Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
World J Gastroenterol ; 29(13): 1942-1954, 2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37155525

RESUMO

The tremendous public health and economic impact of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has become a huge challenge globally. There is increasing evidence that SARS-CoV-2 induces intestinal infections. Type III interferon (IFN-λ) has an antiviral role in intestinal infection, with focused, long-lasting, and non-inflammatory characteristics. This review presents a summary of the structure of SARS-CoV-2, including its invasion and immune escape mechanisms. Emphasis was placed on the gastrointestinal impact of SARS-CoV-2, including changes to the intestinal microbiome, activation of immune cells, and inflammatory responses. We also describe the comprehensive functions of IFN-λ in anti-enteric SARS-CoV-2 infection, and discuss the potential application of IFN-λ as a therapeutic agent for COVID-19 with intestinal symptoms.


Assuntos
COVID-19 , Humanos , Interferon lambda , SARS-CoV-2 , Interferons/uso terapêutico , Antivirais/uso terapêutico , Antivirais/farmacologia
2.
Inflammation ; 46(1): 18-34, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36050591

RESUMO

Tight junctions (TJs) are located in the apical region of the junctions between epithelial cells and are widely found in organs such as the brain, retina, intestinal epithelium, and endothelial system. As a mechanical barrier of the intestinal mucosa, TJs can not only maintain the integrity of intestinal epithelial cells but also maintain intestinal mucosal permeability by regulating the entry of ions and molecules into paracellular channels. Therefore, the formation disorder or integrity destruction of TJs can induce damage to the intestinal epithelial barrier, ultimately leading to the occurrence of various gastrointestinal diseases, such as inflammatory bowel disease (IBD), gastroesophageal reflux disease (GERD), and irritable bowel syndrome (IBS). However, a large number of studies have shown that TJs protein transport disorder from the endoplasmic reticulum to the apical membrane can lead to TJs formation disorder, in addition to disruption of TJs integrity caused by external pathological factors and reduction of TJs protein synthesis. In this review, we focus on the structural composition of TJs, the formation of clathrin-coated vesicles containing transmembrane TJs from the Golgi apparatus, and the transport process from the Golgi apparatus to the plasma membrane via microtubules and finally fusion with the plasma membrane. At present, the mechanism of the intracellular transport of TJ proteins remains unclear. More studies are needed in the future to focus on the sorting of TJs protein vesicles, regulation of transport processes, and recycling of TJ proteins, etc.


Assuntos
Intestinos , Proteínas de Junções Íntimas , Proteínas de Junções Íntimas/metabolismo , Mucosa Intestinal/metabolismo , Células Epiteliais/metabolismo , Junções Íntimas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA