Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 296
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 182(3): 594-608.e11, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32679030

RESUMO

Human cerebral cortex size and complexity has increased greatly during evolution. While increased progenitor diversity and enhanced proliferative potential play important roles in human neurogenesis and gray matter expansion, the mechanisms of human oligodendrogenesis and white matter expansion remain largely unknown. Here, we identify EGFR-expressing "Pre-OPCs" that originate from outer radial glial cells (oRGs) and undergo mitotic somal translocation (MST) during division. oRG-derived Pre-OPCs provide an additional source of human cortical oligodendrocyte precursor cells (OPCs) and define a lineage trajectory. We further show that human OPCs undergo consecutive symmetric divisions to exponentially increase the progenitor pool size. Additionally, we find that the OPC-enriched gene, PCDH15, mediates daughter cell repulsion and facilitates proliferation. These findings indicate properties of OPC derivation, proliferation, and dispersion important for human white matter expansion and myelination.


Assuntos
Caderinas/metabolismo , Córtex Cerebral/citologia , Células Ependimogliais/metabolismo , Neurogênese/genética , Células Precursoras de Oligodendrócitos/metabolismo , Proteínas Relacionadas a Caderinas , Caderinas/genética , Proliferação de Células/genética , Células Cultivadas , Córtex Cerebral/embriologia , Córtex Cerebral/metabolismo , Células Ependimogliais/citologia , Receptores ErbB/genética , Receptores ErbB/metabolismo , Células HEK293 , Humanos , Imuno-Histoquímica , Células Precursoras de Oligodendrócitos/citologia , RNA Interferente Pequeno , RNA-Seq , Análise de Célula Única , Substância Branca/citologia , Substância Branca/embriologia , Substância Branca/metabolismo
2.
Nature ; 622(7981): 112-119, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37704727

RESUMO

The molecular mechanisms and evolutionary changes accompanying synapse development are still poorly understood1,2. Here we generate a cross-species proteomic map of synapse development in the human, macaque and mouse neocortex. By tracking the changes of more than 1,000 postsynaptic density (PSD) proteins from midgestation to young adulthood, we find that PSD maturation in humans separates into three major phases that are dominated by distinct pathways. Cross-species comparisons reveal that human PSDs mature about two to three times slower than those of other species and contain higher levels of Rho guanine nucleotide exchange factors (RhoGEFs) in the perinatal period. Enhancement of RhoGEF signalling in human neurons delays morphological maturation of dendritic spines and functional maturation of synapses, potentially contributing to the neotenic traits of human brain development. In addition, PSD proteins can be divided into four modules that exert stage- and cell-type-specific functions, possibly explaining their differential associations with cognitive functions and diseases. Our proteomic map of synapse development provides a blueprint for studying the molecular basis and evolutionary changes of synapse maturation.


Assuntos
Proteômica , Sinapses , Adolescente , Animais , Criança , Pré-Escolar , Humanos , Lactente , Recém-Nascido , Camundongos , Adulto Jovem , Cognição/fisiologia , Espinhas Dendríticas , Idade Gestacional , Macaca , Neurônios/metabolismo , Densidade Pós-Sináptica/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Transdução de Sinais , Especificidade da Espécie , Sinapses/metabolismo , Sinapses/fisiologia
3.
PLoS Pathog ; 20(6): e1012307, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38857310

RESUMO

Multiple functions are associated with HSV-1 latency associated transcript (LAT), including establishment of latency, virus reactivation, and antiapoptotic activity. LAT encodes two sncRNAs that are not miRNAs and previously it was shown that they have antiapoptotic activity in vitro. To determine if we can separate the antiapoptotic function of LAT from its latency-reactivation function, we deleted sncRNA1 and sncRNA2 sequences in HSV-1 strain McKrae, creating ΔsncRNA1&2 recombinant virus. Deletion of the sncRNA1&2 in ΔsncRNA1&2 virus was confirmed by complete sequencing of ΔsncRNA1&2 virus and its parental virus. Replication of ΔsncRNA1&2 virus in tissue culture or in the eyes of WT infected mice was similar to that of HSV-1 strain McKrae (LAT-plus) and dLAT2903 (LAT-minus) viruses. The levels of gB DNA in trigeminal ganglia (TG) of mice latently infected with ΔsncRNA1&2 virus was intermediate to that of dLAT2903 and McKrae infected mice, while levels of LAT in TG of latently infected ΔsncRNA1&2 mice was significantly higher than in McKrae infected mice. Similarly, the levels of LAT expression in Neuro-2A cells infected with ΔsncRNA1&2 virus was significantly higher than in McKrae infected cells. Reactivation in TG of ΔsncRNA1&2 infected mice was similar to that of McKrae and time of reactivation in both groups were significantly faster than dLAT2903 infected mice. However, levels of apoptosis in Neuro-2A cells infected with ΔsncRNA1&2 virus was similar to that of dLAT2903 and significantly higher than that of McKrae infected cells. Our results suggest that the antiapoptotic function of LAT resides within the two sncRNAs, which works independently of its latency-reactivation function and it has suppressive effect on LAT expression in vivo and in vitro.


Assuntos
Apoptose , Herpesvirus Humano 1 , Neurônios , Ativação Viral , Latência Viral , Animais , Camundongos , Herpesvirus Humano 1/fisiologia , Herpesvirus Humano 1/genética , Ativação Viral/fisiologia , Neurônios/virologia , Neurônios/metabolismo , Latência Viral/fisiologia , RNA Viral/genética , RNA Viral/metabolismo , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/metabolismo , Células Cultivadas , Feminino , MicroRNAs
4.
PLoS Pathog ; 19(9): e1011693, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37738264

RESUMO

Previously we reported that the HSV-1 latency associated transcript (LAT) specifically upregulates the cellular herpesvirus entry mediator (HVEM) but no other known HSV-1 receptors. HSV-1 glycoprotein D (gD) binds to HVEM but the effect of this interaction on latency-reactivation is not known. We found that the levels of latent viral genomes were not affected by the absence of gD binding to HVEM. However, reactivation of latent virus in trigeminal ganglia explant cultures was blocked in the absence of gD binding to HVEM. Neither differential HSV-1 replication and spread in the eye nor levels of latency influenced reactivation. Despite similar levels of latency, reactivation in the absence of gD binding to HVEM correlated with reduced T cell exhaustion. Our results indicate that HVEM-gD signaling plays a significant role in HSV-1 reactivation but not in ocular virus replication or levels of latency. The results presented here identify gD binding to HVEM as an important target that influences reactivation and survival of ganglion resident T cells but not levels of latency. This concept may also apply to other herpesviruses that engages HVEM.


Assuntos
Herpesvirus Humano 1 , Herpesvirus Humano 1/fisiologia , Membro 14 de Receptores do Fator de Necrose Tumoral/genética , Membro 14 de Receptores do Fator de Necrose Tumoral/metabolismo , Olho , Replicação Viral , Latência Viral/fisiologia
5.
Proc Natl Acad Sci U S A ; 119(30): e2122236119, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35858406

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) readily infects a variety of cell types impacting the function of vital organ systems, with particularly severe impact on respiratory function. Neurological symptoms, which range in severity, accompany as many as one-third of COVID-19 cases, indicating a potential vulnerability of neural cell types. To assess whether human cortical cells can be directly infected by SARS-CoV-2, we utilized stem-cell-derived cortical organoids as well as primary human cortical tissue, both from developmental and adult stages. We find significant and predominant infection in cortical astrocytes in both primary tissue and organoid cultures, with minimal infection of other cortical populations. Infected and bystander astrocytes have a corresponding increase in inflammatory gene expression, reactivity characteristics, increased cytokine and growth factor signaling, and cellular stress. Although human cortical cells, particularly astrocytes, have no observable ACE2 expression, we find high levels of coronavirus coreceptors in infected astrocytes, including CD147 and DPP4. Decreasing coreceptor abundance and activity reduces overall infection rate, and increasing expression is sufficient to promote infection. Thus, we find tropism of SARS-CoV-2 for human astrocytes resulting in inflammatory gliosis-type injury that is dependent on coronavirus coreceptors.


Assuntos
Astrócitos , Córtex Cerebral , SARS-CoV-2 , Tropismo Viral , Enzima de Conversão de Angiotensina 2/metabolismo , Astrócitos/enzimologia , Astrócitos/virologia , Córtex Cerebral/virologia , Humanos , Organoides/virologia , Cultura Primária de Células , SARS-CoV-2/fisiologia
6.
Plant J ; 113(3): 546-561, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36534116

RESUMO

The jasmonic acid (JA) signaling pathway is involved in the plant response to drought stress. JA and other hormones synergistically regulate the drought response in plants. However, the molecular mechanism underlying this synergism remains poorly defined. In the present study, transcriptome analyses of guard cells and quantitative PCR experiments revealed that MYC2 negatively regulated the negative regulator of ABA signaling, SlPP2C1, and the type-B response regulator in the cytokinin pathway, SlRR26, and this negative regulation was direct. SlRR26 overexpression reduced drought tolerance in transgenic tomatoes, whereas slrr26cr lines were more tolerant to drought. SlRR26 negatively modulated reactive oxygen species levels in stomata and stomatal closure through RobhB. Moreover, SlRR26 overexpression counteracted JA-mediated stomatal closure, suggesting that SlRR26 played a negative role in the JA-mediated drought response. These findings suggest that MYC2 plays a key role in JA-regulated stomatal closure under drought stress by inhibiting SlPP2C1 and SlRR26.


Assuntos
Solanum lycopersicum , Fatores de Transcrição , Fatores de Transcrição/metabolismo , Ácido Abscísico/metabolismo , Solanum lycopersicum/genética , Osmorregulação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico , Estômatos de Plantas/fisiologia , Regulação da Expressão Gênica de Plantas , Plantas/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Secas
7.
BMC Plant Biol ; 24(1): 451, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789940

RESUMO

Root-knot nematodes (RKNs) infect host plants and obtain nutrients such as sugars for their own development. Therefore, inhibiting the nutrient supply to RKNs may be an effective method for alleviating root-knot nematode disease. At present, the pathway by which sucrose is unloaded from the phloem cells to giant cells (GCs) in root galls and which genes related to sugar metabolism and transport play key roles in this process are unclear. In this study, we found that sugars could be unloaded into GCs only from neighboring phloem cells through the apoplastic pathway. With the development of galls, the contents of sucrose, fructose and glucose in the galls and adjacent tissue increased gradually. SUT1, SUT2, SWEET7a, STP10, SUS3 and SPS1 may provide sugar sources for GCs, while STP1, STP2 and STP12 may transport more sugar to phloem parenchyma cells. At the early stage of Meloidogyne incognita infestation, the sucrose content in tomato roots and leaves increased, while the glucose and fructose contents decreased. SWEET7a, SPS1, INV-INH1, INV-INH2, SUS1 and SUS3 likely play key roles in root sugar delivery. These results elucidated the pathway of sugar unloading in tomato galls and provided an important theoretical reference for eliminating the sugar source of RKNs and preventing root-knot nematode disease.


Assuntos
Raízes de Plantas , Tumores de Planta , Solanum lycopersicum , Tylenchoidea , Tylenchoidea/fisiologia , Animais , Solanum lycopersicum/parasitologia , Solanum lycopersicum/metabolismo , Raízes de Plantas/parasitologia , Raízes de Plantas/metabolismo , Tumores de Planta/parasitologia , Doenças das Plantas/parasitologia , Sacarose/metabolismo , Açúcares/metabolismo , Metabolismo dos Carboidratos
8.
PLoS Pathog ; 18(10): e1010898, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36215312

RESUMO

We previously reported that knocking out signal peptide peptidase (SPP), a glycoprotein K (gK) binding partner, in mouse peripheral sensory neurons reduced latency-reactivation in infected mice without affecting primary virus replication or eye disease. Since virus replication in the eye plays an essential role in eye disease, we generated a conditional knockout mouse lacking SPP expression in the eye by crossing Pax6 (paired box 6)-Cre mice that have intact Pax6 expression with SPPflox/flox mice. Significantly less SPP protein expression was detected in the eyes of Pax6-SPP-/- mice than in WT control mice. HSV-1 replication in the eyes of Pax6-SPP-/- mice was significantly lower than in WT control mice. Levels of gB, gK, and ICP0 transcripts in corneas, but not trigeminal ganglia (TG), of Pax6-SPP-/- infected mice were also significantly lower than in WT mice. Corneal scarring and angiogenesis were significantly lower in Pax6-SPP-/- mice than in WT control mice, while corneal sensitivity was significantly higher in Pax6-SPP-/- mice compared with WT control mice. During acute viral infection, absence of SPP in the eye did not affect CD4 expression but did affect CD8α and IFNγ expression in the eye. However, in the absence of SPP, latency-reactivation was similar in Pax6-SPP-/- and WT control groups. Overall, our results showed that deleting SPP expression in the eyes reduced primary virus replication in the eyes, reduced CD8α and IFNγ mRNA expression, reduced eye disease and reduced angiogenesis but did not alter corneal sensitivity or latency reactivation to HSV-1 infection. Thus, blocking gK binding to SPP in the eye may have therapeutic potential by reducing both virus replication in the eye and eye disease associated with virus replication.


Assuntos
Oftalmopatias , Herpes Simples , Herpesvirus Humano 1 , Ceratite Herpética , Camundongos , Animais , Herpesvirus Humano 1/fisiologia , Ceratite Herpética/genética , Camundongos Knockout , Herpes Simples/genética , Gânglio Trigeminal , Replicação Viral/fisiologia , Córnea , RNA Mensageiro , Glicoproteínas , Latência Viral/fisiologia , Camundongos Endogâmicos BALB C
9.
PLoS Pathog ; 18(1): e1010281, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35100323

RESUMO

We previously reported that HSV-1 infectivity in vitro and in vivo requires HSV glycoprotein K (gK) binding to the ER signal peptide peptidase (SPP). Anterograde-retrograde transport via peripheral nerves between the site of infection (i.e., eye) and the site of latency (neurons) is a critical process to establish latency and subsequent viral reactivation. Given the essential role of neurons in HSV-1 latency-reactivation, we generated mice lacking SPP specifically in peripheral sensory neurons by crossing Advillin-Cre mice with SPPfl/fl mice. Expression of SPP mRNA and protein were significantly lower in neurons of Avil-SPP-/- mice than in control mice despite similar levels of HSV-1 replication in the eyes of Avil-SPP-/- mice and control mice. Viral transcript levels in isolated neurons of infected mice on days 2 and 5 post infection were lower than in control mice. Significantly less LAT, gB, and PD-1 expression was seen during latency in isolated neurons and total trigeminal ganglia (TG) of Avil-SPP-/- mice than in control mice. Finally, reduced latency and reduced T cell exhaustion in infected Avil-SPP-/- mice correlated with slower and no reactivation. Overall, our results suggest that blocking SPP expression in peripheral sensory neurons does not affect primary virus replication or eye disease but does reduce latency-reactivation. Thus, blocking of gK binding to SPP may be a useful tool to reduce latency-reactivation.


Assuntos
Ácido Aspártico Endopeptidases/metabolismo , Ceratite Herpética/virologia , Células Receptoras Sensoriais/virologia , Ativação Viral/fisiologia , Latência Viral/fisiologia , Animais , Herpesvirus Humano 1 , Camundongos , Células Receptoras Sensoriais/enzimologia , Replicação Viral/fisiologia
10.
Infect Immun ; 91(4): e0016922, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-36939332

RESUMO

Bacterial flagella are involved in infection through their roles in host cell adhesion, cell invasion, auto-agglutination, colonization, the formation of biofilms, and the regulation and secretion of nonflagellar bacterial proteins that are involved in the virulence process. In this study, we constructed a fusion protein vaccine (FliCD) containing the Clostridioides difficile flagellar proteins FliC and FliD. The immunization of mice with FliCD induced potent IgG and IgA antibody responses against FliCD, protected mice against C. difficile infection (CDI), and decreased the C. difficile spore and toxin levels in the feces after infection. Additionally, the anti-FliCD serum inhibited the binding of C. difficile vegetative cells to HCT8 cells. These results suggest that FliCD may represent an effective vaccine candidate against CDI.


Assuntos
Clostridioides difficile , Infecções por Clostridium , Animais , Camundongos , Proteínas Recombinantes de Fusão/genética , Clostridioides/metabolismo , Infecções por Clostridium/microbiologia , Proteínas de Bactérias/metabolismo , Vacinas Bacterianas/genética
11.
J Virol ; 96(3): e0198521, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-34851143

RESUMO

Herpes simplex virus 1 (HSV-1) latency-associated transcript (LAT) plays a significant role in efficient establishment of latency and reactivation. LAT has antiapoptotic activity and downregulates expression of components of the type I interferon pathway. LAT also specifically activates expression of the herpesvirus entry mediator (HVEM), one of seven known receptors used by HSV-1 for cell entry that is crucial for latency and reactivation. However, the mechanism by which LAT regulates HVEM expression is not known. LAT has two small noncoding RNAs (sncRNAs) that are not microRNAs (miRNAs), within its 1.5-kb stable transcript, which also have antiapoptotic activity. These sncRNAs may encode short peptides, but experimental evidence is lacking. Here, we demonstrate that these two sncRNAs control HVEM expression by activating its promoter. Both sncRNAs are required for wild-type (WT) levels of activation of HVEM, and sncRNA1 is more important in HVEM activation than sncRNA2. Disruption of a putative start codon in sncRNA1 and sncRNA2 sequences reduced HVEM promoter activity, suggesting that sncRNAs encode a protein. However, we did not detect peptide binding using two chromatin immunoprecipitation (ChIP) approaches, and a web-based algorithm predicts low probability that the putative peptides bind to DNA. In addition, computational modeling predicts that sncRNA molecules bind with high affinity to the HVEM promoter, and deletion of these binding sites to sncRNA1, sncRNA2, or both reduced HVEM promoter activity. Together, our data suggest that sncRNAs exert their function as RNA molecules, not as proteins, and we provide a model for the predicted binding affinities and binding sites of sncRNA1 and sncRNA2 in the HVEM promoter. IMPORTANCE HSV-1 causes recurrent ocular infections, which is the leading cause of corneal scarring and blindness. Corneal scarring is caused by the host immune response to repeated reactivation events. LAT functions by regulating latency and reactivation, in part by inhibiting apoptosis and activating HVEM expression. However, the mechanism used by LAT to control HVEM expression is unclear. Here, we demonstrate that two sncRNAs within the 1.5-kb LAT transcript activate HVEM expression by binding to two regions of its promoter. Interfering with these interactions may reduce latency and thereby eye disease associated with reactivation.


Assuntos
Regulação Viral da Expressão Gênica , Herpes Simples/virologia , Regiões Promotoras Genéticas , Pequeno RNA não Traduzido/genética , RNA Viral , Ativação Viral , Animais , Sítios de Ligação , Células Cultivadas , Códon de Iniciação , Herpesvirus Humano 1/fisiologia , Humanos , Camundongos , Mutação , Conformação de Ácido Nucleico , Peptídeos , Coelhos , Replicação Viral
12.
J Virol ; 96(7): e0005422, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35254102

RESUMO

The HSV-1 latency-associated transcript (LAT) locus contains two small noncoding RNA (sncRNA) sequences (sncRNA1 and sncRNA2) that are not microRNAs (miRNAs). We recently reported that sncRNA1 is more important for in vitro activation of the herpesvirus entry mediator than sncRNA2, but its in vivo function is not known. To determine the role, if any, of sncRNA1 during herpes simplex virus 1 (HSV-1) infection in vivo, we deleted the 62-bp sncRNA1 sequence in HSV-1 strain McKrae using dLAT2903 (LAT-minus) virus, creating ΔsncRNA1 recombinant virus. Deletion of the sncRNA1 in ΔsncRNA1 virus was confirmed by complete sequencing of ΔsncRNA1 virus and its parental virus (i.e., McKrae). Replication of ΔsncRNA1 virus in tissue culture or in the eyes of infected mice was similar to that of HSV-1 strain McKrae and dLAT2903 viruses. However, the absence of sncRNA1 significantly reduced the levels of ICP0, ICP4, and gB but not LAT transcripts in infected rabbit skin cells in vitro. In contrast, the absence of sncRNA1 did reduce LAT expression in trigeminal ganglia (TG), but not in corneas, by day 5 postinfection (p.i.) in infected mice. Levels of eye disease in mice infected with ΔsncRNA1 or McKrae virus were similar, and despite reduced LAT levels in TG during acute ΔsncRNA1 infection, McKrae and ΔsncRNA1 viruses did not affect latency or reactivation on day 28 p.i. However, mice infected with ΔsncRNA1 virus were more susceptible to ocular infection than their wild-type (WT) counterparts. Expression of host immune response genes in corneas and TG of infected mice during primary infection showed reduced expression of beta interferon (IFNß) and IFNγ and altered activation of key innate immune pathways, such as the JAK-STAT pathway in ΔsncRNA1 virus compared with parental WT virus. Our results reveal novel functions for sncRNA1 in upregulating the host immune response and suggest that sncRNA1 has a protective role during primary ocular HSV-1 infection. IMPORTANCE HSV-1 latency-associated transcript (LAT) plays a major role in establishing latency and reactivation; however, the mechanism by which LAT controls these processes is largely unknown. In this study, we sought to establish the role of the small noncoding RNA1 (sncRNA1) encoded within LAT during HSV-1 ocular infection. Our results suggest that sncRNA1 has a protective role during acute ocular infection by modulating the innate immune response to infection.


Assuntos
Infecções Oculares , Herpes Simples , Herpesvirus Humano 1 , Imunidade , Pequeno RNA não Traduzido , Virulência , Animais , Células Cultivadas , Infecções Oculares/imunologia , Infecções Oculares/virologia , Regulação da Expressão Gênica/imunologia , Herpes Simples/imunologia , Herpes Simples/virologia , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/patogenicidade , Imunidade/genética , Camundongos , Pequeno RNA não Traduzido/metabolismo , Coelhos , Transdução de Sinais/genética , Virulência/genética , Ativação Viral/genética , Latência Viral/genética
13.
PLoS Pathog ; 17(8): e1009848, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34352042

RESUMO

HSV glycoprotein K (gK) is an essential herpes protein that contributes to enhancement of eye disease. We previously reported that gK binds to signal peptide peptidase (SPP) and that depletion of SPP reduces HSV-1 infectivity in vivo. To determine the therapeutic potential of blocking gK binding to SPP on virus infectivity and pathogenicity, we mapped the gK binding site for SPP to a 15mer peptide within the amino-terminus of gK. This 15mer peptide reduced infectivity of three different virus strains in vitro as determined by plaque assay, FACS, and RT-PCR. Similarly, the 15mer peptide reduced ocular virus replication in both BALB/c and C57BL/6 mice and also reduced levels of latency and exhaustion markers in infected mice when compared with control treated mice. Addition of the gK-15mer peptide also increased the survival of infected mice when compared with control mice. These results suggest that blocking gK binding to SPP using gK peptide may have therapeutic potential in treating HSV-1-associated infection.


Assuntos
Ácido Aspártico Endopeptidases/metabolismo , Herpes Simples/prevenção & controle , Herpesvirus Humano 1/fisiologia , Proteínas Virais/metabolismo , Replicação Viral , Animais , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Feminino , Células HeLa , Herpes Simples/imunologia , Herpes Simples/virologia , Humanos , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Proteínas Virais/antagonistas & inibidores , Proteínas Virais/genética
14.
New Phytol ; 238(4): 1651-1670, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36829301

RESUMO

Jasmonic acid (JA) is involved in the modulation of defence and growth activities in plants. The best-characterized growth-defence trade-offs stem from antagonistic crosstalk among hormones. In this study, we first confirmed that JA negatively regulates root-knot nematode (RKN) susceptibility via the root exudates (REs) of tomato plants. Omics and toxicological analyses implied that kaempferol, a type of flavonol, from REs has a negative effect on RKN infection. We demonstrated that SlMYB57 negatively regulated kaempferol contents in tomato roots, whereas SlMYB108/112 had the opposite effect. We revealed that JA fine-tuned the homeostasis of kaempferol via SlMYB-mediated transcriptional regulation and the interaction between SlJAZs and SlMYBs, thus ensuring a balance between lateral root (LR) development and RKN susceptibility. Overall, this work provides novel insights into JA-modulated LR development and RKN susceptibility mechanisms and elucidates a trade-off model mediated by JA in plants encountering stress.


Assuntos
Solanum lycopersicum , Tylenchoidea , Animais , Doenças das Plantas , Tylenchoidea/fisiologia , Quempferóis/farmacologia , Raízes de Plantas
15.
Plant Physiol ; 190(1): 828-842, 2022 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-35689622

RESUMO

Botrytis cinerea is one of the most widely distributed and harmful pathogens worldwide. Both the phytohormone jasmonate (JA) and the VQ motif-containing proteins play crucial roles in plant resistance to B. cinerea. However, their crosstalk in resistance to B. cinerea is unclear, especially in tomato (Solanum lycopersicum). In this study, we found that the tomato VQ15 was highly induced upon B. cinerea infection and localized in the nucleus. Silencing SlVQ15 using virus-induced gene silencing reduced resistance to B. cinerea. Overexpression of SlVQ15 enhanced resistance to B. cinerea, while disruption of SlVQ15 using clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein9 (Cas9) technology increased susceptibility to B. cinerea. Furthermore, SlVQ15 formed homodimers. Additionally, SlVQ15 interacted with JA-ZIM domain proteins, repressors of the JA signaling pathway, and SlWRKY31. SlJAZ11 interfered with the interaction between SlVQ15 and SlWRKY31 and repressed the SlVQ15-increased transcriptional activation activity of SlWRKY31. SlVQ15 and SlWRKY31 synergistically regulated tomato resistance to B. cinerea, as silencing SlVQ15 enhanced the sensitivity of slwrky31 to B. cinerea. Taken together, our findings showed that the SlJAZ-interacting protein SlVQ15 physically interacts with SlWRKY31 to cooperatively control JA-mediated plant defense against B. cinerea.


Assuntos
Solanum lycopersicum , Botrytis/fisiologia , Ciclopentanos/metabolismo , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Oxilipinas/metabolismo , Doenças das Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
16.
J Exp Bot ; 74(4): 1186-1197, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-35670512

RESUMO

Flower development and fertility are coordinately regulated by endogenous developmental signals, including the phytohormones jasmonates (JAs), auxin, and gibberellin, and environmental cues. JAs regulate stamen development and fertility under basal conditions, affect root growth and trichome formation under stress conditions, and control defense responses against insect herbivores and pathogens. Since the 1990s, an increasing number of studies have revealed the essential roles of JA biosynthesis, signaling, and crosstalk in regulation of flower development and fertility. Here, we summarize and present an updated overview of the JA pathway and its crosstalk in modulating flower/sexual organ development and fertility in Arabidopsis, tomato, rice, maize, and sorghum.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Reguladores de Crescimento de Plantas/metabolismo , Giberelinas/metabolismo , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Fertilidade , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Flores , Regulação da Expressão Gênica de Plantas
17.
Phytother Res ; 37(6): 2605-2643, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37143212

RESUMO

Swertia L., as a commonly used ethnic medicine, is widely distributed in Sichuan, Yunnan, and Xizang in China. Moreover, the medicinal plants of Swertia L. have been widely used and constitute one of the most important sources of various traditional medicines in China due to their prominent activities. In this review, the information on the classification, distribution, genetic relationship, chemical composition, pharmacological effects, toxicities, and applications of the medicinal plants in Swertia L. was summarized based on the scientific literature. The results indicated that the medicinal plants of Swertia L. mainly contained chemical components including triterpenes, xanthones, and iridoids. These compounds exert pharmacological effects including ameliorating diseases related to the liver and gallbladder. They also exert antiviral and antibacterial effects and can alleviate the increase in blood glucose levels. Especially, prescriptions related to Swertia L. have been widely adopted in preclinical and clinical studies to protect against diseases affecting the liver and the gallbladder, including hepatitis, cirrhosis, and cholecystitis. In addition, it also discusses toxicity studies and future perspectives and provides a reference for their clinical development and utilization.


Assuntos
Plantas Medicinais , Swertia , Swertia/química , China , Plantas Medicinais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Iridoides/farmacologia
18.
Sensors (Basel) ; 23(20)2023 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-37896720

RESUMO

Gait recognition aims to identify a person based on his unique walking pattern. Compared with silhouettes and skeletons, skinned multi-person linear (SMPL) models can simultaneously provide human pose and shape information and are robust to viewpoint and clothing variances. However, previous approaches have only considered SMPL parameters as a whole and are yet to explore their potential for gait recognition thoroughly. To address this problem, we concentrate on SMPL representations and propose a novel SMPL-based method named GaitSG for gait recognition, which takes SMPL parameters in the graph structure as input. Specifically, we represent the SMPL model as graph nodes and employ graph convolution techniques to effectively model the human model topology and generate discriminative gait features. Further, we utilize prior knowledge of the human body and elaborately design a novel part graph pooling block, PGPB, to encode viewpoint information explicitly. The PGPB also alleviates the physical distance-unaware limitation of the graph structure. Comprehensive experiments on public gait recognition datasets, Gait3D and CASIA-B, demonstrate that GaitSG can achieve better performance and faster convergence than existing model-based approaches. Specifically, compared with the baseline SMPLGait (3D only), our model achieves approximately twice the Rank-1 accuracy and requires three times fewer training iterations on Gait3D.


Assuntos
Marcha , Caminhada , Humanos , Conhecimento , Modelos Lineares , Distanciamento Físico
19.
Int J Mol Sci ; 24(7)2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37047380

RESUMO

Antibiotic resistance is one of the most significant issues encountered in global health. There is an urgent demand for the development of a new generation of antibiotic agents combating the emergence of drug resistance. In this article, we reported the design of lipidated dendrimeric γ-AApeptides as a new class of antimicrobial agents. These AApeptides showed excellent potency and broad-spectrum activity against both Gram-positive bacteria and Gram-negative bacteria, including methicillin-resistant Staphylococcus aureus (MRSA). The mechanistic studies revealed that the dendrimeric AApeptides could kill bacteria rapidly through the permeabilization of bacterial membranes, analogous to host-defense peptides (HDPs). These dendrimers also did not induce antibiotic resistance readily. The easy access to the synthesis, together with their potent and broad-spectrum activity, make these lipidated dendrimeric γ-AApeptides a new generation of antibacterial agents.


Assuntos
Anti-Infecciosos , Staphylococcus aureus Resistente à Meticilina , Peptidomiméticos , Peptidomiméticos/farmacologia , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Bactérias , Testes de Sensibilidade Microbiana
20.
J Integr Plant Biol ; 65(11): 2437-2455, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37665103

RESUMO

Salt stress is a major abiotic stress which severely hinders crop production. However, the regulatory network controlling tomato resistance to salt remains unclear. Here, we found that the tomato WRKY transcription factor WRKY57 acted as a negative regulator in salt stress response by directly attenuating the transcription of salt-responsive genes (SlRD29B and SlDREB2) and an ion homeostasis gene (SlSOS1). We further identified two VQ-motif containing proteins SlVQ16 and SlVQ21 as SlWRKY57-interacting proteins. SlVQ16 positively, while SlVQ21 negatively modulated tomato resistance to salt stress. SlVQ16 and SlVQ21 competitively interacted with SlWRKY57 and antagonistically regulated the transcriptional repression activity of SlWRKY57. Additionally, the SlWRKY57-SlVQ21/SlVQ16 module was involved in the pathway of phytohormone jasmonates (JAs) by interacting with JA repressors JA-ZIM domain (JAZ) proteins. These results provide new insights into how the SlWRKY57-SlVQ21/SlVQ16 module finely tunes tomato salt tolerance.


Assuntos
Arabidopsis , Solanum lycopersicum , Solanum lycopersicum/genética , Arabidopsis/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Tolerância ao Sal/genética , Regulação da Expressão Gênica de Plantas , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA