Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Brief Bioinform ; 24(6)2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37742050

RESUMO

The emergence of multidrug-resistant bacteria is a critical global crisis that poses a serious threat to public health, particularly with the rise of multidrug-resistant Staphylococcus aureus. Accurate assessment of drug resistance is essential for appropriate treatment and prevention of transmission of these deadly pathogens. Early detection of drug resistance in patients is critical for providing timely treatment and reducing the spread of multidrug-resistant bacteria. This study aims to develop a novel risk assessment framework for S. aureus that can accurately determine the resistance to multiple antibiotics. The comprehensive 7-year study involved ˃20 000 isolates with susceptibility testing profiles of six antibiotics. By incorporating mass spectrometry and machine learning, the study was able to predict the susceptibility to four different antibiotics with high accuracy. To validate the accuracy of our models, we externally tested on an independent cohort and achieved impressive results with an area under the receiver operating characteristic curve of 0. 94, 0.90, 0.86 and 0.91, and an area under the precision-recall curve of 0.93, 0.87, 0.87 and 0.81, respectively, for oxacillin, clindamycin, erythromycin and trimethoprim-sulfamethoxazole. In addition, the framework evaluated the level of multidrug resistance of the isolates by using the predicted drug resistance probabilities, interpreting them in the context of a multidrug resistance risk score and analyzing the performance contribution of different sample groups. The results of this study provide an efficient method for early antibiotic decision-making and a better understanding of the multidrug resistance risk of S. aureus.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Staphylococcus aureus , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Antibacterianos/farmacologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Aprendizado de Máquina , Medição de Risco
2.
Brief Bioinform ; 22(4)2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-33197936

RESUMO

BACKGROUND: A mass spectrometry-based assessment of methicillin resistance in Staphylococcus aureus would have huge potential in addressing fast and effective prediction of antibiotic resistance. Since delays in the traditional antibiotic susceptibility testing, methicillin-resistant S. aureus remains a serious threat to human health. RESULTS: Here, linking a 7 years of longitudinal study from two cohorts in the Taiwan area of over 20 000 individually resolved methicillin susceptibility testing results, we identify associations of methicillin resistance with the demographics and mass spectrometry data. When combined together, these connections allow for machine-learning-based predictions of methicillin resistance, with an area under the receiver operating characteristic curve of >0.85 in both the discovery [95% confidence interval (CI) 0.88-0.90] and replication (95% CI 0.84-0.86) populations. CONCLUSIONS: Our predictive model facilitates early detection for methicillin resistance of patients with S. aureus infection. The large-scale antibiotic resistance study has unbiasedly highlighted putative candidates that could improve trials of treatment efficiency and inform on prescriptions.


Assuntos
Envelhecimento , Aprendizado de Máquina , Espectrometria de Massas , Resistência a Meticilina , Staphylococcus aureus Resistente à Meticilina/metabolismo , Modelos Biológicos , Infecções Estafilocócicas/metabolismo , Adulto , Idoso , Feminino , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Infecções Estafilocócicas/epidemiologia , Infecções Estafilocócicas/microbiologia , Taiwan/epidemiologia
3.
Brief Bioinform ; 22(3)2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32672791

RESUMO

Recent studies have demonstrated that the matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) could be used to detect superbugs, such as methicillin-resistant Staphylococcus aureus (MRSA). Due to an increasingly clinical need to classify between MRSA and methicillin-sensitive Staphylococcus aureus (MSSA) efficiently and effectively, we were motivated to develop a systematic pipeline based on a large-scale dataset of MS spectra. However, the shifting problem of peaks in MS spectra induced a low effectiveness in the classification between MRSA and MSSA isolates. Unlike previous works emphasizing on specific peaks, this study employs a binning method to cluster MS shifting ions into several representative peaks. A variety of bin sizes were evaluated to coalesce drifted or shifted MS peaks to a well-defined structured data. Then, various machine learning methods were performed to carry out the classification between MRSA and MSSA samples. Totally 4858 MS spectra of unique S. aureus isolates, including 2500 MRSA and 2358 MSSA instances, were collected by Chang Gung Memorial Hospitals, at Linkou and Kaohsiung branches, Taiwan. Based on the evaluation of Pearson correlation coefficients and the strategy of forward feature selection, a total of 200 peaks (with the bin size of 10 Da) were identified as the marker attributes for the construction of predictive models. These selected peaks, such as bins 2410-2419, 2450-2459 and 6590-6599 Da, have indicated remarkable differences between MRSA and MSSA, which were effective in the prediction of MRSA. The independent testing has revealed that the random forest model can provide a promising prediction with the area under the receiver operating characteristic curve (AUC) at 0.8450. When comparing to previous works conducted with hundreds of MS spectra, the proposed scheme demonstrates that incorporating machine learning method with a large-scale dataset of clinical MS spectra may be a feasible means for clinical physicians on the administration of correct antibiotics in shorter turn-around-time, which could reduce mortality, avoid drug resistance and shorten length of stay in hospital in the future.


Assuntos
Bases de Dados Factuais , Aprendizado de Máquina , Staphylococcus aureus Resistente à Meticilina/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Infecções Estafilocócicas/sangue , Humanos
4.
Int J Mol Sci ; 24(2)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36674514

RESUMO

Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) has been used to identify microorganisms and predict antibiotic resistance. The preprocessing method for the MS spectrum is key to extracting critical information from complicated MS spectral data. Different preprocessing methods yield different data, and the optimal approach is unclear. In this study, we adopted an ensemble of multiple preprocessing methods--FlexAnalysis, MALDIquant, and continuous wavelet transform-based methods--to detect peaks and build machine learning classifiers, including logistic regressions, naïve Bayes classifiers, random forests, and a support vector machine. The aim was to identify antibiotic resistance in Acinetobacter baumannii, Acinetobacter nosocomialis, Enterococcus faecium, and Group B Streptococci (GBS) based on MALDI-TOF MS spectra collected from two branches of a referral tertiary medical center. The ensemble method was compared with the individual methods. Random forest models built with the data preprocessed by the ensemble method outperformed individual preprocessing methods and achieved the highest accuracy, with values of 84.37% (A. baumannii), 90.96% (A. nosocomialis), 78.54% (E. faecium), and 70.12% (GBS) on independent testing datasets. Through feature selection, important peaks related to antibiotic resistance could be detected from integrated information. The prediction model can provide an opinion for clinicians. The discriminative peaks enabling better prediction performance can provide a reference for further investigation of the resistance mechanism.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Humanos , Antibacterianos/farmacologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Teorema de Bayes , Acinetobacter baumannii/química
5.
J Med Internet Res ; 24(1): e28036, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35076405

RESUMO

BACKGROUND: The use of artificial intelligence (AI) in the medical domain has attracted considerable research interest. Inference applications in the medical domain require energy-efficient AI models. In contrast to other types of data in visual AI, data from medical laboratories usually comprise features with strong signals. Numerous energy optimization techniques have been developed to relieve the burden on the hardware required to deploy a complex learning model. However, the energy efficiency levels of different AI models used for medical applications have not been studied. OBJECTIVE: The aim of this study was to explore and compare the energy efficiency levels of commonly used machine learning algorithms-logistic regression (LR), k-nearest neighbor, support vector machine, random forest (RF), and extreme gradient boosting (XGB) algorithms, as well as four different variants of neural network (NN) algorithms-when applied to clinical laboratory datasets. METHODS: We applied the aforementioned algorithms to two distinct clinical laboratory data sets: a mass spectrometry data set regarding Staphylococcus aureus for predicting methicillin resistance (3338 cases; 268 features) and a urinalysis data set for predicting Trichomonas vaginalis infection (839,164 cases; 9 features). We compared the performance of the nine inference algorithms in terms of accuracy, area under the receiver operating characteristic curve (AUROC), time consumption, and power consumption. The time and power consumption levels were determined using performance counter data from Intel Power Gadget 3.5. RESULTS: The experimental results indicated that the RF and XGB algorithms achieved the two highest AUROC values for both data sets (84.7% and 83.9%, respectively, for the mass spectrometry data set; 91.1% and 91.4%, respectively, for the urinalysis data set). The XGB and LR algorithms exhibited the shortest inference time for both data sets (0.47 milliseconds for both in the mass spectrometry data set; 0.39 and 0.47 milliseconds, respectively, for the urinalysis data set). Compared with the RF algorithm, the XGB and LR algorithms exhibited a 45% and 53%-60% reduction in inference time for the mass spectrometry and urinalysis data sets, respectively. In terms of energy efficiency, the XGB algorithm exhibited the lowest power consumption for the mass spectrometry data set (9.42 Watts) and the LR algorithm exhibited the lowest power consumption for the urinalysis data set (9.98 Watts). Compared with a five-hidden-layer NN, the XGB and LR algorithms achieved 16%-24% and 9%-13% lower power consumption levels for the mass spectrometry and urinalysis data sets, respectively. In all experiments, the XGB algorithm exhibited the best performance in terms of accuracy, run time, and energy efficiency. CONCLUSIONS: The XGB algorithm achieved balanced performance levels in terms of AUROC, run time, and energy efficiency for the two clinical laboratory data sets. Considering the energy constraints in real-world scenarios, the XGB algorithm is ideal for medical AI applications.


Assuntos
Inteligência Artificial , Laboratórios Clínicos , Algoritmos , Conservação de Recursos Energéticos , Humanos , Aprendizado de Máquina
6.
Med Care ; 59(3): 245-250, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33027237

RESUMO

BACKGROUND: Clinical laboratories have traditionally used a single critical value for thrombocytopenic events. This system, however, could lead to inaccuracies and inefficiencies, causing alarm fatigue and compromised patient safety. OBJECTIVES: This study shows how machine learning (ML) models can provide auxiliary information for more accurate identification of critical thrombocytopenic patients when compared with the traditional notification system. RESEARCH DESIGN: A total of 50,505 patients' platelet count and other 26 additional laboratory datasets of each thrombocytopenic event were used to build prediction models. Conventional logistic regression and ML methods, including random forest (RF), artificial neural network, stochastic gradient descent (SGD), naive Bayes, support vector machine, and decision tree, were applied to build different models and evaluated. RESULTS: Models using logistic regression [area under the curve (AUC)=0.842], RF (AUC=0.859), artificial neural network (AUC=0.867), or SGD (AUC=0.826) achieved the desired average AUC>0.80. The highest positive predictive value was obtained by the SGD model in the testing data (72.2%), whereas overall, the RF model showed higher sensitivity and total positive predictions in both the training and testing data and outperformed other models. The positive 2-day mortality predictive rate of RF methods is as high as 46.1%-significantly higher than using the traditional notification system at only 14.8% [χ2(1)=81.66, P<0.001]. CONCLUSIONS: This study demonstrates a data-driven ML approach showing a significantly more accurate 2-day mortality prediction after a critical thrombocytopenic event, which can reinforce the accuracy of the traditional notification system.


Assuntos
Mortalidade Hospitalar/tendências , Hospitalização/tendências , Aprendizado de Máquina , Trombocitopenia/mortalidade , Teorema de Bayes , Feminino , Previsões , Humanos , Tempo de Internação/tendências , Masculino , Medição de Risco , Máquina de Vetores de Suporte , Trombocitopenia/terapia , Fatores de Tempo
7.
J Med Internet Res ; 22(8): e20261, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32763879

RESUMO

BACKGROUND: Colorectal cancer screening by fecal occult blood testing has been an important public health test and shown to reduce colorectal cancer-related mortality. However, the low participation rate in colorectal cancer screening by the general public remains a problematic public health issue. This fact could be attributed to the complex and unpleasant operation of the screening tool. OBJECTIVE: This study aimed to validate a novel toilet paper-based point-of-care test (ie, JustWipe) as a public health instrument to detect fecal occult blood and provide detailed results from the evaluation of the analytic characteristics in the clinical validation. METHODS: The mechanism of fecal specimen collection by the toilet-paper device was verified with repeatability and reproducibility tests. We also evaluated the analytical characteristics of the test reagents. For clinical validation, we conducted comparisons between JustWipe and other fecal occult blood tests. The first comparison was between JustWipe and typical fecal occult blood testing in a central laboratory setting with 70 fecal specimens from the hospital. For the second comparison, a total of 58 volunteers were recruited, and JustWipe was compared with the commercially available Hemoccult SENSA in a point-of-care setting. RESULTS: Adequate amounts of fecal specimens were collected using the toilet-paper device with small day-to-day and person-to-person variations. The limit of detection of the test reagent was evaluated to be 3.75 µg of hemoglobin per milliliter of reagent. Moreover, the test reagent also showed high repeatability (100%) on different days and high reproducibility (>96%) among different users. The overall agreement between JustWipe and a typical fecal occult blood test in a central laboratory setting was 82.9%. In the setting of point-of-care tests, the overall agreement between JustWipe and Hemoccult SENSA was 89.7%. Moreover, the usability questionnaire showed that the novel test tool had high scores in operation friendliness (87.3/100), ease of reading results (97.4/100), and information usefulness (96.1/100). CONCLUSIONS: We developed and validated a toilet paper-based fecal occult blood test for use as a point-of-care test for the rapid (in 60 seconds) and easy testing of fecal occult blood. These favorable characteristics render it a promising tool for colorectal cancer screening as a public health instrument.


Assuntos
Aparelho Sanitário/provisão & distribuição , Neoplasias Colorretais/diagnóstico , Programas de Rastreamento/métodos , Sangue Oculto , Testes Imediatos/normas , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Inquéritos e Questionários , Voluntários
8.
BMC Bioinformatics ; 20(Suppl 19): 703, 2019 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-31870283

RESUMO

BACKGROUND: Group B streptococcus (GBS) is an important pathogen that is responsible for invasive infections, including sepsis and meningitis. GBS serotyping is an essential means for the investigation of possible infection outbreaks and can identify possible sources of infection. Although it is possible to determine GBS serotypes by either immuno-serotyping or geno-serotyping, both traditional methods are time-consuming and labor-intensive. In recent years, the matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has been reported as an effective tool for the determination of GBS serotypes in a more rapid and accurate manner. Thus, this work aims to investigate GBS serotypes by incorporating machine learning techniques with MALDI-TOF MS to carry out the identification. RESULTS: In this study, a total of 787 GBS isolates, obtained from three research and teaching hospitals, were analyzed by MALDI-TOF MS, and the serotype of the GBS was determined by a geno-serotyping experiment. The peaks of mass-to-charge ratios were regarded as the attributes to characterize the various serotypes of GBS. Machine learning algorithms, such as support vector machine (SVM) and random forest (RF), were then used to construct predictive models for the five different serotypes (Types Ia, Ib, III, V, and VI). After optimization of feature selection and model generation based on training datasets, the accuracies of the selected models attained 54.9-87.1% for various serotypes based on independent testing data. Specifically, for the major serotypes, namely type III and type VI, the accuracies were 73.9 and 70.4%, respectively. CONCLUSION: The proposed models have been adopted to implement a web-based tool (GBSTyper), which is now freely accessible at http://csb.cse.yzu.edu.tw/GBSTyper/, for providing efficient and effective detection of GBS serotypes based on a MALDI-TOF MS spectrum. Overall, this work has demonstrated that the combination of MALDI-TOF MS and machine intelligence could provide a practical means of clinical pathogen testing.


Assuntos
Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Streptococcus/classificação , Aprendizado de Máquina , Sorotipagem
9.
BMC Bioinformatics ; 18(Suppl 3): 66, 2017 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-28361707

RESUMO

BACKGROUND: Protein carbonylation, an irreversible and non-enzymatic post-translational modification (PTM), is often used as a marker of oxidative stress. When reactive oxygen species (ROS) oxidized the amino acid side chains, carbonyl (CO) groups are produced especially on Lysine (K), Arginine (R), Threonine (T), and Proline (P). Nevertheless, due to the lack of information about the carbonylated substrate specificity, we were encouraged to develop a systematic method for a comprehensive investigation of protein carbonylation sites. RESULTS: After the removal of redundant data from multipe carbonylation-related articles, totally 226 carbonylated proteins in human are regarded as training dataset, which consisted of 307, 126, 128, and 129 carbonylation sites for K, R, T and P residues, respectively. To identify the useful features in predicting carbonylation sites, the linear amino acid sequence was adopted not only to build up the predictive model from training dataset, but also to compare the effectiveness of prediction with other types of features including amino acid composition (AAC), amino acid pair composition (AAPC), position-specific scoring matrix (PSSM), positional weighted matrix (PWM), solvent-accessible surface area (ASA), and physicochemical properties. The investigation of position-specific amino acid composition revealed that the positively charged amino acids (K and R) are remarkably enriched surrounding the carbonylated sites, which may play a functional role in discriminating between carbonylation and non-carbonylation sites. A variety of predictive models were built using various features and three different machine learning methods. Based on the evaluation by five-fold cross-validation, the models trained with PWM feature could provide better sensitivity in the positive training dataset, while the models trained with AAindex feature achieved higher specificity in the negative training dataset. Additionally, the model trained using hybrid features, including PWM, AAC and AAindex, obtained best MCC values of 0.432, 0.472, 0.443 and 0.467 on K, R, T and P residues, respectively. CONCLUSION: When comparing to an existing prediction tool, the selected models trained with hybrid features provided a promising accuracy on an independent testing dataset. In short, this work not only characterized the carbonylated substrate preference, but also demonstrated that the proposed method could provide a feasible means for accelerating preliminary discovery of protein carbonylation.


Assuntos
Aminoácidos/química , Fenômenos Químicos , Carbonilação Proteica , Sequência de Aminoácidos , Arginina/química , Humanos , Lisina/química , Modelos Teóricos , Matrizes de Pontuação de Posição Específica , Prolina/química , Processamento de Proteína Pós-Traducional , Proteínas/química , Espécies Reativas de Oxigênio/química , Especificidade por Substrato , Treonina/química
10.
J Formos Med Assoc ; 116(9): 720-722, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28495417

RESUMO

Ketamine immunoassay urine drug screen (UDS) is commonly used in Taiwan. However, there was limited report about possible drug which may cause false positive results in ketamine screen test. We report two cases who used quetiapine showed positive in ketamine urine immunoassay screen initially, and found to be false positive in confirmation test. Clinicians should be aware of the false positive result of ketamine UDS caused by currently used medication.


Assuntos
Ketamina/urina , Fumarato de Quetiapina/farmacologia , Adulto , Reações Falso-Positivas , Humanos , Imunoensaio , Masculino
11.
Cancers (Basel) ; 16(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38473224

RESUMO

The concept and policies of multicancer early detection (MCED) have gained significant attention from governments worldwide in recent years. In the era of burgeoning artificial intelligence (AI) technology, the integration of MCED with AI has become a prevailing trend, giving rise to a plethora of MCED AI products. However, due to the heterogeneity of both the detection targets and the AI technologies, the overall diversity of MCED AI products remains considerable. The types of detection targets encompass protein biomarkers, cell-free DNA, or combinations of these biomarkers. In the development of AI models, different model training approaches are employed, including datasets of case-control studies or real-world cancer screening datasets. Various validation techniques, such as cross-validation, location-wise validation, and time-wise validation, are used. All of the factors show significant impacts on the predictive efficacy of MCED AIs. After the completion of AI model development, deploying the MCED AIs in clinical practice presents numerous challenges, including presenting the predictive reports, identifying the potential locations and types of tumors, and addressing cancer-related information, such as clinical follow-up and treatment. This study reviews several mature MCED AI products currently available in the market, detecting their composing factors from serum biomarker detection, MCED AI training/validation, and the clinical application. This review illuminates the challenges encountered by existing MCED AI products across these stages, offering insights into the continued development and obstacles within the field of MCED AI.

12.
Artigo em Inglês | MEDLINE | ID: mdl-38059127

RESUMO

OBJECTIVE: Leveraging patient data through machine learning techniques in disease care offers a multitude of substantial benefits. Nonetheless, the inherent nature of patient data poses several challenges. Prevalent cases amass substantial longitudinal data owing to their patient volume and consistent follow-ups, however, longitudinal laboratory data are renowned for their irregularity, temporality, absenteeism, and sparsity; In contrast, recruitment for rare or specific cases is often constrained due to their limited patient size and episodic observations. This study employed self-supervised learning (SSL) to pretrain a generalized laboratory progress (GLP) model that captures the overall progression of six common laboratory markers in prevalent cardiovascular cases, with the intention of transferring this knowledge to aid in the detection of specific cardiovascular event. METHODS AND PROCEDURES: GLP implemented a two-stage training approach, leveraging the information embedded within interpolated data and amplify the performance of SSL. After GLP pretraining, it is transferred for target vessel revascularization (TVR) detection. RESULTS: The proposed two-stage training improved the performance of pure SSL, and the transferability of GLP exhibited distinctiveness. After GLP processing, the classification exhibited a notable enhancement, with averaged accuracy rising from 0.63 to 0.90. All evaluated metrics demonstrated substantial superiority ([Formula: see text]) compared to prior GLP processing. CONCLUSION: Our study effectively engages in translational engineering by transferring patient progression of cardiovascular laboratory parameters from one patient group to another, transcending the limitations of data availability. The transferability of disease progression optimized the strategies of examinations and treatments, and improves patient prognosis while using commonly available laboratory parameters. The potential for expanding this approach to encompass other diseases holds great promise. CLINICAL IMPACT: Our study effectively transposes patient progression from one cohort to another, surpassing the constraints of episodic observation. The transferability of disease progression contributed to cardiovascular event assessment.


Assuntos
Absenteísmo , Doenças Cardiovasculares , Humanos , Benchmarking , Doenças Cardiovasculares/diagnóstico , Progressão da Doença , Aprendizado de Máquina Supervisionado
13.
Diagnostics (Basel) ; 13(15)2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37568853

RESUMO

New antimicrobial approaches are essential to counter antimicrobial resistance. The drug development pipeline is exhausted with the emergence of resistance, resulting in unsuccessful trials. The lack of an effective drug developed from the conventional drug portfolio has mandated the introspection into the list of potentially effective unconventional alternate antimicrobial molecules. Alternate therapies with clinically explicable forms include monoclonal antibodies, antimicrobial peptides, aptamers, and phages. Clinical diagnostics optimize the drug delivery. In the era of diagnostic-based applications, it is logical to draw diagnostic-based treatment for infectious diseases. Selection criteria of alternate therapeutics in infectious diseases include detection, monitoring of response, and resistance mechanism identification. Integrating these diagnostic applications is disruptive to the traditional therapeutic development. The challenges and mitigation methods need to be noted. Applying the goals of clinical pharmacokinetics that include enhancing efficacy and decreasing toxicity of drug therapy, this review analyses the strong correlation of alternate antimicrobial therapeutics in infectious diseases. The relationship between drug concentration and the resulting effect defined by the pharmacodynamic parameters are also analyzed. This review analyzes the perspectives of aligning diagnostic initiatives with the use of alternate therapeutics, with a particular focus on companion diagnostic applications in infectious diseases.

14.
Diagnostics (Basel) ; 13(6)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36980322

RESUMO

Antibiotic resistance has emerged as an imminent pandemic. Rapid diagnostic assays distinguish bacterial infections from other diseases and aid antimicrobial stewardship, therapy optimization, and epidemiological surveillance. Traditional methods typically have longer turn-around times for definitive results. On the other hand, proteomic studies have progressed constantly and improved both in qualitative and quantitative analysis. With a wide range of data sets made available in the public domain, the ability to interpret the data has considerably reduced the error rates. This review gives an insight on state-of-the-art proteomic techniques in diagnosing antibiotic resistance in ESKAPE pathogens with a future outlook for evading the "imminent pandemic".

15.
Diagnostics (Basel) ; 13(10)2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37238189

RESUMO

The current methods for detecting antiplatelet antibodies are mostly manual and labor-intensive. A convenient and rapid detection method is required for effectively detecting alloimmunization during platelet transfusion. In our study, to detect antiplatelet antibodies, positive and negative sera of random-donor antiplatelet antibodies were collected after completing a routine solid-phase red cell adherence test (SPRCA). Platelet concentrates from our random volunteer donors were also prepared using the ZZAP method and then used in a faster, significantly less labor-intensive process, a filtration enzyme-linked immunosorbent assay (fELISA), for detecting antibodies against platelet surface antigens. All fELISA chromogen intensities were processed using ImageJ software. By dividing the final chromogen intensity of each test serum with the background chromogen intensity of whole platelets, the reactivity ratios of fELISA can be used to differentiate positive SPRCA sera from negative sera. A sensitivity of 93.9% and a specificity of 93.3% were obtained for 50 µL of sera using fELISA. The area under the ROC curve reached 0.96 when comparing fELISA with the SPRCA test. We have successfully developed a rapid fELISA method for detecting antiplatelet antibodies.

16.
J Clin Med ; 12(13)2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37445525

RESUMO

Herpes simplex virus (HSV) pneumonia is a serious and often fatal respiratory tract infection that occurs in immunocompromised individuals. The early detection of accurate risk stratification is essential in identifying patients who are at high risk of mortality and may benefit from more aggressive treatment. In this study, we developed and validated a risk stratification model for HSV bronchopneumonia using an elastic net penalized Cox proportional hazard algorithm. We analyzed data from a cohort of 104 critically ill patients with HSV bronchopneumonia identified in Chang Gung Memorial Hospital, Linkou, Taiwan: one of the largest tertiary medical centers in the world. A total of 109 predictors, both clinical and laboratory, were identified in this process to develop a risk stratification model that could accurately predict mortality in patients with HSV bronchopneumonia. This model was able to differentiate the risk of death and predict mortality in patients with HSV bronchopneumonia compared to the APACHE II score in the early stage of ICU admissions. Both hazard ratio coefficient and selection frequency were used as the metrics to enhance the explainability of the informative predictors. Our findings suggest that the elastic net penalized Cox proportional hazard algorithm is a promising tool for risk stratification in patients with HSV bronchopneumonia and could be useful in identifying those at high risk of mortality.

17.
Microbiol Spectr ; 11(3): e0347922, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37042778

RESUMO

In clinical microbiology, matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) is frequently employed for rapid microbial identification. However, rapid identification of antimicrobial resistance (AMR) in Escherichia coli based on a large amount of MALDI-TOF MS data has not yet been reported. This may be because building a prediction model to cover all E. coli isolates would be challenging given the high diversity of the E. coli population. This study aimed to develop a MALDI-TOF MS-based, data-driven, two-stage framework for characterizing different AMRs in E. coli. Specifically, amoxicillin (AMC), ceftazidime (CAZ), ciprofloxacin (CIP), ceftriaxone (CRO), and cefuroxime (CXM) were used. In the first stage, we split the data into two groups based on informative peaks according to the importance of the random forest. In the second stage, prediction models were constructed using four different machine learning algorithms-logistic regression, support vector machine, random forest, and extreme gradient boosting (XGBoost). The findings demonstrate that XGBoost outperformed the other four machine learning models. The values of the area under the receiver operating characteristic curve were 0.62, 0.72, 0.87, 0.72, and 0.72 for AMC, CAZ, CIP, CRO, and CXM, respectively. This implies that a data-driven, two-stage framework could improve accuracy by approximately 2.8%. As a result, we developed AMR prediction models for E. coli using a data-driven two-stage framework, which is promising for assisting physicians in making decisions. Further, the analysis of informative peaks in future studies could potentially reveal new insights. IMPORTANCE Based on a large amount of matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) clinical data, comprising 37,918 Escherichia coli isolates, a data-driven two-stage framework was established to evaluate the antimicrobial resistance of E. coli. Five antibiotics, including amoxicillin (AMC), ceftazidime (CAZ), ciprofloxacin (CIP), ceftriaxone (CRO), and cefuroxime (CXM), were considered for the two-stage model training, and the values of the area under the receiver operating characteristic curve (AUC) were 0.62 for AMC, 0.72 for CAZ, 0.87 for CIP, 0.72 for CRO, and 0.72 for CXM. Further investigations revealed that the informative peak m/z 9714 appeared with some important peaks at m/z 6809, m/z 7650, m/z 10534, and m/z 11783 for CIP and at m/z 6809, m/z 10475, and m/z 8447 for CAZ, CRO, and CXM. This framework has the potential to improve the accuracy by approximately 2.8%, indicating a promising potential for further research.


Assuntos
Antibacterianos , Escherichia coli , Antibacterianos/farmacologia , Ceftriaxona/farmacologia , Ceftazidima , Cefuroxima , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Ciprofloxacina , Amoxicilina
18.
Viruses ; 15(10)2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37896791

RESUMO

Cervical cancer, a major health concern among women worldwide, is closely linked to human papillomavirus (HPV) infection. This study explores the evolving landscape of HPV molecular epidemiology in Taiwan over a decade (2010-2020), where prophylactic HPV vaccination has been implemented since 2007. Analyzing data from 40,561 vaginal swab samples, with 42.0% testing positive for HPV, we reveal shifting trends in HPV genotype distribution and infection patterns. The 12 high-risk genotypes, in order of decreasing percentage, were HPV 52, 58, 16, 18, 51, 56, 39, 59, 33, 31, 45, and 35. The predominant genotypes were HPV 52, 58, and 16, accounting for over 70% of cases annually. The proportions of high-risk and non-high-risk HPV infections varied across age groups. High-risk infections predominated in sexually active individuals aged 30-50 and were mixed-type infections. The composition of high-risk HPV genotypes was generally stable over time; however, HPV31, 33, 39, and 51 significantly decreased over the decade. Of the strains, HPV31 and 33 are shielded by the nonavalent HPV vaccine. However, no reduction was noted for the other seven genotypes. This study offers valuable insights into the post-vaccine HPV epidemiology. Future investigations should delve into HPV vaccines' effects and their implications for cervical cancer prevention strategies. These findings underscore the need for continued surveillance and research to guide effective public health interventions targeting HPV-associated diseases.


Assuntos
Infecções por Papillomavirus , Vacinas contra Papillomavirus , Neoplasias do Colo do Útero , Humanos , Feminino , Neoplasias do Colo do Útero/epidemiologia , Neoplasias do Colo do Útero/prevenção & controle , Papillomavirus Humano , Infecções por Papillomavirus/epidemiologia , Infecções por Papillomavirus/prevenção & controle , Epidemiologia Molecular , Papillomaviridae/genética , Genótipo , Papillomavirus Humano 31/genética , Prevalência
19.
Front Microbiol ; 13: 853775, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35495667

RESUMO

Multidrug resistance has become a phenotype that commonly exists among Staphylococcus aureus and is a serious concern for infection treatment. Nowadays, to detect the antibiotic susceptibility, antibiotic testing is generated based on the level of genomic for cure decision consuming huge of time and labor, while matrix-assisted laser desorption-ionization (MALDI) time-of-flight mass spectrometry (TOF/MS) shows its possibility in high-speed and effective detection on the level of proteomic. In this study, on the basis of MALDI-TOF spectra data of discovery cohort with 26,852 samples and replication cohort with 4,963 samples from Taiwan area and their corresponding susceptibilities to oxacillin and clindamycin, a multi-label prediction model against double resistance using Lowest Power set ensemble with XGBoost is constructed for rapid susceptibility prediction. With the output of serial susceptibility prediction, the model performance can realize 77% of accuracy for the serial prediction, the area under the receiver characteristic curve of 0.93 for oxacillin susceptibility prediction, and the area under the receiver characteristic curve of 0.89 for clindamycin susceptibility prediction. The generated multi-label prediction model provides serial antibiotic resistance, such as the susceptibilities of oxacillin and clindamycin in this study, for S. aureus-infected patients based on MALDI-TOF, which will provide guidance in antibiotic usage during the treatment taking the advantage of speed and efficiency.

20.
Viruses ; 14(2)2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-35215799

RESUMO

Critically ill patients, such as those in intensive care units (ICUs), can develop herpes simplex virus (HSV) pneumonitis. Given the high prevalence of acute respiratory distress syndrome (ARDS) and multiple pre-existing conditions among ICU patients with HSV pneumonitis, factors predicting mortality in this patient population require further investigation. In this retrospective study, the bronchoalveolar lavage or sputum samples of ICU patients were cultured or subjected to a polymerase chain reaction for HSV detection. Univariable and multivariable Cox regressions were conducted for mortality outcomes. The length of hospital stay was plotted against mortality on Kaplan-Meier curves. Among the 119 patients with HSV pneumonitis (age: 65.8 ± 14.9 years), the mortality rate was 61.34% (73 deaths). The mortality rate was significantly lower among patients with diabetes mellitus (odds ratio [OR] 0.12, 95% confidence interval [CI]: 0.02-0.49, p = 0.0009) and significantly higher among patients with ARDS (OR: 4.18, 95% CI: 1.05-17.97, p < 0.0001) or high (≥30) Acute Physiology and Chronic Health Evaluation II scores (OR: 1.08, 95% CI: 1.00-1.18, p = 0.02). Not having diabetes mellitus (DM), developing ARDS, and having a high Acute Physiology and Chronic Health Evaluation II (APACHE II) score were independent predictors of mortality among ICU patients with HSV pneumonitis.


Assuntos
Estado Terminal/mortalidade , Herpes Simples/mortalidade , Pneumonia Viral/mortalidade , Síndrome do Desconforto Respiratório/complicações , Simplexvirus/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Herpes Simples/etiologia , Herpes Simples/virologia , Mortalidade Hospitalar , Humanos , Unidades de Terapia Intensiva/estatística & dados numéricos , Tempo de Internação , Masculino , Pessoa de Meia-Idade , Pneumonia Viral/etiologia , Pneumonia Viral/virologia , Estudos Retrospectivos , Simplexvirus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA