Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Biotechnol Prog ; 37(3): e3119, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33373106

RESUMO

Process-related impurities (PRIs) derived from manufacturing process should be minimized in final drug product. ICH Q3A provides a regulatory road map for PRIs but excludes biologic drugs like monoclonal antibodies (mAbs) that contain biological PRIs (e.g. host cell proteins and DNA) and low molecular weight (LMW) PRIs (e.g., fermentation media components and downstream chemical reagents). Risks from the former PRIs are typically addressed by routine tests to meet regulatory expectations, while a similar routine-testing strategy is unrealistic and unnecessary for LMW PRIs, and thus a risk-assessment-guided testing strategy is often utilized. In this report, we discuss a safety risk management strategy including categorization, risk assessment, testing strategy, and its integrations with other CMC development activities, as well as downstream clearance potentials. The clearance data from 28 mAbs successfully addressed safety concerns but did not fully reveal the process clearance potentials. Therefore, we carried out studies with 13 commonly seen LMW PRIs in a typical downstream process for mAbs. Generally, Protein A chromatography and cation exchange chromatography operating in bind-and-elute mode showed excellent clearances with greater than 1,000- and 100-fold clearance, respectively. The diafiltration step had better clearance (greater than 100-fold) for the positively and neutrally charged LMW PRIs than for the negatively charged or hydrophobic PRIs. We propose that a typical mAb downstream process provides an overall clearance of 5,000-fold. Additionally, the determined sieving coefficients will facilitate diafiltration process development. This report helps establish effective safety risk management and downstream process design with robust clearance for LMW PRIs.


Assuntos
Anticorpos Monoclonais , Produtos Biológicos , Biotecnologia , Contaminação de Medicamentos/prevenção & controle , Gestão da Segurança , Anticorpos Monoclonais/análise , Anticorpos Monoclonais/química , Anticorpos Monoclonais/isolamento & purificação , Produtos Biológicos/análise , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Produtos Biológicos/normas , Biotecnologia/métodos , Biotecnologia/normas , Cromatografia Líquida/normas , Filtração/normas , Peso Molecular , Medição de Risco
2.
J Chromatogr A ; 1629: 461505, 2020 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-32861092

RESUMO

Immobilized metal affinity chromatography (IMAC) is a technique primarily used in research and development laboratories to purify proteins containing engineered histidine tags. Although this type of chromatography is commonly used, it can be problematic as differing combinations of resins and metal chelators can result in highly variable chromatographic performance and product quality results. To generate a robust IMAC purification process, the binding differences of resin and metal chelator combinations were studied by generating breakthrough curves with a poly-histidine tagged bispecific protein. The optimal binding combination was statistically analyzed to determine the impact of chromatographic parameters on the operation. Additionally, equilibrium uptake isotherms were created to further elucidate the impact of chromatographic parameters on the binding of protein. It was found that for protein expressed in CHO cells, Millipore Sigma's Fractogel EMD Chelate (M) charged with Zn2+ and GE's pre-charged Ni Sepharose Excel displayed the highest binding capacities. When the protein was expressed in HEK-293, GE's IMAC Sepharose 6 Fast Flow charged with either Co2+ or Zn2+ bound the greatest amount of protein. The study further identified the metal binding capacity of the resin lot, the protein capacity to which the resin is loaded, and the ratio of poly-histidine tag residues on the protein all impacted the chromatographic performance and product quality. These findings enabled the development of a robust and scalable process. The CHO expressed cell culture product was directly loaded at a high capacity onto variable metal binding affinity Fractogel EMD Chelate (M). A 250 mM imidazole elution condition ensured the product contained monomeric 4 and 6-histidine tagged bispecific proteins. The optimized IMAC process conditions determined in this study can be applied to a wide variety of poly-histidine tagged proteins in research and development laboratories as various poly-histidine tagged proteins of differing molecular weights and formats expressed in either HEK-293 or CHO cells were successfully purified.


Assuntos
Cromatografia de Afinidade/métodos , Histidina/metabolismo , Metais/química , Proteínas Recombinantes/isolamento & purificação , Animais , Células CHO , Quelantes/química , Cromatografia de Fase Reversa , Cobalto/química , Cricetinae , Cricetulus , Células HEK293 , Histidina/genética , Humanos , Proteínas Recombinantes/biossíntese , Zinco/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA