Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 115(26): E6075-E6084, 2018 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-29891689

RESUMO

Photosystem II (PSII), a multisubunit protein complex of the photosynthetic electron transport chain, functions as a water-plastoquinone oxidoreductase, which is vital to the initiation of photosynthesis and electron transport. Although the structure, composition, and function of PSII are well understood, the mechanism of PSII biogenesis remains largely elusive. Here, we identified a nuclear-encoded pentatricopeptide repeat (PPR) protein LOW PHOTOSYNTHETIC EFFICIENCY 1 (LPE1; encoded by At3g46610) in Arabidopsis, which plays a crucial role in PSII biogenesis. LPE1 is exclusively targeted to chloroplasts and directly binds to the 5' UTR of psbA mRNA which encodes the PSII reaction center protein D1. The loss of LPE1 results in less efficient loading of ribosome on the psbA mRNA and great synthesis defects in D1 protein. We further found that LPE1 interacts with a known regulator of psbA mRNA translation HIGH CHLOROPHYLL FLUORESCENCE 173 (HCF173) and facilitates the association of HCF173 with psbA mRNA. More interestingly, our results indicate that LPE1 associates with psbA mRNA in a light-dependent manner through a redox-based mechanism. This study enhances our understanding of the mechanism of light-regulated D1 synthesis, providing important insight into PSII biogenesis and the functional maintenance of efficient photosynthesis in higher plants.


Assuntos
Proteínas de Arabidopsis/biossíntese , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fatores de Iniciação em Eucariotos/metabolismo , Regulação da Expressão Gênica de Plantas , Luz , Proteínas de Membrana Transportadoras/metabolismo , Complexo de Proteína do Fotossistema II/biossíntese , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Fatores de Iniciação em Eucariotos/genética , Proteínas de Membrana Transportadoras/genética , Complexo de Proteína do Fotossistema II/genética
2.
J Integr Plant Biol ; 62(5): 556-562, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31161629

RESUMO

Arabidopsis thaliana CERK1 is an essential receptor-like kinase in the chitin signal transduction pathway. The juxtamembrane (JM) domain of CERK1 regulates the kinase activity of this receptor. Here we demonstrate that the JM domains of LysM-RLKs, CERK1, and OsCERK1 play a functionally conserved role in the activation of chitin signaling in Arabidopsis. The C-termini of the JM domains of both CERK1 and OsCERK1 are indispensable for their function. Moreover, after replacing the JM domain of CERK1 with that of the nonhomologous RLK, BAK1 (CJBa) or FLS2 (CJFl), the chimeric CERK1 receptors maintained their ability to activate chitin signaling in Arabidopsis. Interestingly, the heterologous expression of CJBa and CJFl did not induce cell death in Nicotiana benthamiana leaves. These results suggest that the JM domains of CERK1, BAK1, and FLS2 play a conserved role in chitin signaling via a mechanism not related to sequence homology.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Membrana Celular/metabolismo , Quitina/metabolismo , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Membrana Celular/genética , Fosforilação/genética , Fosforilação/fisiologia , Proteínas Quinases/química , Proteínas Serina-Treonina Quinases/química , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
3.
Plant Physiol ; 175(2): 652-666, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28827456

RESUMO

In chloroplasts, thioredoxin (TRX) isoforms and NADPH-dependent thioredoxin reductase C (NTRC) act as redox regulatory factors involved in multiple plastid biogenesis and metabolic processes. To date, less is known about the functional coordination between TRXs and NTRC in chlorophyll biosynthesis. In this study, we aimed to explore the potential functions of TRX m and NTRC in the regulation of the tetrapyrrole biosynthesis (TBS) pathway. Silencing of three genes, TRX m1, TRX m2, and TRX m4 (TRX ms), led to pale-green leaves, a significantly reduced 5-aminolevulinic acid (ALA)-synthesizing capacity, and reduced accumulation of chlorophyll and its metabolic intermediates in Arabidopsis (Arabidopsis thaliana). The contents of ALA dehydratase, protoporphyrinogen IX oxidase, the I subunit of Mg-chelatase, Mg-protoporphyrin IX methyltransferase (CHLM), and NADPH-protochlorophyllide oxidoreductase were decreased in triple TRX m-silenced seedlings compared with the wild type, although the transcript levels of the corresponding genes were not altered significantly. Protein-protein interaction analyses revealed a physical interaction between the TRX m isoforms and CHLM. 4-Acetoamido-4-maleimidylstilbene-2,2-disulfonate labeling showed the regulatory impact of TRX ms on the CHLM redox status. Since CHLM also is regulated by NTRC (Richter et al., 2013), we assessed the concurrent functions of TRX m and NTRC in the control of CHLM. Combined deficiencies of three TRX m isoforms and NTRC led to a cumulative decrease in leaf pigmentation, TBS intermediate contents, ALA synthesis rate, and CHLM activity. We discuss the coordinated roles of TRX m and NTRC in the redox control of CHLM stability with its corollary activity in the TBS pathway.


Assuntos
Arabidopsis/enzimologia , Tiorredoxina Dissulfeto Redutase/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Clorofila/metabolismo , Cloroplastos/metabolismo , NADP/metabolismo , Oxirredução , Folhas de Planta/enzimologia , Folhas de Planta/genética , Isoformas de Proteínas , Plântula/enzimologia , Plântula/genética , Tetrapirróis/metabolismo , Tiorredoxina Dissulfeto Redutase/genética , Tiorredoxinas/metabolismo
4.
Plant Cell ; 27(3): 787-805, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25794933

RESUMO

Iron (Fe) is an indispensable micronutrient for plant growth and development. The regulation of Fe homeostasis in plants is complex and involves a number of transcription factors. Here, we demonstrate that a basic helix-loop-helix (bHLH) transcription factor, bHLH104, belonging to the IVc subgroup of bHLH family, acts as a key component positively regulating Fe deficiency responses. Knockout of bHLH104 in Arabidopsis thaliana greatly reduced tolerance to Fe deficiency, whereas overexpression of bHLH104 had the opposite effect and led to accumulation of excess Fe in soil-grown conditions. The activation of Fe deficiency-inducible genes was substantially suppressed by loss of bHLH104. Further investigation showed that bHLH104 interacted with another IVc subgroup bHLH protein, IAA-LEUCINE RESISTANT3 (ILR3), which also plays an important role in Fe homeostasis. Moreover, bHLH104 and ILR3 could bind directly to the promoters of Ib subgroup bHLH genes and POPEYE (PYE) functioning in the regulation of Fe deficiency responses. Interestingly, genetic analysis showed that loss of bHLH104 could decrease the tolerance to Fe deficiency conferred by the lesion of BRUTUS, which encodes an E3 ligase and interacts with bHLH104. Collectively, our data support that bHLH104 and ILR3 play pivotal roles in the regulation of Fe deficiency responses via targeting Ib subgroup bHLH genes and PYE expression.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Homeostase/efeitos dos fármacos , Ferro/farmacologia , Adaptação Fisiológica/efeitos dos fármacos , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Imunoprecipitação da Cromatina , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Técnicas de Inativação de Genes , Genes de Plantas , Deficiências de Ferro , Modelos Biológicos , Mutação/genética , Motivos de Nucleotídeos/genética , Fenótipo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Regiões Promotoras Genéticas/genética , Ligação Proteica/efeitos dos fármacos , Reação em Cadeia da Polimerase em Tempo Real , Solo
5.
Plant Cell Rep ; 37(2): 279-291, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29080907

RESUMO

KEY MESSAGE: M-type thioredoxins are required to regulate zeaxanthin epoxidase activity and to maintain the steady-state level of the proton motive force, thereby influencing NPQ properties under low-light conditions in Arabidopsis. Non-photochemical quenching (NPQ) helps protect photosynthetic organisms from photooxidative damage via the non-radiative dissipation of energy as heat. Energy-dependent quenching (qE) is a major constituent of NPQ. However, the mechanism underlying the regulation of qE is not well understood. In this study, we demonstrate that the m-type thioredoxins TRX-m1, TRX-m2, and TRX-m4 (TRX-ms) interact with the xanthophyll cycle enzyme zeaxanthin epoxidase (ZE) and are required for maintaining the redox-dependent stabilization of ZE by regulating its intermolecular disulfide bridges. Reduced ZE activity and accumulated zeaxanthin levels were observed under TRX-ms deficiency. Furthermore, concurrent deficiency of TRX-ms resulted in a significant increase in proton motive force (pmf) and acidification of the thylakoid lumen under low irradiance, perhaps due to the significantly reduced ATP synthase activity under TRX-ms deficiency. The increased pmf, combined with acidification of the thylakoid lumen and the accumulation of zeaxanthin, ultimately contribute to the elevated stable qE in VIGS-TRX-m2m4/m1 plants under low-light conditions. Taken together, these results indicate that TRX-ms are involved in regulating NPQ-dependent photoprotection in Arabidopsis.


Assuntos
Arabidopsis/metabolismo , Clorofila/metabolismo , Tiorredoxinas de Cloroplastos/metabolismo , Luz , Fotossíntese/efeitos da radiação , Xantofilas/metabolismo , Proteínas de Arabidopsis/metabolismo , Oxirredução , Oxirredutases/metabolismo , Ligação Proteica , Força Próton-Motriz/efeitos da radiação , Tilacoides/metabolismo , Zeaxantinas/metabolismo
6.
Plant Physiol ; 172(3): 1720-1731, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27609860

RESUMO

Maximizing light capture by light-harvesting pigment optimization represents an attractive but challenging strategy to improve photosynthetic efficiency. Here, we report that loss of a previously uncharacterized gene, HIGH PHOTOSYNTHETIC EFFICIENCY1 (HPE1), optimizes light-harvesting pigments, leading to improved photosynthetic efficiency and biomass production. Arabidopsis (Arabidopsis thaliana) hpe1 mutants show faster electron transport and increased contents of carbohydrates. HPE1 encodes a chloroplast protein containing an RNA recognition motif that directly associates with and regulates the splicing of target RNAs of plastid genes. HPE1 also interacts with other plastid RNA-splicing factors, including CAF1 and OTP51, which share common targets with HPE1. Deficiency of HPE1 alters the expression of nucleus-encoded chlorophyll-related genes, probably through plastid-to-nucleus signaling, causing decreased total content of chlorophyll (a+b) in a limited range but increased chlorophyll a/b ratio. Interestingly, this adjustment of light-harvesting pigment reduces antenna size, improves light capture, decreases energy loss, mitigates photodamage, and enhances photosynthetic quantum yield during photosynthesis. Our findings suggest a novel strategy to optimize light-harvesting pigments that improves photosynthetic efficiency and biomass production in higher plants.


Assuntos
Arabidopsis/fisiologia , Complexos de Proteínas Captadores de Luz/metabolismo , Fotossíntese , Pigmentos Biológicos/metabolismo , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Biomassa , Metabolismo dos Carboidratos/efeitos da radiação , Núcleo Celular/metabolismo , Núcleo Celular/efeitos da radiação , Clorofila/metabolismo , Regulação para Baixo/genética , Regulação para Baixo/efeitos da radiação , Genes de Plantas , Luz , Metaboloma/efeitos da radiação , Mutação/genética , Fotossíntese/efeitos da radiação , Plastídeos/genética , Plastídeos/efeitos da radiação , Splicing de RNA/genética , Splicing de RNA/efeitos da radiação , Tilacoides/metabolismo , Tilacoides/efeitos da radiação
7.
Plant Cell ; 26(3): 1213-29, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24632535

RESUMO

Under high-irradiance conditions, plants must efficiently protect photosystem II (PSII) from damage. In this study, we demonstrate that the chloroplast protein HYPERSENSITIVE TO HIGH LIGHT1 (HHL1) is expressed in response to high light and functions in protecting PSII against photodamage. Arabidopsis thaliana hhl1 mutants show hypersensitivity to high light, drastically decreased PSII photosynthetic activity, higher nonphotochemical quenching activity, a faster xanthophyll cycle, and increased accumulation of reactive oxygen species following high-light exposure. Moreover, HHL1 deficiency accelerated the degradation of PSII core subunits under high light, decreasing the accumulation of PSII core subunits and PSII-light-harvesting complex II supercomplex. HHL1 primarily localizes in the stroma-exposed thylakoid membranes and associates with the PSII core monomer complex through direct interaction with PSII core proteins CP43 and CP47. Interestingly, HHL1 also directly interacts, in vivo and in vitro, with LOW QUANTUM YIELD OF PHOTOSYSTEM II1 (LQY1), which functions in the repair and reassembly of PSII. Furthermore, the hhl1 lqy1 double mutants show increased photosensitivity compared with single mutants. Taken together, these results suggest that HHL1 forms a complex with LQY1 and participates in photodamage repair of PSII under high light.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Membrana/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Isomerases de Dissulfetos de Proteínas/metabolismo , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Cloroplastos/metabolismo , Mutação , Ligação Proteica , Espécies Reativas de Oxigênio/metabolismo
8.
J Integr Plant Biol ; 59(4): 234-239, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28225199

RESUMO

In Arabidopsis, both the membrane-anchored receptor-like kinase (RLK) BAK1 and the receptor-like cytoplasmic kinase (RLCK) BIK1 are important mediators of transmembrane signal transduction that regulate plant development and immunity. However, little attention has been paid to their genetic association. This study found the bak1 bik1 double mutant of Arabidopsis displayed a severe dwarfism phenotype due to constitutive immunity and cell death in developing plants. These data suggest that BIK1 cooperates with BAK1 to regulate constitutive immunity and cell death.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/imunologia , Imunidade Vegetal , Proteínas Serina-Treonina Quinases/metabolismo , Morte Celular , Mutação/genética , Fenótipo
9.
Plant Cell Physiol ; 57(12): 2586-2599, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27818379

RESUMO

Chloroplast development is an essential process for plant growth that is regulated by numerous proteins. Plastid-encoded plastid RNA polymerase (PEP) is a large complex that regulates plastid gene transcription and chloroplast development. However, many proteins in this complex remain to be identified. Here, through large-scale screening of Arabidopsis mutants by Chl fluorescence imaging, we identified a novel protein, DELAYED GREENING 238 (DG238), which is involved in regulating chloroplast development and plastid gene expression. Loss of DG238 retards plant growth, delays young leaf greening, affects chloroplast development and lowers photosynthetic efficiency. Moreover, blue-native PAGE (BN-PAGE) and Western blot analysis indicated that PSII and PSI protein levels are reduced in dg238 mutants. DG238 is mainly expressed in young tissues and is regulated by light signals. Subcellular localization analysis showed that DG238 is a nuclear-encoded chloroplast nucleoid protein. More interestingly, DG238 was co-expressed with FLN1, which encodes an essential subunit of the PEP complex. Bimolecular fluorescence complementation (BiFC) and co-immunoprecipitation (Co-IP) assays showed that DG238 can also interact with FLN1. Taken together, these results suggest that DG238 may function as a component of the PEP complex that is important for the early stage of chloroplast development and helps regulate PEP-dependent plastid gene expression.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Cloroplastos/ultraestrutura , RNA Polimerases Dirigidas por DNA/metabolismo , Proteínas Nucleares/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Arabidopsis/enzimologia , Arabidopsis/efeitos da radiação , Arabidopsis/ultraestrutura , Proteínas de Arabidopsis/genética , Cloroplastos/enzimologia , RNA Polimerases Dirigidas por DNA/genética , Regulação da Expressão Gênica de Plantas , Luz , Mutação , Proteínas Nucleares/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Filogenia , Folhas de Planta/enzimologia , Folhas de Planta/genética , Folhas de Planta/efeitos da radiação , Folhas de Planta/ultraestrutura , Plastídeos/enzimologia , Plastídeos/ultraestrutura , Transporte Proteico , Transcrição Gênica
10.
World J Surg Oncol ; 14: 90, 2016 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-27030355

RESUMO

BACKGROUND: The objective of this study was to evaluate the feasibility, safety, and potential benefits of laparoscopic gastrectomy (LG) comparing with open gastrectomy (OG) in elderly population. METHODS: Studies comparing LG with OG for elderly population with gastric cancer, published between January 1994 and July 2015, were identified in the PubMed, Embase, and ISI Web of Science databases. Operative outcomes (intraoperative blood loss, operative time, and the number of lymph nodes harvested) and postoperative outcomes (time to first ambulation, time to first flatus, time to first oral intake, postoperative hospital stay, postoperative morbidity) were included and analyzed. The Newcastle-Ottawa Scale was used to assess the quality of the pooled study. A funnel plot was used to evaluate the publication bias. RESULTS: Seven studies totaling 845 patients were included in the meta-analysis. LG in comparison to OG showed less intraoperative blood loss (weighted mean difference (WMD) -127.47; 95% confidence interval (CI) -202.79 to -52.16; P < 0.01), earlier time to first ambulation (WMD -2.07; 95% CI -2.84 to -1.30; P < 0.01), first flatus (WMD -1.04; 95% CI -1.45 to -0.63; P < 0.01), and oral intake (WMD -0.94; 95% CI -1.11 to -0.77; P < 0.01), postoperative hospital stay (WMD -5.26; 95% CI -7.58 to -2.93; P < 0.01), lower overall postoperative complication rate (odd ratio (OR) 0.39; 95% CI 0.28 to 0.55; P < 0.01), less surgical complications (OR 0.47; 95% CI 0.32 to 0.69; P < 0.01), medical complication (OR 0.35; 95% CI 0.22 to 0.56; P < 0.01), incisional complication (OR 0.40; 95% CI 0.19 to 0.85; P = 0.02), and pulmonary infection (OR 0.49; 95% CI 0.26 to 0.93; P = 0.03). No significant differences were observed between LG and OG for the number of harvested lymph nodes. However, LG had longer operative times (WMD 15.73; 95% CI 6.23 to 25.23; P < 0.01). CONCLUSIONS: LG is a feasible and safe approach for elderly patients with gastric cancer. Compared with OG, LG has less blood loss, faster postoperative recovery, and reduced postoperative morbidity.


Assuntos
Gastrectomia/métodos , Laparoscopia/métodos , Complicações Pós-Operatórias , Neoplasias Gástricas/cirurgia , Idoso , Humanos , Resultado do Tratamento
11.
Plant J ; 80(6): 1072-84, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25335639

RESUMO

Microbe-associated molecular pattern (MAMP)-triggered immunity plays critical roles in the basal resistance defense response in plants. Chitin and peptidoglycan (PGN) are major molecular patterns for fungi and bacteria, respectively. Two rice (Oryza sativa) lysin motif-containing proteins, OsLYP4 and OsLYP6, function as receptors that sense bacterial PGN and fungal chitin. These membrane receptors, which lack intracellular kinase domains, likely contain another component for transmembrane immune signal transduction. Here, we demonstrate that the rice LysM receptor-like kinase OsCERK1, a key component of the chitin elicitor signaling pathway, also plays an important role in PGN-triggered immunity in rice. Silencing of OsCERK1 suppressed PGN-induced (and chitin-induced) immunity responses, including reactive oxygen species generation, defense gene expression, and callose deposition, indicating that OsCERK1 is essential for both PGN and chitin signaling initiated by OsLYP4 and OsLYP6. OsLYP4 associated with OsLYP6 and the rice chitin receptor chitin oligosaccharide elicitor-binding protein (CEBiP) in the absence of PGN or chitin, and treatment with PGN or chitin led to their disassociation in vivo. OsCERK1 associated with OsLYP4 or OsLYP6 when induced by PGN but it associated with OsLYP4, OsLYP6, or CEBiP under chitin treatment, suggesting the presence of different patterns of ligand-induced heterooligomeric receptor complexes. Furthermore, the receptor-like cytoplasmic kinase OsRLCK176 functions downstream of OsCERK1 in the PGN and chitin signaling pathways, suggesting that these MAMPs share overlapping intracellular signaling components. Therefore, OsCERK1 plays dual roles in PGN and chitin signaling in rice innate immunity and as an adaptor involved in signal transduction at the plasma membrane in conjunction with OsLYP4 and OsLYP6.


Assuntos
Quitina/metabolismo , Oryza/genética , Peptidoglicano/metabolismo , Doenças das Plantas/imunologia , Proteínas de Plantas/metabolismo , Transdução de Sinais , Motivos de Aminoácidos , Membrana Celular/metabolismo , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Oryza/imunologia , Oryza/fisiologia , Imunidade Vegetal , Proteínas de Plantas/genética
12.
Plant Cell ; 24(8): 3406-19, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22872757

RESUMO

Plant innate immunity relies on successful detection of microbe-associated molecular patterns (MAMPs) of invading microbes via pattern recognition receptors (PRRs) at the plant cell surface. Here, we report two homologous rice (Oryza sativa) lysin motif-containing proteins, LYP4 and LYP6, as dual functional PRRs sensing bacterial peptidoglycan (PGN) and fungal chitin. Live cell imaging and microsomal fractionation consistently revealed the plasma membrane localization of these proteins in rice cells. Transcription of these two genes could be induced rapidly upon exposure to bacterial pathogens or diverse MAMPs. Both proteins selectively bound PGN and chitin but not lipopolysaccharide (LPS) in vitro. Accordingly, silencing of either LYP specifically impaired PGN- or chitin- but not LPS-induced defense responses in rice, including reactive oxygen species generation, defense gene activation, and callose deposition, leading to compromised resistance against bacterial pathogen Xanthomonas oryzae and fungal pathogen Magnaporthe oryzae. Interestingly, pretreatment with excess PGN dramatically attenuated the alkalinization response of rice cells to chitin but not to flagellin; vice versa, pretreatment with chitin attenuated the response to PGN, suggesting that PGN and chitin engage overlapping perception components in rice. Collectively, our data support the notion that LYP4 and LYP6 are promiscuous PRRs for PGN and chitin in rice innate immunity.


Assuntos
Quitina/imunologia , Oryza/imunologia , Peptidoglicano/imunologia , Imunidade Vegetal , Proteínas de Plantas/imunologia , Receptores de Reconhecimento de Padrão/imunologia , Motivos de Aminoácidos , Membrana Celular/imunologia , Membrana Celular/metabolismo , Flagelina/imunologia , Flagelina/farmacologia , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Glucanos/metabolismo , Lipopolissacarídeos/farmacologia , Magnaporthe/imunologia , Magnaporthe/patogenicidade , Oryza/genética , Oryza/microbiologia , Filogenia , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Interferência de RNA , Receptores de Reconhecimento de Padrão/metabolismo , Ativação Transcricional , Xanthomonas/imunologia , Xanthomonas/patogenicidade
13.
Plant J ; 76(5): 861-74, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24118453

RESUMO

Photosynthetic electron transport is the major energy source for cellular metabolism in plants, and also has the potential to generate excess reactive oxygen species that cause irreversible damage to photosynthetic apparatus under adverse conditions. Ferredoxins (Fds), as the electron-distributing hub in the chloroplast, contribute to redox regulation and antioxidant defense. However, the steady-state levels of photosynthetic Fd decrease in plants when they are exposed to environmental stress conditions. To understand the effect of Fd down-regulation on plant growth, we characterized Arabidopsis thaliana plants lacking Fd2 (Fd2-KO) under long-term high light (HL) conditions. Unexpectedly, Fd2-KO plants exhibited efficient photosynthetic capacity and stable thylakoid protein complexes. At the transcriptional level, photoprotection-related genes were up-regulated more in the mutant plants, suggesting that knockout Fd2 lines possess a relatively effective photo-acclimatory responses involving enhanced plastid redox signaling. In contrast to the physiological characterization of Fd2-KO under short-term HL, the plastoquinone pool returned to a relatively balanced redox state via elevated PGR5-dependent cyclic electron flow during extended HL. fd2 pgr5 double mutant plants displayed severely impaired photosynthetic capacity under HL treatment, further supporting a role for PGR5 in adaptation to HL in the Fd2-KO plants. These results suggest potential benefits of reducing Fd levels in plants grown under long-term HL conditions.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/efeitos da radiação , Ferredoxinas/metabolismo , Luz , Fotossíntese/fisiologia , Aclimatação , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Cloroplastos/metabolismo , Ferredoxinas/genética , Técnicas de Inativação de Genes , Dados de Sequência Molecular , Complexo de Proteínas do Centro de Reação Fotossintética/genética , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Estresse Fisiológico
14.
Plant Physiol ; 163(4): 1710-28, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24151299

RESUMO

Chloroplastic m-type thioredoxins (TRX m) are essential redox regulators in the light regulation of photosynthetic metabolism. However, recent genetic studies have revealed novel functions for TRX m in meristem development, chloroplast morphology, cyclic electron flow, and tetrapyrrole synthesis. The focus of this study is on the putative role of TRX m1, TRX m2, and TRX m4 in the biogenesis of the photosynthetic apparatus in Arabidopsis (Arabidopsis thaliana). To that end, we investigated the impact of single, double, and triple TRX m deficiency on chloroplast development and the accumulation of thylakoid protein complexes. Intriguingly, only inactivation of three TRX m genes led to pale-green leaves and specifically reduced stability of the photosystem II (PSII) complex, implying functional redundancy between three TRX m isoforms. In addition, plants silenced for three TRX m genes displayed elevated levels of reactive oxygen species, which in turn interrupted the transcription of photosynthesis-related nuclear genes but not the expression of chloroplast-encoded PSII core proteins. To dissect the function of TRX m in PSII biogenesis, we showed that TRX m1, TRX m2, and TRX m4 interact physically with minor PSII assembly intermediates as well as with PSII core subunits D1, D2, and CP47. Furthermore, silencing three TRX m genes disrupted the redox status of intermolecular disulfide bonds in PSII core proteins, most notably resulting in elevated accumulation of oxidized CP47 oligomers. Taken together, our results suggest an important role for TRX m1, TRX m2, and TRX m4 proteins in the biogenesis of PSII, and they appear to assist the assembly of CP47 into PSII.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Tiorredoxinas de Cloroplastos/metabolismo , Cloroplastos/metabolismo , Complexo de Proteína do Fotossistema II/biossíntese , Tiorredoxinas/metabolismo , Arabidopsis/genética , Arabidopsis/ultraestrutura , Proteínas de Arabidopsis/genética , Clorofila/metabolismo , Tiorredoxinas de Cloroplastos/genética , Cloroplastos/ultraestrutura , Sequência Conservada , Dissulfetos/metabolismo , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Genes de Plantas , Proteínas de Fluorescência Verde/metabolismo , Immunoblotting , Oxirredução , Fenótipo , Folhas de Planta/metabolismo , Subunidades Proteicas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Reprodutibilidade dos Testes , Espectrometria de Fluorescência , Tiorredoxinas/genética , Tilacoides/metabolismo
15.
Zhongguo Zhong Yao Za Zhi ; 38(17): 2868-73, 2013 Sep.
Artigo em Zh | MEDLINE | ID: mdl-24380313

RESUMO

OBJECTIVE: To investigate the in vitro protective effect of Pinus massoniana bark extracts (PMBE) against cisplatin-induced nephrotoxicity in human embryonic kidney cells (HEK293), and preliminarily study its mechanism. METHOD: Human embryonic kidney cells (HEK293) were cultured in vitro. The MTT assay was adopted to test the effect of PMBE and cisplatin on growth of HEK293 cells, and the protective effect of PMBE on cisplatin-induced nephrotoxicity of HEK293, and then detect the intracellular reactive oxygen species (ROS), malondialdehyde (MDA), glutathione (GSH) content, catalase (CAT), superoxide dismutase (SOD) and activity of thioredoxin reductase (TrxR). RESULT: PMBE could promote growth of HEK293 cells at low concentrations, but generate slight nephrotoxicity at high concentration. Cisplatin could inhibit growth of HEK293 cells, increase ROS and MDA content, while reducing SOD, CAT and TrxR. The pre-protective PMBE was added to reduce cisplatin's injury to HEK293 cells, ROS, MDA and GSH content, SOD, CAT and TrxR within certain range. CONCLUSION: PMBE at specific concentration has the protective effect in cisplatin-induced nephrotoxicity in HEK293 cells. Its mechanism may be related to PMBE's antioxidant activity.


Assuntos
Cisplatino/toxicidade , Rim/efeitos dos fármacos , Pinus/química , Extratos Vegetais/farmacologia , Substâncias Protetoras/farmacologia , Animais , Antioxidantes/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/enzimologia , Células Epiteliais/metabolismo , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Células HEK293 , Humanos , Rim/enzimologia , Rim/metabolismo , Malondialdeído/metabolismo , Camundongos , Casca de Planta/química , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo , Tiorredoxina Dissulfeto Redutase/metabolismo
17.
Plant Cell Rep ; 31(6): 1021-32, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22218675

RESUMO

Dephosphorylation plays a pivotal role in regulating plant growth, development and abiotic/biotic stress responses. Here, we characterized a plant and fungi atypical dual-specificity phosphatase (PFA-DSP) subfamily member, OsPFA-DSP1, from rice. OsPFA-DSP1 was determined to be a functional protein tyrosine phosphatase (PTP) in vitro using phosphatase activity assays. Quantitative real-time PCR and GENEVESTIGATOR analysis showed that OsPFA-DSP1 mRNA was induced by drought stress. Transfection of rice protoplasts showed that OsPFA-DSP1 accumulated in both the cytoplasm and nucleus. Ectopic overexpression of OsPFA-DSP1 in tobacco increased sensitivity to drought stress and insensitivity to ABA-induced stomatal closure and inhibition of stomatal opening. Furthermore, overexpression of OsPFA-DSP1 in rice also increased sensitivity to drought stress. These results indicated that OsPFA-DSP1 is a functional PTP and may act as a negative regulator in drought stress responses.


Assuntos
Secas , Fosfatases de Especificidade Dupla/metabolismo , Nicotiana/fisiologia , Oryza/enzimologia , Oryza/fisiologia , Proteínas de Plantas/metabolismo , Estresse Fisiológico , Motivos de Aminoácidos , Sequência de Aminoácidos , Sequência Conservada/genética , Fosfatases de Especificidade Dupla/química , Fosfatases de Especificidade Dupla/genética , Íons , Metais/farmacologia , Dados de Sequência Molecular , Oryza/efeitos dos fármacos , Oryza/genética , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Transporte Proteico/efeitos dos fármacos , Proteínas Recombinantes/isolamento & purificação , Estresse Fisiológico/efeitos dos fármacos , Frações Subcelulares/efeitos dos fármacos , Frações Subcelulares/enzimologia , Especificidade por Substrato/efeitos dos fármacos , Nicotiana/efeitos dos fármacos , Nicotiana/genética
18.
Front Surg ; 9: 969418, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35937606

RESUMO

Background: The robotic surgical system is being used in various bariatric procedures. However, only a few studies with very small sample size are present on robotic single-anastomosis duodenal-ileal bypass with sleeve gastrectomy (SADI-S). Moreover, to date, the learning curve of robotic SADI-S has been poorly evaluated yet. Objective: This retrospective study aimed to estimate the learning curve of robotic SADI-S. Methods: 102 consecutive patients who underwent robotic SADI-S between March 2020 and December 2021 were included. Textbook outcome standard was performed to comprehensively evaluate clinical outcome of robotic SADI-S. Based on the textbook outcome, we evaluated the learning curve of robotic SADI-S by the cumulative sum (CUSUM) method. Results: The mean operative time was 186.13 ± 36.91 min. No conversion to laparotomy or deaths occurred during the study period. The rate of complications was 6.9% (n = 7), of which major complications were identified in 2.9% (n = 3), including 2 gastric leakages and 1 respiratory failure. A total of 60 patients reached the textbook outcome standard. The rate of textbook outcome was positive and was steadily increasing after the number of surgical cases accumulated to the 58th case. Taking the 58th case as the boundary, all the patients were divided into the learning stage group (the first 58 patients) and mastery stage group (the last 44 patients). The rate of complications, proportion of abdominal drainage tubes and postoperative hospital stay were significantly higher in the learning stage group compared with the mastery stage group (P < 0.05). No significant difference was observed between the two groups in terms of patient demographic data, operative times, reoperations and readmission. Conclusion: Robotic SADI-S is a feasible and reproducible surgical technique with a learning curve of 58 cases.

19.
Front Endocrinol (Lausanne) ; 13: 1013959, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36204098

RESUMO

Background: Single-anastomosis duodenal-ileal bypass with sleeve gastrectomy (SADI-S) is one of the most effective bariatric procedures in the treatment of type 2 diabetes mellitus (T2DM). However, the mechanisms by which SADI-S improves T2DM are not well-known. Objective: To explore the effects of SADI-S on metabolites in the stool of rats with T2DM. Methods: Twenty rats were fed on high-fat diet and administered with a low-dose (30mg/kg) of streptozotocin to establish T2DM models. The rats were then randomly assigned to the SADI-S group (n=10) and sham operation group (n=9). Stool samples were collected from all rats at 8 weeks after surgery and stored at -80 °C. Metabolomics analysis was performed to identify differential metabolites through ultra- performance liquid chromatography-mass spectrometry. Results: At 8-week after surgery, rats of the SADI-S group showed significantly decreased fasting blood glucose, glucose tolerance test 2-hour, glycated haemoglobin, and body weight compared with those of the sham group. A total of 245 differential metabolites were identified between the two groups. Among them, 16 metabolites such as branched-chain amino acids (valine), aromatic amino acid (phenylalanine), bile acid (cholic acid, lithocholic acid, and ß-muricholic acid), short-chain fatty acid (isobutyric acid), and phospholipid [lysoPE(17:0), lysoPE(20:3) and lysoPS(16:0)] were associated to the T2DM remission after SADI-S. Conclusion: SADI-S improves T2DM in rats by regulating phenylalanine biosynthesis, valine, phenylalanine, alanine, glutamate, proline, bile acid, and phospholipid metabolism pathways.


Assuntos
Diabetes Mellitus Tipo 2 , Obesidade Mórbida , Animais , Ratos , Alanina , Aminoácidos Aromáticos , Aminoácidos de Cadeia Ramificada , Anastomose Cirúrgica/métodos , Ácidos e Sais Biliares , Glicemia/análise , Diabetes Mellitus Tipo 2/cirurgia , Gastrectomia/métodos , Glutamatos , Hemoglobinas Glicadas/análise , Íleo/química , Íleo/cirurgia , Isobutiratos , Ácido Litocólico , Obesidade Mórbida/cirurgia , Fenilalanina , Fosfolipídeos , Prolina , Estreptozocina , Valina
20.
Genes (Basel) ; 13(1)2022 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-35052479

RESUMO

RNA editing is essential for compensating for defects or mutations in haploid organelle genomes and is regulated by numerous trans-factors. Pentatricopeptide repeat (PPR) proteins are the prime factors that are involved in RNA editing; however, many have not yet been identified. Here, we screened the plastid-targeted PLS-DYW subfamily of PPR proteins belonging to Arabidopsis thaliana and identified ORGANELLE TRANSCRIPT PROCESSING 970 (OTP970) as a key player in RNA editing in plastids. A loss-of-function otp970 mutant was impaired in RNA editing of ndhB transcripts at site 149 (ndhB-C149). RNA-immunoprecipitation analysis indicated that OTP970 was associated with the ndhB-C149 site. The complementation of the otp970 mutant with OTP970 lacking the DYW domain (OTP970∆DYW) failed to restore the RNA editing of ndhB-C149. ndhB gene encodes the B subunit of the NADH dehydrogenase-like (NDH) complex; however, neither NDH activity and stability nor NDH-PSI supercomplex formation were affected in otp970 mutant compared to the wild type, indicating that alteration in amino acid sequence is not necessary for NdhB function. Together, these results suggest that OTP970 is involved in the RNA editing of ndhB-C149 and that the DYW domain is essential for its function.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Cloroplastos/genética , Mutação , NADH Desidrogenase/genética , Plantas Geneticamente Modificadas/genética , Edição de RNA , Sequência de Aminoácidos , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Cloroplastos/metabolismo , NADH Desidrogenase/metabolismo , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA