Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Development ; 151(20)2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38477640

RESUMO

Teleost testis development during the annual cycle involves dramatic changes in cellular compositions and molecular events. In this study, the testicular cells derived from adult black rockfish at distinct stages - regressed, regenerating and differentiating - were meticulously dissected via single-cell transcriptome sequencing. A continuous developmental trajectory of spermatogenic cells, from spermatogonia to spermatids, was delineated, elucidating the molecular events involved in spermatogenesis. Subsequently, the dynamic regulation of gene expression associated with spermatogonia proliferation and differentiation was observed across spermatogonia subgroups and developmental stages. A bioenergetic transition from glycolysis to mitochondrial respiration of spermatogonia during the annual developmental cycle was demonstrated, and a deeper level of heterogeneity and molecular characteristics was revealed by re-clustering analysis. Additionally, the developmental trajectory of Sertoli cells was delineated, alongside the divergence of Leydig cells and macrophages. Moreover, the interaction network between testicular micro-environment somatic cells and spermatogenic cells was established. Overall, our study provides detailed information on both germ and somatic cells within teleost testes during the annual reproductive cycle, which lays the foundation for spermatogenesis regulation and germplasm preservation of endangered species.


Assuntos
Espermatogônias , Testículo , Adulto , Masculino , Humanos , Células Intersticiais do Testículo , Células de Sertoli , Espermatogênese
2.
Am J Pathol ; 194(1): 13-29, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37923250

RESUMO

Gastric cancer (GC) is a major global health concern with poor outcomes. Heterogeneous nuclear ribonucleoprotein U (HNRNPU) is a multifunctional protein that participates in pre-mRNA packaging, alternative splicing regulation, and chromatin remodeling. Its potential role in GC remains unclear. In this study, the expression characteristics of HNRNPU were analyzed by The Cancer Genome Atlas data, Gene Expression Omnibus data, and then further identified by real-time quantitative PCR and immunohistochemistry using tissue specimens. From superficial gastritis, atrophic gastritis, and hyperplasia to GC, the in situ expression of HNRNPU protein gradually increased, and the areas under the curve for diagnosis of GC and its precancerous lesions were 0.911 and 0.847, respectively. A nomogram integrating HNRNPU expression, lymph node metastasis, and other prognostic indicators exhibited an area under the curve of 0.785 for predicting survival risk. Knockdown of HNRNPU significantly inhibited GC cell proliferation, migration, and invasion and promoted apoptosis in vitro. In addition, RNA-sequencing analysis showed that HNRNPU could affect alternative splicing events in GC cells, with functional enrichment analysis revealing that HNRNPU may exert malignant biological function in GC progression through alternative splicing regulation. In summary, the increased expression of HNRNPU was significantly associated with the development of GC, with a good performance in diagnosing and predicting the prognostic risk of GC. Functionally, HNRNPU may play an oncogenic role in GC by regulating alternative splicing.


Assuntos
Neoplasias Gástricas , Humanos , Processamento Alternativo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Ribonucleoproteínas Nucleares Heterogêneas Grupo U/genética , Prognóstico , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo
3.
BMC Genomics ; 25(1): 210, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38408914

RESUMO

BACKGROUND: Due to its enormous biomass, Antarctic krill (Euphausia superba) plays a crucial role in the Antarctic Ocean ecosystem. In recent years, Antarctic krill has found extensive application in aquaculture, emerging as a sustainable source of aquafeed with ideal nutritional profiles. However, a comprehensive study focused on the detailed effects of dietary Antarctic krill on aquaculture animals, especially farmed marine fishes, is yet to be demonstrated. RESULTS: In this study, a comparative experiment was performed using juvenile P. leopardus, fed with diets supplemented with Antarctic krill (the krill group) or without Antarctic krill (the control group). Histological observation revealed that dietary Antarctic krill could reduce lipid accumulation in the liver while the intestine exhibited no obvious changes. Enzyme activity measurements demonstrated that dietary Antarctic krill had an inhibitory effect on oxidative stress in both the intestine and the liver. By comparative transcriptome analysis, a total of 1,597 and 1,161 differentially expressed genes (DEGs) were identified in the intestine and liver, respectively. Functional analysis of the DEGs showed multiple enriched terms significantly related to cholesterol metabolism, antioxidants, and immunity. Furthermore, the expression profiles of representative DEGs, such as dhcr7, apoa4, sc5d, and scarf1, were validated by qRT-PCR and fluorescence in situ hybridization. Finally, a comparative transcriptome analysis was performed to demonstrate the biased effects of dietary Antarctic krill and astaxanthin on the liver of P. leopardus. CONCLUSIONS: Our study demonstrated that dietary Antarctic krill could reduce lipid accumulation in the liver of P. leopardus, enhance antioxidant capacities in both the intestine and liver, and exhibit molecular-level improvements in lipid metabolism, immunity, and antioxidants. It will contribute to understanding the protective effects of Antarctic krill in P. leopardus and provide insights into aquaculture nutritional strategies.


Assuntos
Bass , Euphausiacea , Animais , Antioxidantes , Euphausiacea/genética , Ecossistema , Hibridização in Situ Fluorescente , Perfilação da Expressão Gênica , Dieta , Bass/genética , Lipídeos , Regiões Antárticas
4.
Fish Shellfish Immunol ; 144: 109295, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38101589

RESUMO

The leopard coral grouper (Plectropomus leopardus), which has become increasingly popular in consumption due to its bright body color and great nutritional, holds a high economic and breeding potential. However, in recent years, the P.leopardus aquaculture industry has been impeded by the nervous necrosis virus (NNV) outbreak, leading to widespread mortality among fry and juvenile grouper. However, the genetic basis of resistance to NNV in P. leopardus remains to be investigated. In the present study, we conducted a genome-wide association analysis (GWAS) on 100 resistant and 100 susceptible samples to discover variants and potential genes linked with NNV resistance. For this study, 157,926 high-quality single nucleotide polymorphisms (SNPs) based on whole genome resequencing were discovered, and eighteen SNPs loci linked to disease resistance were discovered. We annotated six relevant candidate genes, including sik2, herc2, pip5k1c, npr1, mybpc3, and arhgap9, which showed important roles in lipid metabolism, oxidative stress, and neuronal survival. In the brain tissues of resistant and susceptible groups, candidate genes against NNV infection showed significant differential expression. The results indicate that regulating neuronal survival or pathways involved in lipid metabolism may result in increased resistance to NNV. Understanding the molecular mechanisms that lead to NNV resistance will be beneficial for the growth of the P. leopardus breeding sector. Additionally, the identified SNPs could be employed as biomarkers of disease resistance in P. leopardus, which will facilitate the selective breeding of grouper.


Assuntos
Antozoários , Bass , Nodaviridae , Infecções por Vírus de RNA , Animais , Bass/genética , Estudo de Associação Genômica Ampla/veterinária , Polimorfismo de Nucleotídeo Único , Resistência à Doença/genética , Nodaviridae/fisiologia , Infecções por Vírus de RNA/veterinária
5.
BMC Public Health ; 24(1): 499, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365639

RESUMO

BACKGROUND: Chronic kidney disease (CKD), often coexisting with various systemic disorders, may increase the risk of falls. Our study aimed to assess the prevalence and risk of falls among patients with CKD in China. METHODS: We included patients with/without CKD from China Health and Retirement Longitudinal Study (CHARLS). Our primary outcome was the occurrence of fall accidents within the past 2 years. To enhance the robustness of our findings, we employed a multivariable logistic regression model, conducted propensity score analysis, and applied an inverse probability-weighting model. RESULTS: A total of 12,658 participants were included, the prevalence of fall accident rates were 17.1% (2,028/11,837) among participants without CKD and 24.7% (203/821) among those with CKD. In the inverse probability-weighting model, participants with CKD exhibited higher fall accident rates (OR = 1.28, 95% CI: 1.08-1.53, p = 0.005 ). Sensitivity and subgroup analysis showed the results still stable. CONCLUSIONS: The population in China afflicted with CKD has a significantly heightened risk of experiencing falls, underscoring the crucial importance of intensifying efforts in assessing and preventing fall risks.


Assuntos
Insuficiência Renal Crônica , Aposentadoria , Humanos , Estudos Longitudinais , Acidentes por Quedas , Insuficiência Renal Crônica/epidemiologia , China/epidemiologia
6.
J Dairy Sci ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38876221

RESUMO

The nutritional components and quality of milk are influenced by the rumen microbiota and its metabolites at different lactation stages. Hence, rumen fluid and milk samples from 6 dairy cows fed the same diet were collected during peak, early mid- and later mid-lactation. Untargeted metabolomics and 16S rRNA sequencing were applied for analyzing milk and rumen metabolites, as well as rumen microbial composition, respectively. The levels of lipid-related metabolites, L-glutamate, glucose-1-phosphate and acetylphosphate in milk exhibited lactation-dependent attenuation. Maltol, N-acetyl-D-glucosamine, and choline, which are associated with milk flavor or coagulation properties, as well as L-valine, lansioside-A, clitocine and ginsenoside-La increased significantly in early mid- and later mid-lactation, especially in later mid-lactation. The obvious increase in rumen microbial diversities (Ace and Shannon indices) were observed in early mid-lactation compared with peak lactation. Twenty-one differential bacterial genera of the rumen were identified, with Succinivibrionaceae_UCG-001, Candidatus Saccharimonas, Fibrobacter, and SP3-e08 being significantly enriched in peak lactation. Rikenellaceae_RC9_gut_group, Eubacterium_ruminantium_group, Lachnospira, Butyrivibrio, Eubacterium_hallii_group, and Schwartzia were most significantly enriched in early mid-lactation. In comparison, only 2 bacteria (unclassified_f__Prevotellaceae and Prevotellaceae_UCG-001) were enriched in later mid-lactation. For rumen metabolites, LPE(16:0), L-glutamate and L-tyrosine had higher levels in peak lactation, whereas PE(17:0/0:0), PE(16:0/0:0), PS(18:1(9Z)/0:0), L-phenylalanine, dulcitol, 2-(methoxymethyl)furan and 3-phenylpropyl acetate showed higher levels in early mid- and later mid-lactation. Multiomics integrated analysis revealed that a greater abundance of Fibrobacter contributed to phospholipid content in milk by increasing ruminal acetate, L-glutamate and LysoPE(16:0). Prevotellaceae_UCG-001 and unclassified_f_Prevotellaceae provide substrates for milk metabolites of the same category by increasing ruminal L-phenylalanine and dulcitol contents. These results demonstrated that milk metabolomic fingerprints and critical functional metabolites during lactation, and the key bacteria in rumen related to them. These findings provide new insights into the development of functional dairy products.

7.
Protein Expr Purif ; 212: 106351, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37574178

RESUMO

Vesicle trafficking is a fundamental cellular process that ensures proper material exchange between organelles in eukaryotic cells, and multisubunit tethering complexes (MTCs) are essential in this process. The heterohexameric homotypic fusion and protein sorting (HOPS) complex, which functions in the endolysosomal pathway, is a member of MTCs. Despite its critical role, the complex composition and low-expression level of HOPS have made its expression and purification extremely challenging. In this study, we present a highly efficient strategy for overexpressing and purifying HOPS from Saccharomyces cerevisiae. We achieved HOPS overexpression by integrating a strong promoter TEF1 before each subunit using the gRNA-tRNA array for CRISPR-Cas9 (GTR-CRISPR) system. The HOPS complex was subsequently purified using Staphylococcus aureus protein A (ProtA) affinity purification and size-exclusion chromatography, resulting in high purity and homogeneity. We obtained two-fold more HOPS using this method than that obtained using the commonly used GAL1 promoter-controlled HOPS overexpression. Negative staining electron microscopy analysis confirmed the correct assembly of HOPS. Notably, we also successfully purified two other MTCs, class C core vacuole/endosome tethering (CORVET) and Golgi-associated retrograde protein (GARP) using this approach. Our findings facilitate further in vitro biochemical characterization and functional studies of MTCs and provide a useful guide for the preparation of other heterogenic multisubunit complexes.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Endossomos/genética , Endossomos/metabolismo , Transporte Proteico , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
8.
Mol Biol Rep ; 50(5): 4423-4433, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36977807

RESUMO

BACKGROUND: Growing evidence indicates that cannabinoid type 2 (CB2) receptor activation inhibits neuroinflammation in the pathogenesis of Parkinson's disease (PD). Nonetheless, the precise mechanisms of CB2 receptor-mediated neuroprotection have not been fully elucidated. The differentiation of microglia from the M1 to M2 phenotype plays a vital role in neuroinflammation. METHODS: In the present study, we investigated the effect of CB2 receptor activation on the M1/M2 phenotypic transformation of microglia treated with 1-methyl-4-phenylpyridinium (MPP+). The M1 phenotype microglia markers, including inducible nitric oxide (iNOS), interleukin 6 (IL-6), and CD86, and the M2 phenotype microglia markers, including arginase-1 (Arg-1), IL-10, and CD206, were detected by western blots and flow cytometry. The levels of phosphoinositide-3-kinase (PI3K)/Akt and nuclear factor erythroid 2-related factor 2 (Nrf2) were determined by Western blots. Subsequent addition of Nrf2 inhibitors initially revealed the specific mechanism by which CB2 receptors affect phenotypic changes in microglia. RESULTS: Our results showed that pretreatment with JWH133 significantly inhibited the MPP+-induced up-regulation of M1 phenotype microglia markers. Meanwhile, JWH133 increased the levels of M2 phenotype microglia markers. JWH133-mediated effects were blocked by co-treatment with AM630. Mechanism studies found that MPP+ treatment downregulated PI3K, Akt phosphorylated proteins, and nuclear Nrf2 protein. JWH133 pretreatment promoted PI3K/Akt activation and facilitated nuclear translocation of Nrf2, which was reversed by the PI3K inhibitor. Further studies showed that Nrf2 inhibitors inverted the effect of JWH133 on microglia polarization. CONCLUSION: The results indicate that CB2 receptor activation promotes MPP+-induced microglia transformation from M1 to M2 phenotype through PI3K/Akt/Nrf2 signaling pathway.


Assuntos
Canabinoides , Microglia , Humanos , Microglia/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , 1-Metil-4-fenilpiridínio/farmacologia , 1-Metil-4-fenilpiridínio/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Doenças Neuroinflamatórias , Receptor CB2 de Canabinoide/genética , Transdução de Sinais , Canabinoides/farmacologia , Canabinoides/metabolismo
9.
Chin J Physiol ; 66(5): 326-334, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37929343

RESUMO

Post-traumatic stress disorder (PTSD) is a serious psychiatric disorder, and there is an association between it and the development of cardiovascular disease. The aim of this study was to explore whether there is a glutamatergic pathway connecting the medial habenula (MHb) with the rostral ventrolateral medulla (RVLM) that is involved in the regulation of cardiovascular function in a rat model of PTSD. Vesicular glutamate transporter 2 (VGLUT2)-positive neurons in the MHb region were retrogradely labeled with FluoroGold (FG) by the double-labeling technique of VGLUT2 immunofluorescence and FG retrograde tracing. Rats belonging to the PTSD model group were microinjected with artificial cerebrospinal fluid (ACSF) or kynurenic acid (KYN; a nonselective glutamate receptor blocker) into their RVLM. Subsequently, with electrical stimulation of MHb, the discharge frequency of the RVLM neurons, heart rate, and blood pressure were found to be significantly increased after microinjection of ACSF using an in vivo multichannel synchronous recording technology; however, this effect was inhibited by injection of KYN. The expression of N-methyl-D-aspartic acid (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunits was significantly increased in RVLM of PTSD model rats analyzed by the Western blotting technique. These findings suggest that there may be a glutamatergic pathway connection between MHb and RVLM and that this pathway may be involved in the regulation of cardiovascular function in the PTSD model rats, by acting on NMDA and AMPA receptors in the RVLM.


Assuntos
Habenula , Transtornos de Estresse Pós-Traumáticos , Humanos , Ratos , Animais , Transtornos de Estresse Pós-Traumáticos/metabolismo , N-Metilaspartato/metabolismo , N-Metilaspartato/farmacologia , Habenula/metabolismo , Bulbo/metabolismo , Pressão Sanguínea , Ácido Glutâmico/metabolismo , Ácido Glutâmico/farmacologia
10.
Int J Mol Sci ; 24(4)2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-36835037

RESUMO

Fibroblast growth factors (FGFs) are short polypeptides that play essential roles in various cellular biological processes, including cell migration, proliferation, and differentiation, as well as tissue regeneration, immune response, and organogenesis. However, studies focusing on the characterization and function of FGF genes in teleost fishes are still limited. In this study, we identified and characterized expression patterns of 24 FGF genes in various tissues of embryonic and adult specimens of the black rockfish (Sebates schlegelii). Nine FGF genes were found to play essential roles in myoblast differentiation, as well as muscle development and recovery in juvelines of S. schlegelii. Moreover, sex-biased expression pattern of multiple FGF genes was recorded in the species' gonads during its development. Among them, expression of the FGF1 gene was recorded in interstitial and sertoli cells of testes, promoting germ-cell proliferation and differentiation. In sum, the obtained results enabled systematic and functional characterization of FGF genes in S. schlegelii, laying a foundation for further studies on FGF genes in other large teleost fishes.


Assuntos
Proteínas de Peixes , Perciformes , Animais , Proteínas de Peixes/genética , Regulação da Expressão Gênica , Fatores de Crescimento de Fibroblastos/metabolismo , Perciformes/genética , Peixes/genética , Filogenia
11.
Sheng Li Xue Bao ; 75(5): 611-622, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37909132

RESUMO

Post-traumatic stress disorder (PTSD) has been reported to be associated with a higher risk of cardiovascular disease. The amygdala may have an important role in regulating cardiovascular function. This study aims to explore the effect of amygdala glutamate receptors (GluRs) on cardiovascular activity in a rat model of PTSD. A compound stress method combining electrical stimulation and single prolonged stress was used to prepare the PTSD model, and the difference of weight gain before and after modeling and the elevated plus maze were used to assess the PTSD model. In addition, the distribution of retrogradely labeled neurons was observed using the FluoroGold (FG) retrograde tracking technique. Western blot was used to analyze the changes of amygdala GluRs content. To further investigate the effects, artificial cerebrospinal fluid (ACSF), non-selective GluR blocker kynurenic acid (KYN) and AMPA receptor blocker CNQX were microinjected into the central nucleus of the amygdala (CeA) in the PTSD rats, respectively. The changes in various indices following the injection were observed using in vivo multi-channel synchronous recording technology. The results indicated that, compared with the control group, the PTSD group exhibited significantly lower weight gain (P < 0.01) and significantly decreased ratio of open arm time (OT%) (P < 0.05). Retrograde labeling of neurons was observed in the CeA after microinjection of 0.5 µL FG in the rostral ventrolateral medulla (RVLM). The content of AMPA receptor in the PTSD group was lower than that in the control group (P < 0.05), while there was no significant differences in RVLM neuron firing frequency and heart rate (P > 0.05) following ACSF injection. However, increases in RVLM neuron firing frequency and heart rate were observed after the injection of KYN or CNQX into the CeA (P < 0.05) in the PTSD group. These findings suggest that AMPA receptors in the amygdala are engaged in the regulation of cardiovascular activity in PTSD rats, possibly by acting on inhibitory pathways.


Assuntos
Transtornos de Estresse Pós-Traumáticos , Ratos , Animais , Ratos Sprague-Dawley , Receptores de AMPA , 6-Ciano-7-nitroquinoxalina-2,3-diona/metabolismo , 6-Ciano-7-nitroquinoxalina-2,3-diona/farmacologia , Receptores de Glutamato/metabolismo , Tonsila do Cerebelo , Aumento de Peso , Bulbo/fisiologia , Pressão Sanguínea
12.
J Clin Psychol ; 78(6): 1170-1183, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34735716

RESUMO

The Dual-Disposition Model proposes to understand psychopathy through two dispositions (i.e., threat sensitivity and poor inhibitory control) with distinct etiological substrates. In the current study, we examined the predictive contributions of threat sensitivity, poor inhibitory control, and their interaction to emotion dysregulation in 694 Chinese undergraduates based on the Disinhibition subscale of Triarchic Psychopathy Measure, Behavioral Inhibition System Scale, and Difficulties in Emotion Regulation Scale. Our results suggested that two dispositions have independent contributions to emotion dysregulation. Additionally, interactive effects of two dispositions were found for emotion awareness, impulse control, emotional acceptance, and limited emotion regulation strategies when upset. These provide evidence that deficits associated with poor inhibitory control can be selectively suppressed by low threat sensitivity or exacerbated by high threat sensitivity. Training individuals with high psychopathic dispositions to focus on their emotional state might be able to enhance their ability of emotion regulation.


Assuntos
Transtorno da Personalidade Antissocial , Emoções , Transtorno da Personalidade Antissocial/psicologia , Emoções/fisiologia , Humanos , Inibição Psicológica
13.
Biochem Biophys Res Commun ; 582: 77-85, 2021 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-34695754

RESUMO

PURPOSE: The purpose of this study was to investigate the effect of FNDC5 expression levels in hepatocellular carcinoma on the phenotypic changes of macrophages in tumor tissues. METHODS: In this study, we established an in vitro co-culture system of hepatocellular carcinoma cells and macrophages. Then we performed overexpression or knockdown of FNDC5 gene in hepatocellular carcinoma cells to observe the effect of changes in FNDC5 expression level on the phenotypic changes of THP-1 macrophages. And the conclusions obtained in the in vitro assay were further validated by a subcutaneous tumorigenic nude mice model. RESULTS: Our findings suggest that elevated FNDC5 expression in hepatocellular carcinoma cells lead to an increased M2 phenotype and decreased M1 phenotype in macrophages. This effect may be achieved by elevating PPARγ levels in macrophages while decreasing NF-κB and NLRP3 levels. These changes could be reversed by using PPARγ inhibitors. CONCLUSION: We preliminarily demonstrated that FNDC5 in hepatocellular carcinoma cells promotes the polarization of M2 macrophages by affecting the PPARγ/NF-κB/NLRP3 pathway.


Assuntos
Carcinoma Hepatocelular/genética , Fibronectinas/genética , Neoplasias Hepáticas/genética , NF-kappa B/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , PPAR gama/genética , Anilidas/farmacologia , Animais , Carcinogênese/genética , Carcinogênese/metabolismo , Carcinogênese/patologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/mortalidade , Carcinoma Hepatocelular/patologia , Diferenciação Celular , Linhagem Celular Tumoral , Técnicas de Cocultura , Fibronectinas/antagonistas & inibidores , Fibronectinas/metabolismo , Regulação Neoplásica da Expressão Gênica , Células Hep G2 , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Nus , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , PPAR gama/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Análise de Sobrevida , Células THP-1 , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Int J Mol Sci ; 22(24)2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34947973

RESUMO

Serotonin 1A receptors (5-HT1ARs) are implicated in the control of mood, cognition, and memory and in various neuropsychiatric disorders such as depression and anxiety. As such, understanding the regulation of 5-HT1ARs will inform the development of better treatment approaches. We previously demonstrated 5-HT1ARs are SUMOylated by SUMO1 in the rat brain. Agonist stimulation increased SUMOylation and was further enhanced when combined with 17ß-estradiol-3-benzoate (EB), which are treatments that cause the transient and prolonged desensitization of 5-HT1AR signaling, respectively. In the current study, we identified the protein inhibitor of activated STAT (PIAS)xα as the enzyme that facilitates SUMOylation, and SENP2 as the protein that catalyzes the deSUMOylation of 5-HT1ARs. We demonstrated that PIASxα significantly increased in the membrane fraction of rats co-treated with EB and an agonist, compared to either the EB-treated or vehicle-treated groups. The acute treatment with an agonist alone shifted the location of SENP2 from the membrane to the cytoplasmic fraction, but it has little effect on PIASxα. Hence, two separate mechanisms regulate SUMOylation and the activity of 5-HT1ARs by an agonist and EB. The effects of EB on 5-HT1AR SUMOylation and signaling may be related to the higher incidence of mood disorders in women during times with large fluctuations in estrogens. Targeting the SUMOylation of 5-HT1ARs could have important clinical relevance for the therapy for several neuropsychiatric disorders in which 5-HT1ARs are implicated.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Estradiol/análogos & derivados , Proteínas Inibidoras de STAT Ativados/metabolismo , Receptor 5-HT1A de Serotonina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Linhagem Celular , Membrana Celular/metabolismo , Citoplasma/metabolismo , Estradiol/administração & dosagem , Estradiol/farmacologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Ratos , Sumoilação/efeitos dos fármacos , Regulação para Cima
15.
Int J Mol Sci ; 22(7)2021 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-33916485

RESUMO

Pax3 and Pax7 are members of the Pax gene family which are essential for embryo and organ development. Both genes have been proved to be markers of muscle satellite cells and play key roles in the process of muscle growth and repair. Here, we identified two Pax3 genes (SsPax3a and SsPax3b) and two Pax7 genes (SsPax7a and SsPax7b) in a marine teleost, black rockfish (Sebastes schlegelii). Our results showed SsPax3 and SsPax7 marked distinct populations of muscle satellite cells, which originated from the multi-cell stage and somite stage, respectively. In addition, we constructed a muscle injury model to explore the function of these four genes during muscle repair. Hematoxylin-eosin (H-E) of injured muscle sections showed new-formed myofibers occurred at 16 days post-injury (dpi). ISH (in situ hybridization) analysis demonstrated that the expression level of SsPax3a and two SsPax7 genes increased gradually during 0-16 dpi and peaked at 16 dpi. Interestingly, SsPax3b showed no significant differences during the injury repair process, indicating that the satellite cells labeled by SsPax3b were not involved in muscle repair. These results imply that the muscle stem cell populations in teleosts are more complicated than in mammals. This lays the foundation for future studies on the molecular mechanism of indeterminant growth and muscle repair of large fish species.


Assuntos
Proteínas de Peixes/metabolismo , Peixes/metabolismo , Músculo Esquelético/fisiologia , Fator de Transcrição PAX3/metabolismo , Fator de Transcrição PAX7/metabolismo , Regeneração/fisiologia , Células Satélites de Músculo Esquelético/metabolismo , Animais , Músculo Esquelético/citologia , Células Satélites de Músculo Esquelético/citologia
16.
Molecules ; 26(11)2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34205895

RESUMO

Hydrogen is regarded to be one of the most promising renewable and clean energy sources. Finding a highly efficient and cost-effective catalyst to generate hydrogen via water splitting has become a research hotspot. Two-dimensional materials with exotic structural and electronic properties have been considered as economical alternatives. In this work, 2D SnSe films with high quality of crystallinity were grown on a mica substrate via molecular beam epitaxy. The electronic property of the prepared SnSe thin films can be easily and accurately tuned in situ by three orders of magnitude through the controllable compensation of Sn atoms. The prepared film normally exhibited p-type conduction due to the deficiency of Sn in the film during its growth. First-principle calculations explained that Sn vacancies can introduce additional reactive sites for the hydrogen evolution reaction (HER) and enhance the HER performance by accelerating electron migration and promoting continuous hydrogen generation, which was mirrored by the reduced Gibbs free energy by a factor of 2.3 as compared with the pure SnSe film. The results pave the way for synthesized 2D SnSe thin films in the applications of hydrogen production.

17.
Sheng Li Xue Bao ; 73(6): 885-892, 2021 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-34961862

RESUMO

This study was aimed to investigate the cardiovascular function in rats with post-traumatic stress disorder (PTSD) and the potential association with the activities of the rostral ventrolateral medulla (RVLM) and the medial habenular nucleus (MHb). Multi-channel in vivo recordings were used to simultaneously acquire spontaneous neuronal firing and peripheral physiological indices, and FluoroGold (FG) retrograde tracing technique was used to observe the projections of labeled neurons in the MHb. The results showed that the discharge frequency of RVLM and MHb neurons, the systolic blood pressure (SBP), and the mean arterial pressure (MAP) in the PTSD group were all increased significantly compared with those in control group (P < 0.05). MHb neurons were retrogradely labeled by FG through microinjection (4% FG, 0.5 µL) into the RVLM. In the control group, electrical stimulation in the MHb increased heart rate (HR) at 100-300 µA (P < 0.05), elevated SBP and MAP at 200-300 µA (P < 0.05), and remarkably increased the RVLM neuronal discharge frequency at 100-500 µA (P < 0.05 or P < 0.01). In the PTSD group, however, only the discharge frequency of RVLM neurons was increased by the electrical stimulation at 100-300 µA (P < 0.05). These results suggest that cardiovascular activities of the PTSD model rat are enhanced, and this change may be related to the activity changes of RVLM and MHb and the potential connection between the two nuclei.


Assuntos
Transtornos de Estresse Pós-Traumáticos , Animais , Pressão Sanguínea , Bulbo , Neurônios , Ratos , Ratos Sprague-Dawley
18.
J Headache Pain ; 22(1): 62, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34193048

RESUMO

BACKGROUND: Circadian patterns of migraine attacks have been reported by patients but remain understudied. In animal models, circadian phases are generally not taken into consideration. In particular, rodents are nocturnal animals, yet they are most often tested during their inactive phase during the day. This study aims to test the validity of CGRP-induced behavioral changes in mice by comparing responses during the active and inactive phases. METHODS: Male and female mice of the outbred CD1 strain were administered vehicle (PBS) or CGRP (0.1 mg/kg, i.p.) to induce migraine-like symptoms. Animals were tested for activity (homecage movement and voluntary wheel running), light aversive behavior, and spontaneous pain at different times of the day and night. RESULTS: Peripheral administration of CGRP decreased the activity of mice during the first hour after administration, induced light aversive behavior, and spontaneous pain during that same period of time. Both phenotypes were observed no matter what time of the day or night they were assessed. CONCLUSIONS: A decrease in wheel activity is an additional clinically relevant phenotype observed in this model, which is reminiscent of the reduction in normal physical activity observed in migraine patients. The ability of peripheral CGRP to induce migraine-like symptoms in mice is independent of the phase of the circadian cycle. Therefore, preclinical assessment of migraine-like phenotypes can likely be done during the more convenient inactive phase of mice.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina , Transtornos de Enxaqueca , Animais , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Transtornos de Enxaqueca/induzido quimicamente , Atividade Motora
19.
J Clean Prod ; 312(20): 127533, 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34248301

RESUMO

While levels of particulate matters in the Pearl River Delta Region (PRD) show a significant reduction, ozone (O3) has an opposite increasing trend, becoming the critical air quality target in this decade. Emission control strategies are typically formulated sector by sector, spatial variability in emissions reductions and health impacts of air pollutants may not be taken into account, affecting the overall effectiveness of control strategies. This study proposes an adjoint-based optimization framework to facilitate health-oriented O3 control over PRD. The location-specific adjoint sensitivity coefficients, which reflect the spatiotemporal influences from emissions of nitrogen dioxide (NOx) on O3 health impacts, are combined with metaheuristic algorithms to minimize the O3-related premature mortalities over receptor regions. Using the proposed optimization methodology, the regional O3 health benefits under current emission reduction policy can be increased by 16-27%. The results show that relatively larger NOx emissions reductions occurred at highly developed and populated areas. Particularly, significant reductions in NOx emissions are observed at Shenzhen and urban Guangzhou. Furthermore, implementing regional NOx emissions abatement has advantages to achieve an overall O3 health benefits for all cities. The interregional influences of NOx emissions abatement between cities indicate a promising strategy of health-oriented O3 control in PRD.

20.
Headache ; 60(9): 1961-1981, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32750230

RESUMO

OBJECTIVE: A hallmark of migraine is photophobia. In mice, photophobia-like behavior is induced by calcitonin gene-related peptide (CGRP), a neuropeptide known to be a key player in migraine. In this study, we sought to identify sites within the brain from which CGRP could induce photophobia. DESIGN: We focused on the posterior thalamic region, which contains neurons responsive to both light and dural stimulation and has CGRP binding sites. We probed this area with both optogenetic stimulation and acute CGRP injections in wild-type mice. Since the light/dark assay has historically been used to investigate anxiety-like responses in animals, we measured anxiety in a light-independent open field assay and asked if stimulation of a brain region, the periaqueductal gray, that induces anxiety would yield similar results to posterior thalamic stimulation. The hippocampus was used as an anatomical control to ensure that light-aversive behaviors could not be induced by the stimulation of any brain region. RESULTS: Optogenetic activation of neuronal cell bodies in the posterior thalamic nuclei elicited light aversion in both bright and dim light without an anxiety-like response in an open field assay. Injection of CGRP into the posterior thalamic region triggered similar light-aversive behavior without anxiety. In contrast to the posterior thalamic nuclei, optogenetic stimulation of dorsal periaqueductal gray cell bodies caused both light aversion and an anxiety-like response, while CGRP injection had no effect. In the dorsal hippocampus, neither optical stimulation nor CGRP injection affected light aversion or open field behaviors. CONCLUSION: Stimulation of posterior thalamic nuclei is able to initiate light-aversive signals in mice that may be modulated by CGRP to cause photophobia in migraine.


Assuntos
Comportamento Animal , Peptídeo Relacionado com Gene de Calcitonina/farmacologia , Optogenética , Fotofobia/etiologia , Núcleos Posteriores do Tálamo , Animais , Comportamento Animal/efeitos dos fármacos , Peptídeo Relacionado com Gene de Calcitonina/administração & dosagem , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fotofobia/induzido quimicamente , Núcleos Posteriores do Tálamo/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA