Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Plant Cell ; 34(10): 3773-3789, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-35848951

RESUMO

Seed size is determined by the coordinated growth of the embryo, endosperm, and integument. Growth of the integument is initiated by signal molecules released from the developing endosperm or embryo. Although recent studies have identified many components that regulate seed size by controlling integument growth, the upstream signals and the signal transduction pathway that activate these components after double fertilization are unclear. Here, we report that the receptor-like kinase ERECTA (ER) controls seed size by regulating outer integument cell proliferation in Arabidopsis thaliana. Seeds from er mutants were smaller, while those from ER-overexpressing plants were larger, than those of control plants. Different from its role in regulating the development of other organs, ER regulates seed size via a novel mechanism that is independent of its intracellular domain. Our genetic and biochemical data show that a MITOGEN-ACTIVATED PROTEIN KINASE (MAPK) signaling pathway comprising MAPK-KINASE 4/5, MAPK 3/6 (MPK3/6), DA1, and UBIQUITIN SPECIFIC PROTEASE 15 (UBP15) functions downstream of ER and modulates seed size. MPK3/6 phosphorylation inactivates and destabilizes DA1 to increase the abundance of UBP15, promoting outer integument cell proliferation and increasing seed size. Our study illustrates a nearly completed ER-mediated signaling pathway that regulates seed size and will help uncover the mechanism that coordinates embryo, endosperm, and integument growth after double fertilization.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Sementes/metabolismo , Transdução de Sinais/genética , Proteases Específicas de Ubiquitina/genética
2.
Proc Natl Acad Sci U S A ; 118(33)2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34385302

RESUMO

Regulation of the nucleocytoplasmic trafficking of signaling components, especially transcription factors, is a key step of signal transduction in response to extracellular stimuli. In the brassinosteroid (BR) signal transduction pathway, transcription factors from the BRASSINAZOLE RESISTANT1 (BZR1) family are essential in mediating BR-regulated gene expression. The subcellular localization and transcriptional activity of BZR1 are tightly regulated by reversible protein phosphorylation; however, the underlying mechanism is not well understood. Here, we provide evidence that both BZR1 phosphorylation and dephosphorylation occur in the nucleus and that BR-regulated nuclear localization of BZR1 is independent from its interaction with, or dephosphorylation by, protein phosphatase 2A. Using a photoconvertible fluorescent protein, Kaede, as a living tag to distinguish newly synthesized BZR1 from existing BZR1, we demonstrated that BR treatment recruits cytosolic BZR1 to the nucleus, which could explain the fast responses of plants to BR. Additionally, we obtained evidence for two types of protein turnover mechanisms that regulate BZR1 abundance in plant cells: a BR- and 26S proteosome-independent constitutive degradation mechanism and a BR-activated 26S proteosome-dependent proteolytic mechanism. Finally, treating plant cells with inhibitors of 26S proteosome induces the nuclear localization and dephosphorylation of BZR1, even in the absence of BR signaling. Based on these results, we propose a model to explain how BR signaling regulates the nucleocytoplasmic trafficking and reversible phosphorylation of BZR1.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Transporte Ativo do Núcleo Celular , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Ligação a DNA/genética , Mutação , Plantas Geneticamente Modificadas , Plântula
3.
BMC Plant Biol ; 21(1): 291, 2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34167462

RESUMO

Brassinosteroids (BRs) play important roles in plant growth and development. Although BR receptors have been intensively studied in Arabidopsis, those in foxtail millet remain largely unknown. Here, we show that the BR signaling function of BRASSINOSTEROID INSENSITIVE 1 (BRI1) is conserved between Arabidopsis and foxtail millet, a new model species for C4 and Panicoideae grasses. We identified four putative BR receptor genes in the foxtail millet genome: SiBRI1, SiBRI1-LIKE RECEPTOR KINASE 1 (SiBRL1), SiBRL2 and SiBRL3. Phylogenetic analysis was used to classify the BR receptors in dicots and monocots into three branches. Analysis of their expression patterns by quantitative real-time PCR (qRT-PCR) showed that these receptors were ubiquitously expressed in leaves, stems, dark-grown seedlings, roots and non-flowering spikelets. GFP fusion experiments verified that SiBRI1 localized to the cell membrane. We also explored the SiBRI1 function in Arabidopsis through complementation experiments. Ectopic overexpression of SiBRI1 in an Arabidopsis BR receptor loss-of-function mutant, bri1-116, mostly reversed the developmental defects of the mutant. When SiBRI1 was overexpressed in foxtail millet, the plants showed a drooping leaf phenotype and root development inhibition, lateral root initiation inhibition, and the expression of BR synthesis genes was inhibited. We further identified BRI1-interacting proteins by immunoprecipitation (IP)-mass spectrometry (MS). Our results not only demonstrate that SiBRI1 plays a conserved role in BR signaling in foxtail millet but also provide insight into the molecular mechanism of SiBRI1.


Assuntos
Brassinosteroides/metabolismo , Genes de Plantas/genética , Proteínas de Plantas/genética , Receptores de Superfície Celular/genética , Setaria (Planta)/genética , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/fisiologia , Evolução Molecular , Filogenia , Proteínas de Plantas/metabolismo , Proteínas de Plantas/fisiologia , Raízes de Plantas/crescimento & desenvolvimento , Proteínas Quinases/genética , Proteínas Quinases/fisiologia , Receptores de Superfície Celular/metabolismo , Receptores de Superfície Celular/fisiologia , Setaria (Planta)/metabolismo
4.
Plant Physiol ; 170(2): 1149-61, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26697897

RESUMO

Many plant receptor kinases transduce signals through receptor-like cytoplasmic kinases (RLCKs); however, the molecular mechanisms that create an effective on-off switch are unknown. The receptor kinase BR INSENSITIVE1 (BRI1) transduces brassinosteroid (BR) signal by phosphorylating members of the BR-signaling kinase (BSK) family of RLCKs, which contain a kinase domain and a C-terminal tetratricopeptide repeat (TPR) domain. Here, we show that the BR signaling function of BSKs is conserved in Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa) and that the TPR domain of BSKs functions as a "phospho-switchable" autoregulatory domain to control BSKs' activity. Genetic studies revealed that OsBSK3 is a positive regulator of BR signaling in rice, while in vivo and in vitro assays demonstrated that OsBRI1 interacts directly with and phosphorylates OsBSK3. The TPR domain of OsBSK3, which interacts directly with the protein's kinase domain, serves as an autoinhibitory domain to prevent OsBSK3 from interacting with bri1-SUPPRESSOR1 (BSU1). Phosphorylation of OsBSK3 by OsBRI1 disrupts the interaction between its TPR and kinase domains, thereby increasing the binding between OsBSK3's kinase domain and BSU1. Our results not only demonstrate that OsBSK3 plays a conserved role in regulating BR signaling in rice, but also provide insight into the molecular mechanism by which BSK family proteins are inhibited under basal conditions but switched on by the upstream receptor kinase BRI1.


Assuntos
Brassinosteroides/metabolismo , Oryza/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Transdução de Sinais , Sequência de Aminoácidos , Arabidopsis/genética , Membrana Celular/metabolismo , Dados de Sequência Molecular , Mutação/genética , Oryza/enzimologia , Fenótipo , Fosfopeptídeos/química , Fosfopeptídeos/metabolismo , Fosforilação , Fosfosserina/metabolismo , Plantas Geneticamente Modificadas , Ligação Proteica , Estrutura Terciária de Proteína , Especificidade por Substrato
5.
Plant Signal Behav ; 17(1): 2004035, 2022 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-34927551

RESUMO

Low temperature (LT) is an important factor limiting plant growth and distribution. Plants have evolved sophisticated adaptive mechanisms to cope with hypothermia. RNA silencing is the orchestrator of these cellular responses. RNA silencing, which modifies gene expression through noncoding RNAs (ncRNAs), is a strategy used by plants to combat environmental stress. ncRNAs, which have very little protein-coding capacity, work by binding reverse complementary endogenous transcripts. In plants, ncRNAs include small non-coding RNAs (sncRNAs), medium-sized non-coding RNAs (mncRNAs), and long non-coding RNAs (lncRNAs). Apart from describing the biogenesis of different ncRNAs (miRNAs, siRNAs, and lncRNAs), we thoroughly discuss the functions of these ncRNAs during cold acclimation. Two major classes of sncRNAs, microRNAs and siRNAs, play essential regulatory roles in cold response processes through the posttranscriptional gene silencing (PTGS) pathway or transcriptional gene silencing (TGS) pathway. Microarray or transcriptome sequencing analysis can reveal a large number of cold-responsive miRNAs in plants. In this review, the cold-response patterns of miRNAs verified by Northern blotting or quantitative PCR in Arabidopsis thaliana, rice, and many other important crops are discussed. The detailed molecular mechanisms of several miRNAs in Arabidopsis (miR397, miR408, miR402, and miR394) and rice (Osa-miR156, Osa-miR319, and Osa-miR528) that regulate plant cold resistance are elucidated. In addition, the regulatory mechanism of the lncRNA SVALKA in the cold signaling pathway is explained in detail. Finally, we present the challenges for understanding the roles of small ncRNAs in cold signal transduction.


Assuntos
MicroRNAs , RNA Longo não Codificante , Temperatura Baixa , Regulação da Expressão Gênica de Plantas/genética , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA de Plantas/genética , Temperatura
6.
Mol Plant ; 9(1): 148-157, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26517938

RESUMO

Brassinosteroid (BR) binding activates the receptor kinase BRI1 by inducing heterodimerization with its co-receptor kinase BAK1; however, the mechanisms that reversibly inactivate BRI1 remain unclear. Here we show that cytoplasm-localized protein phosphatase 2A (PP2A) B' regulatory subunits interact with BRI1 to mediate its dephosphorylation and inactivation. Loss-of-function and overexpression experiments showed that a group of PP2A B' regulatory subunits, represented by B'η, negatively regulate BR signaling by decreasing BRI1 phosphorylation. BR increases the expression levels of these B' subunits, and B'η interacts preferentially with phosphorylated BRI1, suggesting that the dynamics of BR signaling are modulated by the PP2A-mediated feedback inactivation of BRI1. Compared with PP2A B'α and B'ß, which promote BR responses by dephosphorylating the downstream transcription factor BZR1, the BRI1-inactivating B' subunits showed similar binding to BRI1 and BZR1 but distinct subcellular localization. Alteration of the nuclear/cytoplasmic localization of the B' subunits revealed that cytoplasmic PP2A dephosphorylates BRI1 and inhibits the BR response, whereas nuclear PP2A dephosphorylates BZR1 and activates the BR response. Our findings not only identify the PP2A regulatory B subunits that mediate the binding and dephosphorylation of BRI1, but also demonstrate that the subcellular localization of PP2A specifies its substrate selection and distinct effects on BR signaling.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Brassinosteroides/metabolismo , Proteínas Quinases/metabolismo , Proteína Fosfatase 2/metabolismo , Sequência de Aminoácidos , Citoplasma/metabolismo , Isoenzimas/metabolismo , Dados de Sequência Molecular , Mutação , Fosforilação , Plantas Geneticamente Modificadas
7.
Mol Plant ; 4(2): 361-74, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21242321

RESUMO

Cold-induced changes of gene expression and metabolism are critical for plants to survive freezing. Largely by changing gene expression, exposure to a period of non-freezing low temperatures increases plant tolerance to freezing-a phenomenon known as cold acclimation. Cold also induces rapid metabolic changes, which provide instant protection before temperature drops below freezing point. The molecular mechanisms for such rapid metabolic responses to cold remain largely unknown. Here, we use two-dimensional difference gel electrophoresis (2-D DIGE) analysis of sub-cellular fractions of Arabidopsis thaliana proteome coupled with spot identification by tandem mass spectrometry to identify early cold-responsive proteins in Arabidopsis. These proteins include four enzymes involved in starch degradation, three HSP100 proteins, several proteins in the tricarboxylic acid cycle, and sucrose metabolism. Upon cold treatment, the Disproportionating Enzyme 2 (DPE2), a cytosolic transglucosidase metabolizing maltose to glucose, increased rapidly in the centrifugation pellet fraction and decreased in the soluble fraction. Consistent with cold-induced inactivation of DPE2 enzymatic activity, the dpe2 mutant showed increased freezing tolerance without affecting the C-repeat binding transcription factor (CBF) transcriptional pathway. These results support a model that cold-induced inactivation of DPE2 leads to rapid accumulation of maltose, which is a cold-induced compatible solute that protects cells from freezing damage. This study provides evidence for a key role of rapid post-translational regulation of carbohydrate metabolic enzymes in plant protection against sudden temperature drop.


Assuntos
Arabidopsis/metabolismo , Temperatura Baixa , Proteômica/métodos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Eletroforese em Gel Diferencial Bidimensional
8.
Nat Cell Biol ; 13(2): 124-31, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21258370

RESUMO

When brassinosteroid levels are low, the GSK3-like kinase BIN2 phosphorylates and inactivates the BZR1 transcription factor to inhibit growth in plants. Brassinosteroid promotes growth by inducing dephosphorylation of BZR1, but the phosphatase that dephosphorylates BZR1 has remained unknown. Here, using tandem affinity purification, we identified protein phosphatase 2A (PP2A) as a BZR1-interacting protein. Genetic analyses demonstrated a positive role for PP2A in brassinosteroid signalling and BZR1 dephosphorylation. Members of the B' regulatory subunits of PP2A directly interact with BZR1's putative PEST domain containing the site of the bzr1-1D mutation. Interaction with and dephosphorylation by PP2A are enhanced by the bzr1-1D mutation, reduced by two intragenic bzr1-1D suppressor mutations, and abolished by deletion of the PEST domain. This study reveals a crucial function for PP2A in dephosphorylating and activating BZR1 and completes the set of core components of the brassinosteroid-signalling cascade from cell surface receptor kinase to gene regulation in the nucleus.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Regulação da Expressão Gênica de Plantas , Proteínas Nucleares/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Proteína Fosfatase 2/metabolismo , Sequência de Aminoácidos , Arabidopsis/anatomia & histologia , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/genética , Proteínas de Ligação a DNA , Dados de Sequência Molecular , Proteínas Nucleares/genética , Fosforilação , Plantas Geneticamente Modificadas , Proteína Fosfatase 2/genética , Alinhamento de Sequência , Transdução de Sinais/fisiologia , Triazóis/farmacologia , Técnicas do Sistema de Duplo-Híbrido
9.
Science ; 321(5888): 557-60, 2008 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-18653891

RESUMO

Brassinosteroids (BRs) bind to the extracellular domain of the receptor kinase BRI1 to activate a signal transduction cascade that regulates nuclear gene expression and plant development. Many components of the BR signaling pathway have been identified and studied in detail. However, the substrate of BRI1 kinase that transduces the signal to downstream components remains unknown. Proteomic studies of plasma membrane proteins lead to the identification of three homologous BR-signaling kinases (BSK1, BSK2, and BSK3). The BSKs are phosphorylated by BRI1 in vitro and interact with BRI1 in vivo. Genetic and transgenic studies demonstrate that the BSKs represent a small family of kinases that activate BR signaling downstream of BRI1. These results demonstrate that BSKs are the substrates of BRI1 kinase that activate downstream BR signal transduction.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Quinases/metabolismo , Transdução de Sinais , Sequência de Aminoácidos , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Brassinosteroides , Membrana Celular/metabolismo , Colestanóis/metabolismo , Colestanóis/farmacologia , Dados de Sequência Molecular , Mutagênese Insercional , Fosforilação , Plantas Geneticamente Modificadas , Proteínas Quinases/química , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases , Estrutura Terciária de Proteína , Proteômica , Proteínas Recombinantes de Fusão/metabolismo , Esteroides Heterocíclicos/metabolismo , Esteroides Heterocíclicos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA