiCoO2, in neutral aqueous electrolytes. This review examines the working principles, material limitations, and research progress of aqueous lithium-ion batteries. The types and characteristics of materials used in the cathode of aqueous lithium-ion batteries are summarized, with a primary focus on the attenuation mechanisms of LiCoO2 when used as the cathode material in aqueous electrolytes. Furthermore, this review explores the advancements in utilizing LiCoO2 in the cathode of aqueous lithium-ion batteries, as well as the combination with machine learning. By addressing these critical aspects, this review aims to provide a comprehensive understanding of aqueous lithium-ion batteries and shed light on future development and application prospects.

7.
Chemosphere ; 350: 141024, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38147929

RESUMO

Environmental pollution and energy shortages are global issues that significantly impact human progress. Multiple methods have been proposed for treating industrial and dyes containing wastewater. Ultrasonic degradation has emerged as a promising and innovative technology for organic pollutant degradation. This study provides a comprehensive overview of the factors affecting ultrasonic degradation and thoroughly examines the technique of acoustic cavitation. Furthermore, this study summarizes the fundamental theories and mechanisms underlying cavitation, emphasizing its efficacy in the remediation of various water pollutants. Furthermore, potential synergies between ultrasonic cavitation and other commonly used technologies are also explored. Potential challenges are identified and future directions for the development of ultrasonic degradation and ultrasonic cavitation technologies are outlined.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Humanos , Águas Residuárias , Ultrassom , Acústica , Poluição Ambiental , Poluentes Químicos da Água/análise
8.
Polymers (Basel) ; 16(9)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38732738

RESUMO

Plastics offer many advantages and are widely used in various fields. Nevertheless, most plastics derived from petroleum are slow to degrade due to their stable polymer structure, posing serious threats to organisms and ecosystems. Thus, developing environmentally friendly and biodegradable plastics is imperative. In this study, biodegradable cellulose/multi-walled carbon nanotube (MCNT) hybrid gels and films with improved ultraviolet-shielding properties were successfully prepared using cotton textile waste as a resource. It was proven that MCNTs can be dispersed evenly in cellulose without any chemical or physical pretreatment. It was found that the contents of MCNTs had obvious effects on the structures and properties of hybrid films. Particularly, the averaged transmittance of cellulose/MCNT composite films in the range of 320-400 nm (T320-400) and 290-320 nm (T290-320) can be as low as 19.91% and 16.09%, when the content of MCNTs was 4.0%, much lower than those of pure cellulose films (T320-400: 84.12% and T290-320: 80.03%). Meanwhile, the water contact angles of the cellulose/MCNT films were increased by increasing the content of MCNTs. Most importantly, the mechanical performance of cellulose/MCNT films could be controlled by the additives of glycerol and MCNTs. The tensile strength of the cellulose/MCNT films was able to reach as high as 20.58 MPa, while the elongation at break was about 31.35%. To summarize, transparent cellulose/MCNT composites with enhanced ultraviolet-shielding properties can be manufactured successfully from low-cost cotton textile waste, which is beneficial not only in terms of environmental protection, but also the utilization of natural resources.

9.
Environ Int ; 185: 108454, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38316574

RESUMO

BACKGROUND: Per- and polyfluoroalkyl substances (PFAS) are pollutants linked to adverse health effects. Diet is an important source of PFAS exposure, yet it is unknown how diet impacts longitudinal PFAS levels. OBJECTIVE: To determine if dietary intake and food sources were associated with changes in blood PFAS concentrations among Hispanic young adults at risk of metabolic diseases. METHODS: Predominantly Hispanic young adults from the Children's Health Study who underwent two visits (CHS; n = 123) and young adults from NHANES 2013-2018 who underwent one visit (n = 604) were included. Dietary data at baseline was collected using two 24-hour dietary recalls to measure individual foods and where foods were prepared/consumed (home/restaurant/fast-food). PFAS were measured in blood at both visits in CHS and cross-sectionally in NHANES. In CHS, multiple linear regression assessed associations of baseline diet with longitudinal PFAS; in NHANES, linear regression was used. RESULTS: In CHS, all PFAS except PFDA decreased across visits (all p < 0.05). In CHS, A 1-serving higher tea intake was associated with 24.8 %, 16.17 %, and 12.6 % higher PFHxS, PFHpS, and PFNA at follow-up, respectively (all p < 0.05). A 1-serving higher pork intake was associated with 13.4 % higher PFOA at follow-up (p < 0.05). Associations were similar in NHANES, including unsweetened tea, hot dogs, and processed meats. For food sources, in CHS each 200-gram increase in home-prepared food was associated with 0.90 % and 1.6 % lower PFOS at baseline and follow-up, respectively, and in NHANES was associated with 0.9 % lower PFDA (all p < 0.05). CONCLUSION: Results suggest that beverage consumption habits and food preparation are associated with differences in PFAS levels in young adults. This highlights the importance of diet in determining PFAS exposure and the necessity of public monitoring of foods and beverages for PFAS contamination.


Assuntos
Ácidos Alcanossulfônicos , Poluentes Ambientais , Fluorocarbonos , Humanos , Adulto Jovem , Ingestão de Alimentos , Hispânico ou Latino , Inquéritos Nutricionais , Chá
10.
medRxiv ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-39006440

RESUMO

To address the growing epidemic of liver disease, particularly in pediatric populations, it is crucial to identify modifiable risk factors for the development and progression of metabolic dysfunction-associated steatotic liver disease (MASLD). Per- and polyfluoroalkyl substances (PFAS) are persistent ubiquitous chemicals and have emerged as potential risk factors for liver damage. However, their impact on the etiology and severity of MASLD remains largely unexplored in humans. This study aims to bridge the gap between human and in vitro studies to understand how exposure to perfluoroheptanoic acid (PFHpA), one of the emerging PFAS replacements which accumulates in high concentrations in the liver, contributes to MASLD risk and progression. First, we showed that PFHpA plasma concentrations were significantly associated with increased risk of MASLD in obese adolescents. Further, we examined the impact of PFHpA on hepatic metabolism using 3D human liver spheroids and single-cell transcriptomics to identify major hepatic pathways affected by PFHpA. Next, we integrated the in vivo and in vitro multi-omics datasets with a novel statistical approach which identified signatures of proteins and metabolites associated with MASLD development triggered by PFHpA exposure. In addition to characterizing the contribution of PFHpA to MASLD progression, our study provides a novel strategy to identify individuals at high risk of PFHpA-induced MASLD and develop early intervention strategies. Notably, our analysis revealed that the proteomic signature exhibited a stronger correlation between both PFHpA exposure and MASLD risk compared to the metabolomic signature. While establishing a clear connection between PFHpA exposure and MASLD progression in humans, our study delved into the molecular mechanisms through which PFHpA disrupts liver metabolism. Our in vitro findings revealed that PFHpA primarily impacts lipid metabolism, leading to a notable increase of lipid accumulation in human hepatocytes after PFHpA exposure. Among the pathways involved in lipid metabolism in hepatocytes, regulation of lipid metabolism by PPAR-a showed a remarkable activation. Moreover, the translational research framework we developed by integrating human and in vitro data provided us biomarkers to identify individuals at a high risk of MASLD due to PFHpA exposure. Our framework can inform policies on PFAS-induced liver disease and identify potential targets for prevention and treatment strategies.

11.
World J Gastroenterol ; 30(4): 332-345, 2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38313232

RESUMO

BACKGROUND: Nonalcoholic fatty liver disease (NAFLD) is one of the most common chronic liver diseases in children and adolescents. NAFLD ranges in severity from isolated hepatic steatosis to nonalcoholic steatohepatitis (NASH), wherein hepatocellular inflammation and/or fibrosis coexist with steatosis. Circulating microRNA (miRNA) levels have been suggested to be altered in NAFLD, but the extent to which miRNA are related to NAFLD features remains unknown. This analysis tested the hypothesis that plasma miRNAs are significantly associated with histological features of NAFLD in adolescents. AIM: To investigate the relationship between plasma miRNA expression and NAFLD features among adolescents with NAFLD. METHODS: This study included 81 adolescents diagnosed with NAFLD and 54 adolescents without NAFLD from the Teen-Longitudinal Assessment of Bariatric Surgery study. Intra-operative core liver biopsies were collected from participants and used to characterize histological features of NAFLD. Plasma samples were collected during surgery for miRNA profiling. A total of 843 plasma miRNAs were profiled using the HTG EdgeSeq platform. We examined associations of plasma miRNAs and NAFLD features using logistic regression after adjusting for age, sex, race, and other key covariates. Ingenuity Pathways Analysis was used to identify biological functions of miRNAs that were associated with multiple histological features of NAFLD. RESULTS: We identified 16 upregulated plasma miRNAs, including miR-193a-5p and miR-193b-5p, and 22 downregulated plasma miRNAs, including miR-1282 and miR-6734-5p, in adolescents with NAFLD. Moreover, 52, 16, 15, and 9 plasma miRNAs were associated with NASH, fibrosis, ballooning degeneration, and lobular inflammation, respectively. Collectively, 16 miRNAs were associated with two or more histological features of NAFLD. Among those miRNAs, miR-411-5p was downregulated in NASH, ballooning, and fibrosis, while miR-122-5p, miR-1343-5p, miR-193a-5p, miR-193b-5p, and miR-7845-5p were consistently and positively associated with all histological features of NAFLD. Pathway analysis revealed that most common pathways of miRNAs associated with multiple NAFLD features have been associated with tumor progression, while we also identified linkages between miR-122-5p and hepatitis C virus and between miR-199b-5p and chronic hepatitis B. CONCLUSION: Plasma miRNAs were associated with NAFLD features in adolescent with severe obesity. Larger studies with more heterogeneous NAFLD phenotypes are needed to evaluate miRNAs as potential biomarkers of NAFLD.


Assuntos
MicroRNA Circulante , MicroRNAs , Hepatopatia Gordurosa não Alcoólica , Obesidade Mórbida , Criança , Adolescente , Humanos , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/complicações , Fígado/patologia , MicroRNA Circulante/genética , MicroRNA Circulante/metabolismo , Obesidade Mórbida/complicações , Obesidade Mórbida/cirurgia , Obesidade Mórbida/metabolismo , MicroRNAs/metabolismo , Obesidade/complicações , Fibrose , Inflamação/patologia
12.
Environ Int ; 190: 108930, 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39128376

RESUMO

BACKGROUND: Precision Health aims to revolutionize disease prevention by leveraging information across multiple omic datasets (multi-omics). However, existing methods generally do not consider personalized environmental risk factors (e.g., environmental pollutants). OBJECTIVE: To develop and apply a precision health framework which combines multiomic integration (including early, intermediate, and late integration, representing sequential stages at which omics layers are combined for modeling) with mediation approaches (including high-dimensional mediation to identify biomarkers, mediation with latent factors to identify pathways, and integrated/quasi-mediation to identify high-risk subpopulations) to identify novel biomarkers of prenatal mercury induced metabolic dysfunction-associated fatty liver disease (MAFLD), elucidate molecular pathways linking prenatal mercury with MAFLD in children, and identify high-risk children based on integrated exposure and multiomics data. METHODS: This prospective cohort study used data from 420 mother-child pairs from the Human Early Life Exposome (HELIX) project. Mercury concentrations were determined in maternal or cord blood from pregnancy. Cytokeratin 18 (CK-18; a MAFLD biomarker) and five omics layers (DNA Methylation, gene transcription, microRNA, proteins, and metabolites) were measured in blood in childhood (age 6-10 years). RESULTS: Each standard deviation increase in prenatal mercury was associated with a 0.11 [95% confidence interval: 0.02-0.21] standard deviation increase in CK-18. High dimensional mediation analysis identified 10 biomarkers linking prenatal mercury and CK-18, including six CpG sites and four transcripts. Mediation with latent factors identified molecular pathways linking mercury and MAFLD, including altered cytokine signaling and hepatic stellate cell activation. Integrated/quasi-mediation identified high risk subgroups of children based on unique combinations of exposure levels, omics profiles (driven by epigenetic markers), and MAFLD. CONCLUSIONS: Prenatal mercury exposure is associated with elevated liver enzymes in childhood, likely through alterations in DNA methylation and gene expression. Our analytic framework can be applied across many different fields and serve as a resource to help guide future precision health investigations.

13.
Obesity (Silver Spring) ; 32(5): 1023-1032, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38515392

RESUMO

OBJECTIVE: Dichlorodiphenyldichloroethylene (DDE), an obesogen accumulating in adipose tissue, is released into circulation with weight loss, although its impact is underexplored among adolescents. We tested the association using an integrative translational approach of epidemiological analysis among adolescents with obesity and in vitro measures exploring the impact of DDE on adipogenesis via preadipocytes. METHODS: We included 63 participants from the Teen-Longitudinal Assessment of Bariatric Surgery (Teen-LABS) cohort. We assessed 4,4'-DDE in visceral adipose tissue at surgery and BMI and waist circumference at surgery and 0.5, 1, 3, and 5 years after. We conducted longitudinal analysis to estimate the interaction on weight loss between DDE and time since surgery. In vitro analysis quantified adipogenic differentiation in commercial human preadipocytes exposed to 4,4'-DDE via fluorescent staining and imaging. RESULTS: A dose-response relationship was observed, with the low-exposure group having a greater reduction in BMI during the first year compared to higher-exposure groups and showing smaller regains compared to higher-exposure groups after the first year. In vitro analysis of preadipocytes treated with 4,4'-DDE during adipogenic differentiation for 12 days showed a concentration-dependent increase in lipid accumulation. CONCLUSIONS: DDE could contribute to weight trajectory among adolescents undergoing bariatric surgery, potentially mediated via promoted adipogenesis in preadipocytes.


Assuntos
Adipogenia , Cirurgia Bariátrica , Índice de Massa Corporal , Diclorodifenil Dicloroetileno , Gordura Intra-Abdominal , Redução de Peso , Humanos , Adolescente , Masculino , Feminino , Gordura Intra-Abdominal/metabolismo , Estudos Longitudinais , Obesidade Infantil/metabolismo , Adipócitos/metabolismo , Estudos de Coortes , Circunferência da Cintura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA