Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(10): e2214357120, 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36848560

RESUMO

Improving Coulombic efficiency (CE) is key to the adoption of high energy density lithium metal batteries. Liquid electrolyte engineering has emerged as a promising strategy for improving the CE of lithium metal batteries, but its complexity renders the performance prediction and design of electrolytes challenging. Here, we develop machine learning (ML) models that assist and accelerate the design of high-performance electrolytes. Using the elemental composition of electrolytes as the features of our models, we apply linear regression, random forest, and bagging models to identify the critical features for predicting CE. Our models reveal that a reduction in the solvent oxygen content is critical for superior CE. We use the ML models to design electrolyte formulations with fluorine-free solvents that achieve a high CE of 99.70%. This work highlights the promise of data-driven approaches that can accelerate the design of high-performance electrolytes for lithium metal batteries.

2.
Proc Natl Acad Sci U S A ; 120(31): e2301260120, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37487097

RESUMO

Lithium-sulfur (Li-S) batteries with high energy density and low cost are promising for next-generation energy storage. However, their cycling stability is plagued by the high solubility of lithium polysulfide (LiPS) intermediates, causing fast capacity decay and severe self-discharge. Exploring electrolytes with low LiPS solubility has shown promising results toward addressing these challenges. However, here, we report that electrolytes with moderate LiPS solubility are more effective for simultaneously limiting the shuttling effect and achieving good Li-S reaction kinetics. We explored a range of solubility from 37 to 1,100 mM (based on S atom, [S]) and found that a moderate solubility from 50 to 200 mM [S] performed the best. Using a series of electrolyte solvents with various degrees of fluorination, we formulated the Single-Solvent, Single-Salt, Standard Salt concentration with Moderate LiPSs solubility Electrolytes (termed S6MILE) for Li-S batteries. Among the designed electrolytes, Li-S cells using fluorinated-1,2-diethoxyethane S6MILE (F4DEE-S6MILE) showed the highest capacity of 1,160 mAh g-1 at 0.05 C at room temperature. At 60 °C, fluorinated-1,4-dimethoxybutane S6MILE (F4DMB-S6MILE) gave the highest capacity of 1,526 mAh g-1 at 0.05 C and an average CE of 99.89% for 150 cycles at 0.2 C under lean electrolyte conditions. This is a fivefold increase in cycle life compared with other conventional ether-based electrolytes. Moreover, we observed a long calendar aging life, with a capacity increase/recovery of 4.3% after resting for 30 d using F4DMB-S6MILE. Furthermore, the correlation between LiPS solubility, degree of fluorination of the electrolyte solvent, and battery performance was systematically investigated.

3.
Nat Chem Biol ; 18(6): 625-633, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35513511

RESUMO

Metabolic labeling of glycans with clickable unnatural sugars has enabled glycan analysis in multicellular systems. However, cell-type-specific labeling of glycans in vivo remains challenging. Here we develop genetically encoded metabolic glycan labeling (GeMGL), a cell-type-specific strategy based on a bump-and-hole pair of an unnatural sugar and its matching engineered enzyme. N-pentynylacetylglucosamine (GlcNAl) serves as a bumped analog of N-acetylglucosamine (GlcNAc) that is specifically incorporated into glycans of cells expressing a UDP-GlcNAc pyrophosphorylase mutant, AGX2F383G. GeMGL with the 1,3-di-O-propionylated GlcNAl (1,3-Pr2GlcNAl) and AGX2F383G pair was demonstrated in cell cocultures, and used for specific labeling of glycans in mouse xenograft tumors. By generating a transgenic mouse line with AGX2F383G expressed under a cardiomyocyte-specific promoter, we performed specific imaging of cardiomyocyte glycans in the heart and identified 582 cardiomyocyte O-GlcNAcylated proteins with no interference from other cardiac cell types. GeMGL will facilitate cell-type-specific glycan imaging and glycoproteomics in various tissues and disease models.


Assuntos
Acetilglucosamina , Polissacarídeos , Acetilglucosamina/metabolismo , Animais , Humanos , Camundongos , Polissacarídeos/metabolismo
4.
Nano Lett ; 23(13): 5967-5974, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37350461

RESUMO

Lithium-sulfur (Li-S) batteries are promising candidates for next-generation energy storage systems due to their high theoretical energy density and the low cost of sulfur. However, slow conversion kinetics between the insulating S and lithium sulfide (Li2S) remains as a technical challenge. In this work, we report a catalyst featuring nickel (Ni) single atoms and clusters anchored to a porous hydrogen-substituted graphdiyne support (termed Ni@HGDY), which is incorporated in Li2S cathodes. The rapidly synthesized catalyst was found to enhance ionic and electronic conductivity, decrease the reaction overpotential, and promote more complete conversion between Li2S and sulfur. The addition of Ni@HGDY to commercial Li2S powder enabled a capacity of over 516 mAh gLi2S-1 at 1 C for over 125 cycles, whereas the control Li2S cathode managed to maintain just over 200 mAh gLi2S-1. These findings highlight the efficacy of Ni as a metal catalyst and demonstrate the promise of HGDY in energy storage devices.

5.
Angew Chem Int Ed Engl ; 63(8): e202317942, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38179820

RESUMO

CO2 electroreduction (CO2 R) operating in acidic media circumvents the problems of carbonate formation and CO2 crossover in neutral/alkaline electrolyzers. Alkali cations have been universally recognized as indispensable components for acidic CO2 R, while they cause the inevitable issue of salt precipitation. It is therefore desirable to realize alkali-cation-free CO2 R in pure acid. However, without alkali cations, stabilizing *CO2 intermediates by catalyst itself at the acidic interface poses as a challenge. Herein, we first demonstrate that a carbon nanotube-supported molecularly dispersed cobalt phthalocyanine (CoPc@CNT) catalyst provides the Co single-atom active site with energetically localized d states to strengthen the adsorbate-surface interactions, which stabilizes *CO2 intermediates at the acidic interface (pH=1). As a result, we realize CO2 conversion to CO in pure acid with a faradaic efficiency of 60 % at pH=2 in flow cell. Furthermore, CO2 is successfully converted in cation exchanged membrane-based electrode assembly with a faradaic efficiency of 73 %. For CoPc@CNT, acidic conditions also promote the intrinsic activity of CO2 R compared to alkaline conditions, since the potential-limiting step, *CO2 to *COOH, is pH-dependent. This work provides a new understanding for the stabilization of reaction intermediates and facilitates the designs of catalysts and devices for acidic CO2 R.

6.
Nat Mater ; 21(4): 445-454, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35039645

RESUMO

Designing a stable solid-electrolyte interphase on a Li anode is imperative to developing reliable Li metal batteries. Herein, we report a suspension electrolyte design that modifies the Li+ solvation environment in liquid electrolytes and creates inorganic-rich solid-electrolyte interphases on Li. Li2O nanoparticles suspended in liquid electrolytes were investigated as a proof of concept. Through theoretical and empirical analyses of Li2O suspension electrolytes, the roles played by Li2O in the liquid electrolyte and solid-electrolyte interphases of the Li anode are elucidated. Also, the suspension electrolyte design is applied in conventional and state-of-the-art high-performance electrolytes to demonstrate its applicability. Based on electrochemical analyses, improved Coulombic efficiency (up to ~99.7%), reduced Li nucleation overpotential, stabilized Li interphases and prolonged cycle life of anode-free cells (~70 cycles at 80% of initial capacity) were achieved with the suspension electrolytes. We expect this design principle and our findings to be expanded into developing electrolytes and solid-electrolyte interphases for Li metal batteries.


Assuntos
Fontes de Energia Elétrica , Lítio , Eletrodos , Eletrólitos
7.
Chem Rev ; 121(3): 1623-1669, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33356176

RESUMO

The tremendous improvement in performance and cost of lithium-ion batteries (LIBs) have made them the technology of choice for electrical energy storage. While established battery chemistries and cell architectures for Li-ion batteries achieve good power and energy density, LIBs are unlikely to meet all the performance, cost, and scaling targets required for energy storage, in particular, in large-scale applications such as electrified transportation and grids. The demand to further reduce cost and/or increase energy density, as well as the growing concern related to natural resource needs for Li-ion have accelerated the investigation of so-called "beyond Li-ion" technologies. In this review, we will discuss the recent achievements, challenges, and opportunities of four important "beyond Li-ion" technologies: Na-ion batteries, K-ion batteries, all-solid-state batteries, and multivalent batteries. The fundamental science behind the challenges, and potential solutions toward the goals of a low-cost and/or high-energy-density future, are discussed in detail for each technology. While it is unlikely that any given new technology will fully replace Li-ion in the near future, "beyond Li-ion" technologies should be thought of as opportunities for energy storage to grow into mid/large-scale applications.

8.
Anal Chem ; 94(20): 7264-7271, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35427126

RESUMO

Herein, we present a class of multi-functional hydrogels, which simultaneously features strong fluorescence, ultralong room-temperature phosphorescence (RTP), and excellent self-healing properties. In particular, the as-prepared hydrogels could produce strong fluorescence with a photoluminescence quantum yield (PLQY) value of 22.4%, as well as ultralong RTP (lasts for ∼20 s with phosphorescence lifetime of ∼264 ms). In addition to the superior optical performance, the as-prepared hydrogels possess excellent self-healing property, with ∼91.5% self-healing efficiency at room temperature and an increased elasticity of ∼281%. Taking advantages of these unique merits, we further exploit such high-performance hydrogels for advanced anti-counterfeiting applications. Significantly, the hydrogel-based anti-counterfeiting tags are capable of realizing multi-color static information in the spatial scale and more than five kinds of dynamic information during 15 s of the phosphorescence decay process in the temporal scale.


Assuntos
Hidrogéis , Fluorescência
9.
Opt Express ; 30(13): 23695-23703, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-36225044

RESUMO

Owing to the broad spectral response and flexible choices of donors and acceptors, fluorescence resonance energy transfer (FRET) system based on quantum dots (QDs) is a potential candidate for enhancing performance of solar cells and other optoelectronic devices. Thus it is necessary to develop such FRET systems with high efficiency and understand the involved photophysical dynamics. Here, with type I CuInS2@ZnS core-shell quantum dots as the energy donor, series of CuInS2@ZnS-SQ complexes are synthesized by adjusting the acceptor (squaric acid, SQ) concentration. The FRET dynamics of the samples is systematically investigated by virtue of steady-state emission, time-resolved fluorescence decay, and transient absorption measurements. The experimental results display a positive correlation between the energy transfer efficient (η). The best energy transfer efficient achieved from experimental data is 52%. This work provides better understanding of the photophysical dynamics in similar complexes and facilitates further development of new photoelectronic devices based on relevant FRET systems.

10.
Opt Lett ; 47(10): 2390-2393, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35561358

RESUMO

This paper studies the use of MUltiple SIgnal Classification (MUSIC) as a super-resolution algorithm to improve demodulation results for intrinsic Fabry-Perot interferometer (IFPI) sensor arrays. Through distinction between noise and signal subspaces in an observation matrix, this paper shows that a 38-fold improvement in the full width at half maximum (FWHM) estimation of IFPI optical path differences (OPD) can be achieved using this algorithm. Based on this improved method, this paper demonstrates that a tunable laser with a 1.3-nm tuning range can achieve the same sensor demodulation performance as a tunable laser with a 50-nm tuning range if a conventional Fourier transform-based algorithm is used. This paper presents a new approach to analyzing optical signals produced by multiple multiplexed interferometers with similar OPDs with potential applications for both single-mode and multiple-mode devices.

11.
Inorg Chem ; 61(8): 3368-3373, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35164505

RESUMO

Solar-initiated CO2 reduction is significant for green energy development. Herein, we have prepared a new mesoporous/microporous porphyrin metal-organic framework (MOF), IHEP-20, loaded with polymetallic oxygen clusters (POMs) to form a composite material POMs@IHEP-20 for visible-light-driven photocatalytic CO2 reduction. The as-made composite material exhibits good stability in water from pH 0 to 11. After POMs were introduced to IHEP-20, they showed superior activity toward photocatalytic CO2 reduction with a CO production rate of 970 µmol·g-1·h-1, which is 3.27 times higher than that of pristine IHEP-20. This study opens a new door for the design and synthesis of high-performance catalysts for the photocatalytic reduction of CO2.

12.
Inorg Chem ; 61(7): 3058-3071, 2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35130695

RESUMO

The propensity of uranyl for hydrolysis in aqueous environments prevents precise control of uranyl species in the scenarios of on-demand separation and tailored synthesis. Herein, using cucurbit[7]uril (CB[7]) as the macrocyclic molecule and 4,4'-bipyridine-N,N'-dioxide (DPO) as the string molecule, we propose a new kind of multidentate pseudorotaxane ligand, DPO@CB[7] for capturing uranyl species at different pH's. With the aprotic nature of DPO for metal coordination, the coordination ability of the DPO@CB[7] ligand is less affected by pH and can work in a wide range of pH's. Furthermore, by adaptive uranyl coordination, this aprotic pseudorotaxane ligand achieves effective recognition for different uranyl species ranging from monomeric to tetrameric originating from hydrolysis at varying pH's, and four novel uranyl-rotaxane compounds (URC1-4) are successfully obtained. Single-crystal X-ray diffraction analysis reveals that the DPO@CB[7] ligand coordinates with uranyl centers from monomeric to tetrameric in four different modes, as a result of structural flexibility of the DPO@CB[7] pseudorotaxane ligand. A detailed discussion for conformation flexibility of the DPO@CB[7] ligand has been conducted on the position changes of the DPO ligand trapped in the CB[7], which thus reveals good adaptivity of DPO@CB[7] that is noncovalently bonded as a supramolecular motif. In addition, characterization of the physicochemical properties of URC1 and URC2 with high phase purity, including powder X-ray diffraction (PXRD), infrared spectroscopy (IR), thermogravimetric analysis (TGA), and luminescence properties, are also provided. This work provides a good case of an adaptive pseudorotaxane ligand for the recognition and capture of different uranyl species and will bring valuable hints to the design of multifunctional supramolecular ligands for actinide separation in the future.

13.
BMC Cardiovasc Disord ; 22(1): 331, 2022 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-35879670

RESUMO

BACKGROUND: Sleep apnea is a risk factor for atrial fibrillation (AF) but it is underdiagnosed. Whether obstructive sleep apnea (OSA) is correlated with thrombotic risk in AF remains unclear. The aim of the present study was to analyze the clinical characteristics and assess the thrombotic risk of AF with OSA. METHODS: In the present registry study,1990 consecutive patients with AF from 20 centers were enrolled. The patients were divided into 2 groups depending on whether they presented with both AF and OSA. All the patients were followed up for 1 year to evaluate the incidences of stroke and non-central nervous system (CNS) embolism. RESULTS: Of the 1990 AF patients, 70 (3.5%) and 1920 (96.5%) patients were in the OSA group and non-OSA group, respectively. The results of the multivariate logistic model analysis showed that male sex, body mass index (BMI), smoking, and major bleeding history were independent risk factors for patients with AF and OSA. The comparison of the Kaplan-Meier curves using the log-rank test revealed that AF with OSA was correlated with an increased risk of non-CNS embolism (p < 0.01). After multivariate adjustments were performed, OSA remained an independent risk factor for non-CNS embolism (HR 5.42, 95% CI 1.34-22.01, p = 0.02), but was not correlated with the risk of stroke in patients with AF. CONCLUSIONS: The present study revealed that male sex, high BMI values, smoking, and major bleeding history were independent risk factors for patients with AF and OSA. Moreover, OSA was an independent risk factor for non-CNS embolism in AF. Our results indicate that non-CNS embolism requires focus in patients with AF and OSA.


Assuntos
Fibrilação Atrial , Apneia Obstrutiva do Sono , Acidente Vascular Cerebral , Trombose , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/epidemiologia , Humanos , Masculino , Sistema de Registros , Fatores de Risco , Apneia Obstrutiva do Sono/complicações , Apneia Obstrutiva do Sono/diagnóstico , Apneia Obstrutiva do Sono/epidemiologia , Acidente Vascular Cerebral/diagnóstico , Acidente Vascular Cerebral/epidemiologia , Acidente Vascular Cerebral/etiologia , Trombose/complicações
14.
Nat Mater ; 19(10): 1088-1095, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32424371

RESUMO

In the synthesis of inorganic materials, reactions often yield non-equilibrium kinetic byproducts instead of the thermodynamic equilibrium phase. Understanding the competition between thermodynamics and kinetics is a fundamental step towards the rational synthesis of target materials. Here, we use in situ synchrotron X-ray diffraction to investigate the multistage crystallization pathways of the important two-layer (P2) sodium oxides Na0.67MO2 (M = Co, Mn). We observe a series of fast non-equilibrium phase transformations through metastable three-layer O3, O3' and P3 phases before formation of the equilibrium two-layer P2 polymorph. We present a theoretical framework to rationalize the observed phase progression, demonstrating that even though P2 is the equilibrium phase, compositionally unconstrained reactions between powder precursors favour the formation of non-equilibrium three-layered intermediates. These insights can guide the choice of precursors and parameters employed in the solid-state synthesis of ceramic materials, and constitutes a step forward in unravelling the complex interplay between thermodynamics and kinetics during materials synthesis.

15.
Chemistry ; 27(34): 8730-8736, 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-33872429

RESUMO

We present here the synthesis of a novel fluorescent actinide polyrotaxane compound URCP1 through the utilization of an end-cutting pseudorotaxane precursor with only the cucurbit[6]uril (CB[6]) macrocyclic components acting as linking struts. The non-coordinating guest motif in the obtained polyrotaxane, with increased freedom and structural flexibility, can display intriguing temperature-triggered conformational variations inside the cavity of CB[6], which was clearly evidenced by crystallographic snapshots at different temperatures. Notably, this observation of temperature-triggered structural dynamics in URCP1 represents the first report of actinide polyrotaxane with such feature in solid-state. Moreover, URCP1 has a high photoluminescence quantum yield (PLQY) of 49.8 %, comparable to other luminescent uranyl compounds, and can work as a fluorescent probe to selectively detect Fe3+ over other eight competing cations in aqueous solution, with the limit of detection being as low as 4.4×10-3  ppm.

16.
J Org Chem ; 86(21): 14311-14320, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34618466

RESUMO

We report a highly efficient and selective catalytic system, ABNO (9-azabicyclo-[3.3.1]nonane N-oxyl)/HNO3, for the aerobic oxidation of substituted furans to cis-2-ene-1,4-diones under mild reaction conditions using oxygen as the oxidant. The catalyst system is amenable to various substituted (mon-, di-, and tri-) furans and tolerates diverse functional groups, including cyano, nitro, naphthyl, ketone, ester, heterocycle, and even formyl groups. Based on the control and 18O-labeling experiments, the possible mechanism of the oxidation is proposed.


Assuntos
Álcoois , Furanos , Catálise , Cetonas , Oxirredução
17.
Org Biomol Chem ; 19(40): 8746-8753, 2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34569586

RESUMO

A PhI(OAc)2-mediated trifluoromethylthiolation/oxidative cyclization of ynamides with the Shen reagent has been established herein, providing a facile access to CF3S-substituted oxazolidine-2,4-diones bearing a quaternary carbon center in 38-85% yields with chemoselectivities of up to 99/1.

18.
Nano Lett ; 20(7): 5496-5503, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32515973

RESUMO

Solid-state Li-S batteries are attractive due to their high energy density and safety. However, it is unclear whether the concepts from liquid electrolytes are applicable in the solid state to improve battery performance. Here, we demonstrate that the nanoscale encapsulation concept based on Li2S@TiS2 core-shell particles, originally developed in liquid electrolytes, is effective in solid polymer electrolytes. Using in situ optical cell and sulfur K-edge X-ray absorption, we find that polysulfides form and are well-trapped inside individual particles by the nanoscale TiS2 encapsulation. This TiS2 encapsulation layer also functions to catalyze the oxidation reaction of Li2S to sulfur, even in solid-state electrolytes, proven by both experiments and density functional theory calculations. A high cell-level specific energy of 427 W·h·kg-1 is achieved by integrating the Li2S@TiS2 cathode with a poly(ethylene oxide)-based electrolyte and a lithium metal anode. This study points to the fruitful direction of borrowing concepts from liquid electrolytes into solid-state batteries.

19.
Angew Chem Int Ed Engl ; 60(28): 15490-15496, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-33904244

RESUMO

Fluorescence and phosphorescence are known as two kinds of fundamental optical signals, which have been used for myriad applications. To date, simultaneous activation of stable fluorescence and long-lived room-temperature phosphorescence (RTP) emission in the aqueous phase remains a big challenge. We prepare zinc-doped silica nanospheres (Zn@SiNSs) with fluorescence and RTP properties using a facile hydrothermal synthetic strategy. For the as-prepared Zn@SiNSs, the recombination of electrons and holes in defects and defect-stabilized excitons derived from oxygen vacancy/C=N bonds lead to the production of stable fluorescence and long-lived RTP (emission lasting for ≈9 s, quantum yield (QY): ≈33.6 %, RTP lifetime: ≈236 ms). The internal Si-O bonded networks and hydrophilic surface in Zn@SiNSs can reduce nonradiative decay to form self-protective RTP, and also provide high water solubility, excellent pH- and photostability.

20.
Zhongguo Yi Liao Qi Xie Za Zhi ; 45(1): 26-31, 2021 Feb 08.
Artigo em Zh | MEDLINE | ID: mdl-33522172

RESUMO

In order to obtain the three-dimensional pulse information and blood pressure waveform needed in the study, a radial artery simulation platform with programmable controlled injection pump as the core was constructed by using the circulation theory of human cardiovascular system and pulse wave formation mechanism. Gaussian function model was selected to synthesize multi-type pulse wave to program and drive the platform. The three-dimensional pulse information and blood pressure waveform of the simulated radial artery were collected by binocular visual pulse detection system and pressure transmitter respectively, and the platform stability and repeatability were tested by Pearson correlation. The experimental results show that the radial artery simulation platform is stable, reliable and repeatable, and can generate multiple types of three-dimensional pulse information and blood pressure waveform at the simulated radial artery. The platform is simple in structure, low in cost, and produces many types of pulsating flow. It provides an experimental research platform for revealing the relationship between the three-dimensional pulse information of radial artery and the change of pressure inside the vessel, as well as the prediction of blood pressure waveform from the three-dimensional pulse information.


Assuntos
Artéria Radial , Sinais Vitais , Pressão Sanguínea , Simulação por Computador , Frequência Cardíaca , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA