RESUMO
PURPOSE: To compare the clinical efficacy and complications of limited internal fixation combined with external fixation (LIFEF) and open reduction and internal fixation (ORIF) in the treatment of Pilon fracture. METHODS: We searched databases including Pubmed, Embase, Web of science, Cochrane Library and China Biology Medicine disc for the studies comparing clinical efficacy and complications of LIFEF and ORIF in the treatment of Pilon fracture. The clinical efficacy was evaluated by the rate of nonunion, malunion/delayed union and the excellent/good rate assessed by Mazur ankle score. The complications including infections and arthritis symptoms after surgery were also investigated. RESULTS: Nine trials including 498 pilon fractures of 494 patients were identified. The meta-analysis found no significant differences in nonunion rate (RR = 1.60, 95% CI: 0.66 to 3.86, p = 0.30), and the excellent/good rate (RR = 0.95, 95% CI: 0.86 to 1.04, p = 0.28) between LIFEF group and ORIF group. For assessment of infections, there were significant differences in the rate of deep infection (RR = 2.18, 95% CI: 1.34 to 3.55, p = 0.002), and the rate of arthritis (RR = 1.26, 95% CI: 1.03 to 1.53, p = 0.02) between LIFEF group and ORIF group. CONCLUSION: LIFEF has similar effect as ORIF in the treatment of pilon fractures, however, LIFEF group has significantly higher risk of complications than ORIF group does. So LIFEF is not recommended in the treatment of pilon fracture.
Assuntos
Fixadores Externos , Fixação Interna de Fraturas/métodos , Fraturas da Tíbia/cirurgia , Terapia Combinada , Fixação Interna de Fraturas/efeitos adversos , HumanosRESUMO
OBJECTIVE: Bone marrow mesenchymal stem cells (BMSCs) show significant potential for osteogenic differentiation. However, the underlying mechanisms of osteogenic capability in osteoporosis-derived BMSCs (OP-BMSCs) remain unclear. This study aims to explore the impact of YTHDF3 (YTH N6-methyladenosine RNA binding protein 3) on the osteogenic traits of OP-BMSCs and identify potential therapeutic targets to boost their bone formation ability. METHODS: We examined microarray datasets (GSE35956 and GSE35958) from the Gene Expression Omnibus (GEO) to identify potential m6A regulators in osteoporosis (OP). Employing differential, protein interaction, and machine learning analyses, we pinpointed critical hub genes linked to OP. We further probed the relationship between these genes and OP using single-cell analysis, immune infiltration assessment, and Mendelian randomization. Our in vivo and in vitro experiments validated the expression and functionality of the key hub gene. RESULTS: Differential analysis revealed seven key hub genes related to OP, with YTHDF3 as a central player, supported by protein interaction analysis and machine learning methodologies. Subsequent single-cell, immune infiltration, and Mendelian randomization studies consistently validated YTHDF3's significant link to osteoporosis. YTHDF3 levels are significantly reduced in femoral head tissue from postmenopausal osteoporosis (PMOP) patients and femoral bone tissue from PMOP mice. Additionally, silencing YTHDF3 in OP-BMSCs substantially impedes their proliferation and differentiation. CONCLUSION: YTHDF3 may be implicated in the pathogenesis of OP by regulating the proliferation and osteogenic differentiation of OP-BMSCs.
Assuntos
Biologia Computacional , Células-Tronco Mesenquimais , Osteogênese , Osteoporose Pós-Menopausa , Humanos , Osteoporose Pós-Menopausa/genética , Animais , Feminino , Células-Tronco Mesenquimais/metabolismo , Camundongos , Biologia Computacional/métodos , Osteogênese/fisiologia , Osteogênese/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Aprendizado de Máquina , Diferenciação Celular , Adenosina/metabolismo , Adenosina/genética , Adenosina/análogos & derivadosRESUMO
N6-methyladenosine (m6A), the most prevalent internal modification in mRNA, is related to the pathogenesis of osteoporosis (OP). Although methyltransferase Like-3 (METTL3), an m6A transferase, has been shown to mitigate OP progression, the mechanisms of METTL3-mediated m6A modification in osteoblast function remain unclear. Here, fluid shear stress (FSS) induced osteoblast proliferation and differentiation, resulting in elevated levels of METTL3 expression and m6A modification. Through Methylated RNA Immunoprecipitation Sequencing (MeRIP-seq) and Transcriptomic RNA Sequencing (RNA-seq), SRY (Sex Determining Region Y)-box 4 (SOX4) was screened as a target of METTL3, whose m6A-modified coding sequence (CDS) regions exhibited binding affinity towards METTL3. Further functional experiments demonstrated that knockdown of METTL3 and SOX4 hampered osteogenesis, and METTL3 knockdown compromised SOX4 mRNA stability. Via RNA immunoprecipitation (RIP) assays, we further confirmed the direct interaction between METTL3 and SOX4. YTH N6-Methyladenosine RNA Binding Protein 3 (YTHDF3) was identified as the m6A reader responsible for modulating SOX4 mRNA and protein levels by affecting its degradation. Furthermore, in vivo experiments demonstrated that bone loss in an ovariectomized (OVX) mouse model was reversed through the overexpression of SOX4 mediated by adeno-associated virus serotype 2 (AAV2). In conclusion, our research demonstrates that METTL3-mediated m6A modification of SOX4 plays a crucial role in regulating osteoblast proliferation and differentiation through its recognition by YTHDF3. Our research confirms METTL3-m6A-SOX4-YTHDF3 as an essential axis and potential mechanism in OP.
Assuntos
Metiltransferases , Osteoblastos , Animais , Camundongos , Proliferação de Células , Metiltransferases/metabolismo , Osteoblastos/metabolismo , RNA , RNA Mensageiro/metabolismoRESUMO
Background: Rheumatoid arthritis (RA) is an autoimmune disease that affects individuals of all ages. The basic pathological manifestations are synovial inflammation, pannus formation, and erosion of articular cartilage, bone destruction will eventually lead to joint deformities and loss of function. However, the specific molecular mechanisms of synovitis tissue in RA are still unclear. Therefore, this study aimed to screen and explore the potential hub genes and immune cell infiltration in RA. Methods: Three microarray datasets (GSE12021, GSE55457, and GSE55235), from the Gene Expression Omnibus (GEO) database, have been analyzed to explore the potential hub genes and immune cell infiltration in RA. First, the LIMMA package was used to screen the differentially expression genes (DEGs) after removing the batch effect. Then the clusterProfiler package was used to perform functional enrichment analyses. Second, through weighted coexpression network analysis (WGCNA), the key module was identified in the coexpression network of the gene set. Third, the protein-protein interaction (PPI) network was constructed through STRING website and the module analysis was performed using Cytoscape software. Fourth, the CIBERSORT and ssGSEA algorithm were used to analyze the immune status of RA and healthy synovial tissue, and the associations between immune cell infiltration and RA-related diagnostic biomarkers were evaluated. Fifth, we used the quantitative reverse transcription-polymerase chain reaction (qRT-PCR) to validate the expression levels of the hub genes, and ROC curve analysis of hub genes for discriminating between RA and healthy tissue. Finally, the gene-drug interaction network was constructed using DrugCentral database, and identification of drug molecules based on hub genes using the Drug Signature Database (DSigDB) by Enrichr. Results: A total of 679 DEGs were identified, containing 270 downregulated genes and 409 upregulated genes. DEGs were primarily enriched in immune response and chemokine signaling pathways, according to functional enrichment analysis of DEGs. WGCNA explored the co-expression network of the gene set and identified key modules, the blue module was selected as the key module associated with RA. Seven hub genes are identified when PPI network and WGCNA core modules are intersected. Immune infiltration analysis using CIBERSORT and ssGSEA algorithms revealed that multiple types of immune infiltration were found to be upregulated in RA tissue compared to normal tissue. Furthermore, the levels of 7 hub genes were closely related to the relative proportions of multiple immune cells in RA. The results of the qRT-PCR demonstrated that the relative expression levels of 6 hub genes (CD27, LCK, CD2, GZMB, IL7R, and IL2RG) were up-regulated in RA synovial tissue, compared with normal tissue. Simultaneously, ROC curves indicated that the above 6 hub genes had strong biomarker potential for RA (AUC >0.8). Conclusions: Through bioinformatics analysis and qRT-PCR experiment, our study ultimately discovered 6 hub genes (CD27, LCK, CD2, GZMB, IL7R, and IL2RG) that closely related to RA. These findings may provide valuable direction for future RA clinical diagnosis, treatment, and associated research.
RESUMO
During anther development, the transformation of the microspore into mature pollen occurs under the protection of first the tetrad wall and later the pollen wall. Mutations in genes involved in this wall transition often lead to microspore rupture and male sterility; some such mutants, such as the reversible male sterile (rvms) mutant, are thermo/photoperiod-sensitive genic male sterile (P/TGMS) lines. Previous studies have shown that slow development is a general mechanism of P/TGMS fertility restoration. In this study, we identified restorer of rvms-2 (res2), which is an allele of QUARTET 3 (QRT3) encoding a polygalacturonase that shows delayed degradation of the tetrad pectin wall. We found that MS188, a tapetum-specific transcription factor essential for pollen wall formation, can activate QRT3 expression for pectin wall degradation, indicating a non-cell-autonomous pathway involved in the regulation of the cell wall transition. Further assays showed that a delay in degradation of the tetrad pectin wall is responsible for the fertility restoration of rvms and other P/TGMS lines, whereas early expression of QRT3 eliminates low temperature restoration of rvms-2 fertility. Taken together, these results suggest a likely cellular mechanism of fertility restoration in P/TGMS lines, that is, slow development during the cell wall transition of P/TGMS microspores may reduce the requirement for their wall protection and thus support their development into functional pollens, leading to restored fertility.
Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Fotoperíodo , Infertilidade das Plantas/genética , Infertilidade das Plantas/fisiologia , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/metabolismo , Parede Celular/fisiologia , Temperatura Baixa , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Mutação , Pólen/genética , Pólen/fisiologiaRESUMO
Climate oscillations are the key factors to understand the patterns in modern biodiversity. East Asia harbors the most diverse temperate flora, largely because an extensive terrestrial ice cap was absent during repeated Pleistocene glaciation-interglacial cycles. Comparing the demographic histories of species that are codistributed and are close relatives may provide insight into how the process of climate change influences species ranges. In this study, we compared the spatial genetic structure and demographic histories of two coexisting Eleutherococcus species, Eleutherococcus senticosus and E. sessiliflorus. Both species are distributed in northern China, regions that are generally considered to be sensitive to climatic fluctuations. These regions once hosted temperate forest, but this temperate forest was replaced by tundra and taiga forest during the Last Glacial Maximum (LGM), according to pollen records. Using three chloroplast DNA fragments, we assessed the genetic structure of 20 and 9 natural populations of E. senticosus and E. sessiliflorus, respectively. Extremely contrasting genetic patterns were found between the two species; E. sessiliflorus had little genetic variation, whereas E. senticosus had considerably higher levels of genetic variation (15 haplotypes). We speculated that a recent severe bottleneck may have resulted in the extremely low genetic diversity in E. sessiliflorus. In E. senticosus, populations in Northeast China (NEC) harbored all of the haplotypes found in this species and included private haplotypes. The populations in NEC had higher levels of genetic diversity than did those from North China (NC). Therefore, we suggest that both the NC and NEC regions can sustain LGM refugia and that lineage admixture from multiple refugia took place after the LGM elevated the local genetic diversity in NEC. In NEC, multiple genetic hot spots were found in the Changbai Mountains and the Xiaoxing'an Range, which implied that multiple locations in NEC may sustain LGM refugia, even in the Xiaoxing'an Range.
RESUMO
A yeast strain of Saccharomyces pastorianus no. 54 with hypoglycemic activity was isolated from soils of a winery. The aims of this study were first to investigate the effects of the cultivation conditions on proliferation and hypoglycemic activity of this yeast using the assay model of the differentiated 3T3-L1 adipocytes, and then, to confirm in vivo the hypoglycemic activity of cultured yeast by oral administration in streptozotocin (STZ)-induced diabetic mice. Among 7 diluted fruit juice samples the diluted strawberry juice (1.74 g/L reducing sugar content) was chosen as the basal medium. After investigation of the effects of addition of various substances, including 1% of 5 different sugars and glycerol, 0.1% of 6 nitrogen-containing substances, and 1 ppm of 7 growth factors, the diluted strawberry juice added with 1% glucose, 0.1% yeast extract and 1 ppm aspartic acid was optimized at 20 °C with initial pH value of 6.0 for cultivating S. pastorianus no. 54 in flask. The scale-up system of a 5-L fermentor was further established by using the same medium with initial pH 6.0 and being incubated at 20 °C with an aeration rate of 1.2 vvm for 96 h. The hypoglycemic activity of yeast cells cultivated in fermentor was 3.11 times of that in flask. Oral administration of the cultured yeast at a dosage of 130 mg/kg body weight/day for 6 days could significantly reduce the plasma glucose content in STZ-induced diabetic mice and keep their body weights in the normal range.
Assuntos
Meios de Cultura , Hipoglicemiantes/farmacologia , Saccharomyces/crescimento & desenvolvimento , Células 3T3-L1 , Adipócitos/metabolismo , Administração Oral , Animais , Metabolismo dos Carboidratos , Células Cultivadas , Diabetes Mellitus Experimental/sangue , Feminino , Fermentação , Glucose/metabolismo , Glicerol/metabolismo , Concentração de Íons de Hidrogênio , Hipoglicemiantes/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Saccharomyces/metabolismo , TemperaturaRESUMO
Extranodal follicular dendritic cell sarcoma (FDCS) of the pharyngeal region is a rare malignant tumor recognized in recent years, with approximately 37 cases so far reported in the literature. It is often not considered at the initial evaluation and may be misdiagnosed in a small biopsy specimen. We report 4 cases of extranodal FDCS, 2 cases in the nasopharynx that were diagnosed as undifferentiated carcinomas because they were characterized by syncytial epithelial cells with sheet or nest-like distribution and 2 cases in the tonsil and soft palate that were characterized by vaguely concentric whorls consisting of spindle to ovoid cells. The latter case was diagnosed as ectopic meningioma. The analysis of all cases from the literature and ours shows that 58% (21/36) of the cases are misdiagnosed initially, often as undifferentiated carcinoma or meningioma, which the differential diagnoses should be mostly focused on. With a median follow-up of 27 months, the recurrence, metastasis, and mortality rates are 23%, 21%, and 3%, respectively, suggesting that extranodal FDCS of the pharyngeal region remains a low-grade sarcoma. Radical surgery is recommended, whereas there is no evidence to support adjuvant therapy.