Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
J Eur Acad Dermatol Venereol ; 38(4): 710-718, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38031463

RESUMO

BACKGROUND: Psoriasis is an inflammatory disease that affects many people. However, the causal effect of lipid metabolism on psoriasis has not yet been verified. This study aimed to identify the genetic relationship between serum lipid levels and psoriasis. METHODS: Bidirectional two-sample Mendelian randomization (MR) was used to analyse the causal relationship between cholesterol and psoriasis. The outcome of the forward causality test was psoriasis. In the analysis of reverse causality, psoriasis was exposed, and 79 single-nucleotide polymorphisms were detected in the genome-wide association study (GWASs) database from the IEU GWASs Project. MR-Egger regression, inverse variance-weighted, weighted median, weighted mode and simple mode were used for the MR analyses. RESULTS: The level of triglyceride, lipase member N, chylomicrons, extremely large very low-density lipoprotein (VLDL) particles, high-density lipoprotein (HDL) cholesterol levels, cholesterol esters in large HDL, cholesterol esters in medium HDL and cholesterol esters in medium VLDL have not affected the development of psoriasis. However, total cholesterol, total free cholesterol, low-density lipoprotein (LDL) cholesterol levels, cholesterol esters in large VLDL and cholesterol esters in medium LDL were unidirectional causal effects on psoriasis. CONCLUSION: Bidirectional two-sample MR analysis indicated that high levels of total cholesterol, total free cholesterol, LDL cholesterol, cholesterol esters in large VLDL and cholesterol esters in medium LDL are genetic risk factors for psoriasis.


Assuntos
Ésteres do Colesterol , Análise da Randomização Mendeliana , Humanos , Estudo de Associação Genômica Ampla , HDL-Colesterol/genética , Colesterol , Triglicerídeos/genética , LDL-Colesterol , Polimorfismo de Nucleotídeo Único
2.
Anal Biochem ; 658: 114922, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36162447

RESUMO

A dual isothermal amplification assay with dual fluorescence signal detection strategy, named dual isothermal amplification all-in-one approach, was developed for rapid, one-step, highly sensitive quantification of plasma circulating MYCN copy number of neuroblastoma (NB). The developed strategy consisted of rolling circle amplification (RCA) and loop-mediated isothermal amplification (LAMP) on a real-time PCR system using highly specific probe, molecular beacon (MB), as detection probe. The developed strategy possessing a broad linear dynamic range of 10 aM to 1 pM for both target gene (MYCN) and reference gene (NAGK). The ratio of the MYCN copy number to NAGK copy number (M/N ratio) was detected by the developed approach in cell lines, NB tumor tissues, hepatoblastoma tumor tissues and Wilms' tumor tissues, to which the M/N ratios were consistent with previous reports. In particular, the M/N ratio in NB clinical tissue specimens and NB plasma specimens detected with the developed approach were in keeping with the standard RT-PCR approach. More importantly, the M/N ratio in NB tissue samples and corresponding plasma samples of NB patients were consistent with each other with a correlation coefficient of 0.9690, indicating that plasma circulating MYCN is a promising indicator for the risk classification of NB.


Assuntos
Neuroblastoma , Proteínas Oncogênicas , Humanos , Proteína Proto-Oncogênica N-Myc/genética , Proteína Proto-Oncogênica N-Myc/metabolismo , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Neuroblastoma/patologia , Reação em Cadeia da Polimerase em Tempo Real , Sondas Moleculares , Amplificação de Genes
3.
Molecules ; 27(17)2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36080490

RESUMO

The Systematic Evolution of Ligands by EXponential enrichment (SELEX) is conventionally an effective method to identify aptamers, which are oligonucleotide sequences with desired properties to recognize targets specifically and sensitively. However, there are some inherent limitations, e.g., the loss of potential high-affinity sequences during biased iterative PCR enrichment processes and the limited structural diversity of the initial library, which seriously restrict their real-world applications. To overcome these limitations, the in silico base mutagenesis post-SELEX strategy based on the low Gibbs free energy (ΔG) and genetic algorithm was developed for the optimization of the interferon-gamma aptamer (B1-4). In the process of evolution, new sequences were created and the aptamer candidates with low ΔG values and advanced structures were produced. After five rounds of selection, systematic studies revealed that the affinity of the newly developed evolutionary aptamer (M5-5) was roughly 10-fold higher than that of the parent aptamer (B1-4), and an aptasensor detection system with a limit-of-detection (LOD) value of 3.17 nM was established based on the evolutionary aptamer. The proposed approach provided an efficient strategy to improve the aptamer with low energy and a high binding ability, and the good analytical utility thereof.


Assuntos
Aptâmeros de Nucleotídeos , Técnica de Seleção de Aptâmeros , Aptâmeros de Nucleotídeos/química , Interferon gama/genética , Ligantes , Mutagênese , Técnica de Seleção de Aptâmeros/métodos
4.
Mikrochim Acta ; 187(1): 73, 2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31863213

RESUMO

An ultrasensitive enzyme-free electrochemical sandwich DNA biosensor is described for the detection of ssDNA oligonucleotides. A DNA sequence derived from the genom of Helicobacter pylori was selected as a model target DNA. The DNA assay was realized through catching target DNA on capture DNA immobilized gold electrode; then labeling the target DNA with reporter DNA (rpDNA) and initiator DNA (iDNA) co-modified gold nanoparticles (AuNPs). The high density of iDNAs serves as one of the amplification strategies. The iDNA triggers hybridization chain reaction (HCR) between two hairpins. This leads to the formation of a long dsDNA concatamer strand and represents one amplification strategy. The electrochemical probe [Ru(NH3)5L]2+, where L stands for 3-(2-phenanthren-9-ylvinyl)pyridine, intercalated into dsDNA chain. Multiple probe molecules intercalate into one dsDNA chain, serving as one amplification strategy. The electrode was subjected to differential pulse voltammetry for signal acquisition, and the oxidation peak current at -0.28 V was recorded. On each AuNP, 240 iDNA and 25 rpDNA molecules were immobilized. Successful execution of HCR at the DNA-modified AuNPs was confirmed by gel electrophoresis and hydrodynamic diameter measurements. Introduction of HCR significantly enhances the DNA detection signal intensity. The assay has two linear ranges of different slopes, one from 0.01 fM to 0.5 fM; and one from 1 fM to 100 fM. The detection limit is as low as 0.68 aM. Single mismatch DNA can be differentiated from the fully complementary DNA. Conceivably, this highly sensitive and selective assay provides a general method for detection of various kinds of DNA. Graphical abstractSchematic representation of the detection and the amplification principles of the electrochemical sandwich DNA assay. Purple curl: Captured DNA; Green curl: Reporter DNA; Orange curl: HCR initiator DNA; Yellow solid-circle: Gold nanoparticle; H1 and H2: Two hairpin DNA; [Ru(NH3)5L]2+: Signal probe.


Assuntos
Técnicas Biossensoriais , DNA Bacteriano/análise , Técnicas Eletroquímicas , Ouro/química , Helicobacter pylori/química , Nanopartículas Metálicas/química , Hibridização de Ácido Nucleico , Tamanho da Partícula , Propriedades de Superfície
5.
Talanta ; 269: 125535, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38091739

RESUMO

Numerous aptamers against various targets have been identified through the technology of systematic evolution of ligands by exponential enrichment (SELEX), but the affinity of these aptamers are often insufficient due to the limitations of SELEX. Therefore, a more rational in silico screening strategy (ISS) was developed for efficient screening of high affinity aptamers, which took shape complementarity and thermodynamic stability into consideration. Neuron specific enolase (NSE), a tumor marker, was selected as the target molecule. In the screening process, three aptamer candidates with good shape complementarity, lower ΔG values, and higher ZDOCK scores were produced. The dissociation constant (Kd) of these candidates to NSE was determined to be 10.13 nM, 14.82 nM, and 2.76 nM, respectively. Each of them exhibited higher affinity to NSE than the parent aptamer (Kd = 23.83 nM). Finally, an antibody-free fluorescence aptasensor assay, based on the aptamer with the highest affinity, P-5C8G, was conducted, resulting in a limit of detection (LOD) value of 1.8 nM, which was much lower than the parental aptamer (P, LOD = 12.6 nM). The proposed ISS approach provided an efficient and universal strategy to improve the aptamer to have a high affinity and good analytical utility.


Assuntos
Aptâmeros de Nucleotídeos , Técnica de Seleção de Aptâmeros/métodos , Limite de Detecção , Biomarcadores Tumorais
6.
Phytomedicine ; 134: 155984, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39265444

RESUMO

BACKGROUND: Cancer-associated fibroblasts (CAFs) are involved in the progression of gastric cancer (GC) as a critical component of the tumor microenvironment (TME), yet specific interventions remain limited. Natural products hold a promising application prospect in the field of anti-tumor in view of their high activity and ease of binding with biological macromolecules. However, the role of natural products in modulating the cross-talk between CAFs and GC cells has not been fully investigated. PURPOSE: The aim of this study was to identify a potential therapeutic target in CAFs and then screen for natural small molecule drugs with anti-tumor activity against this target. METHODS: Integrating bioinformatics analysis of public databases and experimental validation of human samples and cell lines to identify a candidate target in CAFs. Molecular docking and biolayer interferometry technique were utilized for screening potential natural small molecule drugs. The efficacy and underlying mechanisms of the candidates were explored in vitro and in vivo through techniques such as lentiviral infection, cell spheroids culture, immunoprecipitation and cells-derived xenografts. RESULTS: IL18 receptor accessory protein (IL18RAP) was found to be overexpressed in CAFs derived from GC tissues and facilitated the protumor function of CAFs on GC. Based on virtual screening and experimental validation, we identified a natural product, eupafolin, that interfered with IL18 signaling. Phenotyping studies confirmed that the proliferation, spheroids formation and tumorigenesis of GC cells facilitated by CAFs were greatly attenuated by eupafolin both in vitro and in vivo. Mechanistically, eupafolin impeded the formation of IL18 receptor (IL18R) complex by directly binding to IL18RAP, thus blocking IL18-mediated nuclear factor kappa B (NF-κB) activation and reduced the synthesis and secretion of IL6 in CAFs. As a consequence, it inactivated signal transducer and activator of transcription 3 (STAT3) in GC cells. CONCLUSION: This study provides new evidence that IL18 signaling regulates the cross-talk between GC cells and CAFs. And it highlights a novel pharmacological role of eupafolin in inhibiting IL18 signaling, thereby curbing the development of GC via modulating CAFs.


Assuntos
Fibroblastos Associados a Câncer , Interleucina-18 , Transdução de Sinais , Neoplasias Gástricas , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/metabolismo , Humanos , Fibroblastos Associados a Câncer/efeitos dos fármacos , Fibroblastos Associados a Câncer/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Interleucina-18/metabolismo , Camundongos Nus , Simulação de Acoplamento Molecular , Camundongos , Microambiente Tumoral/efeitos dos fármacos , Camundongos Endogâmicos BALB C
7.
Colloids Surf B Biointerfaces ; 240: 113982, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38788473

RESUMO

Timely in situ imaging and effective treatment are efficient strategies in improving the therapeutic effect and survival rate of tumor patients. In recent years, there has been rapid progress in the development of DNA nanomaterials for tumor in situ imaging and treatment, due to their unsurpassed structural stability, excellent material editability, excellent biocompatibility and individual endocytic pathway. Tetrahedral framework nucleic acids (tFNAs), are a typical example of DNA nanostructures demonstrating superior stability, biocompatibility, cell-entry performance, and flexible drug-loading ability. tFNAs have been shown to be effective in achieving timely tumor in situ imaging and precise treatment. Therefore, the progress in the fabrication, characterization, modification and cellular internalization pathway of tFNAs-based functional systems and their potential in tumor in situ imaging and treatment applications were systematically reviewed in this article. In addition, challenges and future prospects of tFNAs in tumor in situ imaging and treatment as well as potential clinical applications were discussed.


Assuntos
Nanoestruturas , Neoplasias , Ácidos Nucleicos , Nanoestruturas/química , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/diagnóstico por imagem , Ácidos Nucleicos/química , Animais , DNA/química , Antineoplásicos/química , Antineoplásicos/farmacologia
8.
Sci Rep ; 14(1): 15796, 2024 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982277

RESUMO

The clinical diagnosis of biliary atresia (BA) poses challenges, particularly in distinguishing it from cholestasis (CS). Moreover, the prognosis for BA is unfavorable and there is a dearth of effective non-invasive diagnostic models for detection. Therefore, the aim of this study is to elucidate the metabolic disparities among children with BA, CS, and normal controls (NC) without any hepatic abnormalities through comprehensive metabolomics analysis. Additionally, our objective is to develop an advanced diagnostic model that enables identification of BA. The plasma samples from 90 children with BA, 48 children with CS, and 47 NC without any liver abnormalities children were subjected to metabolomics analysis, revealing significant differences in metabolite profiles among the 3 groups, particularly between BA and CS. A total of 238 differential metabolites were identified in the positive mode, while 89 differential metabolites were detected in the negative mode. Enrichment analysis revealed 10 distinct metabolic pathways that differed, such as lysine degradation, bile acid biosynthesis. A total of 18 biomarkers were identified through biomarker analysis, and in combination with the exploration of 3 additional biomarkers (LysoPC(18:2(9Z,12Z)), PC (22:5(7Z,10Z,13Z,16Z,19Z)/14:0), and Biliverdin-IX-α), a diagnostic model for BA was constructed using logistic regression analysis. The resulting ROC area under the curve was determined to be 0.968. This study presents an innovative and pioneering approach that utilizes metabolomics analysis to develop a diagnostic model for BA, thereby reducing the need for unnecessary invasive examinations and contributing to advancements in diagnosis and prognosis for patients with BA.


Assuntos
Atresia Biliar , Biomarcadores , Colestase , Redes e Vias Metabólicas , Metabolômica , Atresia Biliar/sangue , Atresia Biliar/diagnóstico , Atresia Biliar/metabolismo , Humanos , Metabolômica/métodos , Colestase/sangue , Colestase/diagnóstico , Colestase/metabolismo , Feminino , Masculino , Biomarcadores/sangue , Lactente , Pré-Escolar , Diagnóstico Diferencial , Curva ROC , Metaboloma , Estudos de Casos e Controles , Criança
9.
Sci Rep ; 14(1): 20155, 2024 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-39215128

RESUMO

The limited understanding of the molecular mechanism underlying MYCN-amplified (MNA) neuroblastoma (NB) has hindered the identification of effective therapeutic targets for MNA NB, contributing to its higher mortality rate compared to MYCN non-amplified (non-MNA) NB. Therefore, a comprehensive analysis integrating metabolomics and transcriptomics was conducted to systematically investigate the MNA NB. Metabolomics analysis utilized plasma samples from 28 MNA NB patients and 68 non-MNA NB patients, while transcriptomics analysis employed tissue samples from 15 MNA NB patients and 37 non-MNA NB patients. Notably, joint metabolomics and transcriptomics analysis was performed. A total of 46 metabolites exhibited alterations, with 21 displaying elevated levels and 25 demonstrating reduced levels in MNA NB. In addition, 884 mRNAs in MNA NB showed significant changes, among which 766 mRNAs were higher and 118 mRNAs were lower. Joint-pathway analysis revealed three aberrant pathways involving glycerolipid metabolism, purine metabolism, and lysine degradation. This study highlights the substantial differences in metabolomics and transcriptomics between MNA NB and non-MNA NB, identifying three abnormal metabolic pathways that may serve as potential targets for understanding the molecular mechanisms underlying MNA NB.


Assuntos
Perfilação da Expressão Gênica , Metabolômica , Proteína Proto-Oncogênica N-Myc , Neuroblastoma , Humanos , Neuroblastoma/genética , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Proteína Proto-Oncogênica N-Myc/genética , Proteína Proto-Oncogênica N-Myc/metabolismo , Metabolômica/métodos , Regulação Neoplásica da Expressão Gênica , Transcriptoma , Masculino , Feminino , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Pré-Escolar , Redes e Vias Metabólicas/genética , Lactente
10.
Int J Biol Macromol ; 262(Pt 1): 129902, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38307426

RESUMO

In situ imaging of microRNA (miRNA) content and distribution is valuable for monitoring tumor progression. However, tumor specific in situ imaging remains a challenge due to low miRNA abundance, lack of biological compatibility, and poor specificity. In this study, we designed a DNA tetrahedral framework complex with hairpins (DTF-HPAP) consisting of an apurinic/apyrimidinic site (AP site) that could be specifically recognized and cleaved by apurinic/apyrimidinic endonuclease 1 (APE1). Efficient and specific in situ imaging of miR-21 in tumors was thus achieved through catalytic hairpin assembly (CHA) reaction. In this study, DTF-HPAP was successfully constructed to trigger the cumulative amplification of fluorescence signal in situ. The specificity, sensitivity and serum stability of DTF-HPAP were verified in vitro, and DTF-HPAP could be easily taken up by cells, acting as a biosensor to detect tumors in mice. Furthermore, we verified the ability of DTF-HPAP to specifically image miR-21 in tumors, and demonstrated its capability for tumor-specific imaging in clinical samples.


Assuntos
Técnicas Biossensoriais , MicroRNAs , Neoplasias , Camundongos , Animais , MicroRNAs/genética , Endonucleases , Catálise , Técnicas Biossensoriais/métodos
11.
Int J Biol Macromol ; 264(Pt 1): 130581, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38447828

RESUMO

Neutrophilic asthma is a persistent and severe inflammatory lung disease characterized by neutrophil activation and the mechanisms of which are not completely elucidated. Ubiquitin D (UBD) is a ubiquitin-like modifier participating in infections, immune responses, and tumorigenesis, while whether UBD involves in neutrophilic asthma needs further study. In this study, we initially found that UBD expression was significantly elevated and interleukin 17 (IL-17) signaling was enriched in the endobronchial biopsies of severe asthma along with neutrophils increasing by bioinformatics analysis. We further confirmed that UBD was upregulated in the lung tissues of neutrophilic asthma mouse model. UBD overexpression promoted IL-17 signaling activation. Knockdown of UBD suppressed the activation of IL-17 signaling. UBD interacted with TRAF2 and reduced the total and the K48-linked ubiquitination of TRAF2. However, IL-17 A stimulation increased both the total and the K48-linked ubiquitination of TRAF2. Together, these findings indicated that UBD was upregulated and played a critical role in IL-17 signaling which contributed to a better understanding of the complex mechanisms in neutrophilic asthma.


Assuntos
Asma , Interleucina-17 , Animais , Camundongos , Fator 2 Associado a Receptor de TNF/metabolismo , Asma/metabolismo , Pulmão/metabolismo , Neutrófilos/metabolismo , Ubiquitinas/metabolismo , Inflamação/patologia
12.
J Infect Public Health ; 15(11): 1212-1224, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36257126

RESUMO

The coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has inflicted immense damage to countries, economies and societies worldwide. Authorized COVID-19 vaccines based on different platforms have been widely inoculated in adults, showing up to 100% immunogenicity with significant efficacy in preventing SARS-CoV-2 infections and the occurrence of severe COVID-19. It has also greatly slowed the evolution of SARS-CoV-2 variants, as shown in clinical trials and real-world evidence. However, the total dosage of COVID-19 vaccines for children is much smaller than that for adults due to limitations from parental concern of vaccine safety, presenting a potential obstacle in ending the COVID-19 pandemic. SARS-CoV-2 not only increases the risk of severe multisystem inflammatory syndrome (MIS-C) in children, but also negatively affects children's psychology and academics, indirectly hindering the maintenance and progress of normal social order. Therefore, this article examines the clinical manifestations of children infected with SARS-CoV-2, the status of vaccination against COVID-19 in children, vaccination-related adverse events, and the unique immune mechanisms of children. In particular, the necessity and challenges of vaccinating children against SARS-CoV-2 were highlighted from the perspectives of society and family. In summary, parental hesitancy is unnecessary as adverse events after COVID-19 vaccination have been proven to be infrequent, comprise of mild symptoms, and have a good prognosis.


Assuntos
COVID-19 , SARS-CoV-2 , Adulto , Criança , Humanos , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , Pandemias/prevenção & controle
13.
Int J Biol Macromol ; 219: 571-578, 2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-35952808

RESUMO

Nuclear factor-κB (NF-κB) signaling participates in many biologic processes including immunity, inflammation, and cancer. Here we reported that tripartite motif-containing protein 56 (TRIM56), an E3 ligase enzyme, participated in TNFα-induced NF-κB signaling by interacting with TAK1. Overexpression of TRIM56 potentiated the activation of TNFα-induced NF-κB signaling, whereas knockdown of TRIM56 had an opposite effect. TRIM56 enhanced the ubiquitination of TAK1, specifically enhanced the M1-linked polyubiquitin chains to TAK1, leading to the tight interactions of the TAK1-IKKα complex. Consequently, the stimulation of TNFa and TRIM56 strengthened the interaction with TAK1. Furthermore, we found that the C terminal (CT) domain was the binding region of TRIM56, and the RING domain of TRIM56 was the E3 enzyme activity region which was important to the ubiquitination of TAK1. Together, these results reveal that TRIM56 positively regulates TNFα-induced NF-κB signaling by heightening the ubiquitination of TAK1 and provide new insight into the complicated mechanisms of the inflammatory and immune response.


Assuntos
Produtos Biológicos , NF-kappa B , Quinase I-kappa B/genética , MAP Quinase Quinase Quinases/genética , NF-kappa B/metabolismo , Poliubiquitina/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
14.
Biosens Bioelectron ; 194: 113618, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34530373

RESUMO

Carcinoembryonic antigen (CEA) is an important malign tumor marker. In this study, a simple, label-free and antibody-free aptasensor was fabricated based on a multifunctional dendrimer-like DNA nanoassembly. The DNA nanoassembly was embedded with multiple G-quadruplex DNAzyme motifs and a hanging CEA aptamer motif. It was prepared from short DNA sequences by autonomous-assembly. The aptasensor was prepared simply by self-assembly of a capture DNA (cpDNA) on a gold electrode, followed by hybridization with a CEA aptamer (AptGAC-P). CEA as a model target was detected through competitive binding of CEA with AptGAC-P, exposing cpDNA to bind with the DNA nanoassembly. The detection process only contains 2 incubation steps. The high load of G-quadruplex DNAzyme motifs and their catalytic activity resulted in an amplified and label-free differential pulse voltammetry (DPV) electrochemical signal. The peak current correlated linearly with the CEA concentration, with a linear range of 2-45 ng mL-1, and an LOD value of 0.24 ng mL-1. The aptasensor showed high specificity and reproducibility, and retained 96.5% of detection signal intensities after 31 days of storage. The recovery rates for spiked CEA in human serum were within 100 ± 5%, and the coincidence rates for clinical human serum samples with ELISA kits were 80.7-111%. Conceivably, possessing simplicity, sensitivity, reproducibility, storage stability, and accuracy, the aptasensor should be a very prominent and applicable tool for clinical CEA detection and cancer diagnosis, and is promisingly applicable as a platform for detecting other targets of interests.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , DNA Catalítico , Dendrímeros , Antígeno Carcinoembrionário , Catálise , DNA , Humanos , Reprodutibilidade dos Testes
15.
RSC Adv ; 9(11): 6328-6334, 2019 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35517255

RESUMO

DNA aptamers against carcinoembryonic antigen (CEA) have been identified through the systematic evolution of ligands by exponential enrichment (SELEX) technique, but their affinity needs to be improved. In this study, an in silico approach was firstly used to screen the mutation sequences of a reported DNA aptamer (the parent aptamer, denoted as P) against CEA. The affinities of several high-score DNA mutants were determined by the biolayer interferometry technique. Finally, the newly obtained aptamers were verified in an aptasensor application. For the in silico approach, Mfold and RNA Composer were combined to generate the 3D RNA structures of the DNA mutants. The RNA structures were then modified to 3D DNA structures with the Write program. The docking model and binding ability of the 3D DNA structures with CEA were simulated and predicted with the ZDOCK program. Two mutation sequences (P-ATG and GAC-P) exhibited significantly higher ZDOCK scores than P. The dissociation constant of P-ATG and GAC-P to CEA was determined to be 4.62 and 3.93 nM respectively, obviously superior to that of P (6.95 nM). The detection limit of the P-ATG and GAC-P based aptasensors was 1.5 and 1.2 ng mL-1, respectively, markedly better than that based on P (3.4 ng mL-1). The consistency between the in silico and the experimental results indicates that the developed in silico post-SELEX screening approach is feasible for improving DNA aptamers. The P-ATG and GAC-P aptamers found in this study could be used for future CEA aptasensor design and fabrication, promisingly applicable for highly sensitive CEA detection and early cancer diagnosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA