Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cancer Immunol Immunother ; 72(6): 1461-1478, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36472588

RESUMO

Pancreatic ductal adenocarcinoma (PDA) is a lethal and metastatic malignancy resistant to therapy. Elucidating how pancreatic tumor-specific T cells differentiate and are maintained in vivo could inform novel therapeutic avenues to promote T cell antitumor activity. Here, we show that the spleen is a critical site harboring tumor-specific CD8 T cells that functionally segregate based on differential Cxcr3 and Klrg1 expression. Cxcr3+ Klrg1- T cells express the memory stem cell marker Tcf1, whereas Cxcr3-Klrg1 + T cells express GzmB consistent with terminal differentiation. We identify a Cxcr3+ Klrg1+ intermediate T cell subpopulation in the spleen that is highly enriched for tumor specificity. However, tumor-specific T cells infiltrating primary tumors progressively downregulate both Cxcr3 and Klrg1 while upregulating exhaustion markers PD-1 and Lag-3. We show that antigen-specific T cell infiltration into PDA is Cxcr3 independent. Further, Cxcr3-deficiency results in enhanced antigen-specific T cell IFNγ production in primary tumors, suggesting that Cxcr3 promotes loss of effector function. Ultimately, however, Cxcr3 was critical for mitigating cancer cell dissemination following immunotherapy with CD40 agonist + anti-PD-L1 or T cell receptor engineered T cell therapy targeting mesothelin. In the absence of Cxcr3, splenic Klrg1 + GzmB + antitumor T cells wain while pancreatic cancer disseminates suggesting a role for these cells in eliminating circulating metastatic tumor cells. Intratumoral myeloid cells are poised to produce Cxcl10, whereas splenic DC subsets produce Cxcl9 following immunotherapy supporting differential roles for these chemokines on T cell differentiation. Together, our study supports that Cxcr3 mitigates tumor cell dissemination by impacting peripheral T cell fate rather than intratumoral T cell trafficking.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Linfócitos T CD8-Positivos/patologia , Diferenciação Celular , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Receptores CXCR3 , Neoplasias Pancreáticas
2.
J Immunol ; 206(6): 1372-1384, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33558374

RESUMO

Pancreatic cancer is a particularly lethal malignancy that resists immunotherapy. In this study, using a preclinical pancreatic cancer murine model, we demonstrate a progressive decrease in IFN-γ and granzyme B and a concomitant increase in Tox and IL-10 in intratumoral tumor-specific T cells. Intratumoral myeloid cells produced elevated IL-27, a cytokine that correlates with poor patient outcome. Abrogating IL-27 signaling significantly decreased intratumoral Tox+ T cells and delayed tumor growth yet was not curative. Agonistic αCD40 decreased intratumoral IL-27-producing myeloid cells, decreased IL-10-producing intratumoral T cells, and promoted intratumoral Klrg1+Gzmb+ short-lived effector T cells. Combination agonistic αCD40+αPD-L1 cured 63% of tumor-bearing animals, promoted rejection following tumor rechallenge, and correlated with a 2-log increase in pancreas-residing tumor-specific T cells. Interfering with Ifngr1 expression in nontumor/host cells abrogated agonistic αCD40+αPD-L1 efficacy. In contrast, interfering with nontumor/host cell Tnfrsf1a led to cure in 100% of animals following agonistic αCD40+αPD-L1 and promoted the formation of circulating central memory T cells rather than long-lived effector T cells. In summary, we identify a mechanistic basis for T cell exhaustion in pancreatic cancer and a feasible clinical strategy to overcome it.


Assuntos
Antineoplásicos Imunológicos/farmacologia , Antígenos CD40/agonistas , Carcinoma Ductal Pancreático/tratamento farmacológico , Células Mieloides/efeitos dos fármacos , Neoplasias Pancreáticas/tratamento farmacológico , Animais , Antineoplásicos Imunológicos/uso terapêutico , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/patologia , Modelos Animais de Doenças , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Interleucinas/metabolismo , Ativação Linfocitária/efeitos dos fármacos , Linfócitos do Interstício Tumoral/imunologia , Masculino , Camundongos , Camundongos Transgênicos , Células Mieloides/imunologia , Células Mieloides/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/patologia , Cultura Primária de Células , Células Tumorais Cultivadas/transplante , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA