Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chemistry ; 29(46): e202301390, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37280159

RESUMO

Chemodivergent tandem radical cyclization offers exciting possibilities for the synthesis of structurally diverse cyclic compounds. Herein, we revealed a chemodivergent tandem cyclization of alkene-substituted quinazolinones under metal- and base-free conditions, this transformation is initiated by alkyl radicals produced from oxidant-induced α-C(sp3 )-H functionalization of alkyl nitriles or esters. The reaction resulted in the selective synthesis of a series of mono- and di-alkylated ring-fused quinazolinones by modulating the loading of oxidant, reaction temperature, and reaction time. Mechanistic investigations show that the mono-alkylated ring-fused quinazolinones is constructed by the key process of 1,2-hydrogen shift, whereas the di-alkylated ring-fused quinazolinones is mainly achieved through crucial steps of resonance and proton transfer. This protocol is the first example of remote second alkylation on the aromatic ring via α-C(sp3 )-H functionalization and difunctionalization achieved by association of two unsaturated bonds in radical cyclization.

2.
Org Biomol Chem ; 21(29): 5906-5918, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37404027

RESUMO

Radical cyclization is regarded as a powerful and promising strategy for the assembly of diverse important cyclic structures because of its high atom- and step-economy. As excellent radical acceptors, alkenes offer two potential directions, pushing the research domain of radical cyclization. In this context, as a radical precursor, sulfonyl hydrazide plays an important role in accomplishing radical cyclization of alkenes in a facile and efficient way. This review focuses on the applications of sulfonyl hydrazides in radical cyclization of alkenes, which generally has two radical conversion modes, sulfonyl radicals and sulfoxide radicals. In particular, the section of sulfonyl radicals consists of eight parts containing aromatic rings, alkenes, alkynes, cyanides, aldehydes, carboxylic acids, amides, and small ring compounds, according to the objects of cyclization after addition with alkenes. Within each category, representative instances are presented and discussed in terms of their general mechanistic perspectives when needed.

3.
Huan Jing Ke Xue ; 45(1): 48-60, 2024 Jan 08.
Artigo em Zh | MEDLINE | ID: mdl-38216457

RESUMO

To investigate the characteristics, source apportionment, and potential source areas of carbonaceous aerosols in Chongqing during winter, PM2.5 samples were collected from January 2021 to February 2021 in the urban areas of Wanzhou (WZ), Yubei (YB), and Shuangqiao (SQ). The results showed that the average mass concentrations of PM2.5, OC, and EC in SQ were (72.6 ±33.3), (18.2 ±8.2), and (4.4 ±1.7) µg·m-3, respectively, higher than those in WZ[(67.2 ±30.3), (17.2 ±7.4), and (5.1 ±2.4) µg·m-3] and YB[(63.4 ±25.7), (15.4 ±6.3), and (4.2 ±1.9) µg·m-3]. Compared with that during the clear period, the concentration and fraction of EC in total carbon increased by 103.0% and 8.1%, respectively, in WZ compared to that in other areas during pollution period, whereas the OC/EC ratio was decreased significantly (-10.5%), indicating that the primary emission of carbonaceous aerosols increased significantly during the pollution period. The average mass concentrations of secondary organic carbon (SOC) in SQ and YB were (7.7 ±4.8) µg·m-3 and (6.9 ±2.8) µg·m-3 significantly higher, respectively, than that in WZ[(4.5 ±1.9) µg·m-3] during the campaign. This indicated that the secondary transformation had a greater influence on the carbonaceous aerosols in SQ and YB than that in WZ. Furthermore, in contrast to that in WZ, the ratios of SOC/OC were increased with the increase in PM2.5 concentrations, and significant correlations between SOC concentration and aerosol water content, NO2 concentration, and the value of NOR were observed in SQ and YB (P < 0.01), indicating that the increasing of carbonaceous aerosol concentrations might be mainly driven by the SOC with -NO2 groups produced by aqueous chemical reactions during winter in SQ and YB. The positive definite matrix factor (PMF) results in these urban areas showed that the contribution of biomass/coal combustion source in WZ (47.4%) was significantly higher than that in YB (34.2%) and SQ (38.1%), whereas the gasoline motor vehicle emission and secondary transformation impacts were more significant in YB. The results of the concentration weighted trajectory (CWT) showed that the potential sources of carbonaceous aerosols were mainly the local and northeastern parts of these urban areas (such as Changshou).

4.
Org Lett ; 25(31): 5862-5868, 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37534703

RESUMO

The combination of photo and copper catalysts has emerged as a novel paradigm in organic catalysis, which provides access to the acceleration of chemical synthesis. Herein, we describe an aminoalkylation of amino-dependent olefins with maleimides through a cooperative photo/copper catalytic system. In this report, the strategy allows the generation of a broad complex of functionalized nitrogenous molecules including oxazolidinones, 2-pyrrolidones, imidazolidinones, thiazolidinones, pyridines, and piperidines in the absence of an external photosensitizer and base. The approach is achieved through a photoinduced Cu(I)/Cu(II)/Cu(III) complex species of nitrogen nucleophiles, intermolecular radical addition, and hydrogen atom transfer (HAT) processes. The plausible mechanism is investigated by a series of control experiments and theoretical tests, including radical scavenging experiments, deuterium labeling experiments, ultraviolet-visible absorption, and cyclic voltammetry (CV) tests.

5.
Chem Commun (Camb) ; 59(42): 6391-6394, 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37157973

RESUMO

A novel 5-exo-dig/6-endo-trig bicyclization of 1,6-enynes with sulfonyl hydrazides in the aqueous phase using the cheap and available tetrabutylammonium iodide (TBAI)-tert-butyl hydroperoxide (TBHP) combined system is reported. The resulting reaction of diverse nitrogen- and oxygen-polyheterocycles displays high chemical selectivity, high step-economy, and a moderate substrate scope. Moreover, iodosulfonylation can be realized by modulating the structure of the 1,6-enynes.

6.
Chem Asian J ; 18(18): e202300606, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37500593

RESUMO

The synergistic systems of photoredox and copper catalyst have already appeared as a novel formation of green synthetic chemistry, which open new avenues for chemical synthesis applications. We describe a novel strategy for the cyclization of alkyne-tethered α-bromocarbonyls initiated by the cleavage of C(sp3 )-Br bond via the collaboration of photoredox and copper catalyst. The present protocol exhibits mildness using economical copper catalyst and visible-light at room temperature. The gram-scale and sunlight irradiation experiments proceeded smoothly to show the practicality of the methodology. It is notable that the newly generated oxygen in the product originates from H2 O.

7.
Huan Jing Ke Xue ; 43(6): 2867-2877, 2022 Jun 08.
Artigo em Zh | MEDLINE | ID: mdl-35686756

RESUMO

In order to further improve the accuracy of fine particulate matter (PM2.5) source apportionment results, a hybrid source apportionment approach (CTM-RM) combining the capabilities of a receptor model (RM) and chemical transport model (CTM) was developed. The CTM-RM method was evaluated and applied according to a typical PM2.5 pollution process from January 21 to 27, 2019 in Chongqing. The average value of square prediction error based on CTM-RM was 84.58% lower than that of CAMx/PSAT during the campaign. Compared with that of CAMx/PSAT, the fractional error of PM2.5 and its chemical component concentrations decreased by 15.69%-92.86%. Furthermore, the temporal and spatial variations in PM2.5 source impacts could be obtained using the CTM-RM method in Chongqing. The average adjustment factor (R) values were 1.39±0.38 (agriculture sources), 1.54±0.48 (industrial sources), 1.01±0.13 (power sources), 1.02±0.58 (residential sources), 0.86±0.59 (transportation sources), and 0.58±0.67 (other sources) in the main urban areas of Chongqing. Additionally, the cumulative distribution functions of R were found to be distinct among the six sources. The residential and industrial sources were the main sources of PM2.5, with contributions of 46.23% and 28.23%, respectively. In contrast to that of the other sources, the transportation source impacts of PM2.5 (8.62%) increased significantly from the clear period to pollution period (P<0.001), indicating that the increase in PM2.5 concentrations was mainly driven by vehicular emissions during the pollution period in the main urban areas of Chongqing. The fitting functions between the initial simulated concentrations and R values of each source in the main urban areas of Chongqing could be used to evaluate PM2.5 concentrations at 47 air quality monitoring stations in Chongqing, and the correlation between the refined simulated concentrations and measured concentration of PM2.5 was significant (r=0.82, P<0.001). Compared with that during the clear period, the increases in the percentages of industrial source impacts of PM2.5 in Northeast Chongqing and residential source impacts of PM2.5 in Southeast Chongqing were 17.20% and 9.15% higher, respectively, than that in other areas during the pollution period. By contrast, the increasing percentage of transportation source impacts of PM2.5 in the main urban areas of Chongqing (66.39%) and Western Chongqing (84.16%) from the clear period to the pollution period were higher than that in other areas. The results of CTM-RM on January 26 indicated that the residential source impacts in Northeast Chongqing (64.56%) were higher than those in other areas, and the industry source impacts of PM2.5 were primarily observed in the main urban areas of Chongqing and Western Chongqing, with contributions of 25.26% and 21.20%, respectively.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Monitoramento Ambiental/métodos , Indústrias , Material Particulado/análise , Emissões de Veículos/análise
8.
Huan Jing Ke Xue ; 43(4): 1756-1765, 2022 Apr 08.
Artigo em Zh | MEDLINE | ID: mdl-35393799

RESUMO

Based on the basic information of the Second National Pollution Source Census and the VOCs source profiles of industrial industries, we established the speciated emission inventory of major industrial sources in Chongqing in 2017, estimated their ozone formation potential (OFP), and identified the key control species of industrial VOCs and their sources. The results showed that the total VOCs emission from industrial sources and their OFPs were 144.12 kt and 477.34 kt, respectively. Automobile manufacturing, equipment manufacturing, plastic manufacturing, and chemical raw materials and chemical products were all industries that contributed significantly to VOCs emissions and OFP, with VOCs emissions of 37.18, 33.09, 19.47, and 18.14 kt and OFP of 191.43, 153.69, 27.21, and 57.51 kt, respectively. Aromatics were the components with the largest contribution to VOCs emissions and OFP, accounting for 62.55% of the total VOCs emissions and 82.15% of the total OFP, mainly from metal surface coating and petrochemical industries. The major reactive species of industrial source VOCs were m/p-xylene, toluene, ethylbenzene, o-xylene, and propylene, with OFP of 130.47, 103.37, 46.37, 42.83, and 28.26 kt, respectively, cumulatively accounting for 71.11% of the total OFP. In terms of spatial distribution, the emission intensity of VOCs and O3 pollution degree in all districts and counties of Chongqing were relatively consistent; the high value points of VOCs emissions and OFP were mainly distributed in the main urban area and the western area, and the sources of VOCs emission in the main urban area and western area were mainly in metal surface coating and the petrochemical industry, respectively.


Assuntos
Poluentes Atmosféricos , Ozônio , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , China , Monitoramento Ambiental , Indústrias , Ozônio/análise , Compostos Orgânicos Voláteis/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA