Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 32(11): 19265-19278, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38859065

RESUMO

Crosstalk between adjacent views, lens aberrations, and low spatial resolution in light field displays limit the quality of 3D images. In the present study, we introduce a display performance optimization method for light field displays based on a neural network. The method pre-corrects the encoded image from a global perspective, which means that the encoded image is pre-corrected according to the light field display results. The display performance optimization network consists of two parts: the encoded image pre-correction network and the display network. The former realizes the pre-correction of the original encoded image (OEI), while the latter completes the modeling of the display unit and realizes the generation from the encoded image to the viewpoint images (VIs). The pre-corrected encoded image (PEI) obtained through the pre-correction network can reconstruct 3D images with higher quality. The VIs are accessible through the display network. Experimental results suggest that the proposed method can reduce the graininess of 3D images significantly without increasing the complexity of the system. It is promising for light field displays since it can provide improved 3D display performance.

2.
Artif Organs ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38712632

RESUMO

BACKGROUND: High mechanical shear stress (HMSS) generated by blood pumps during mechanical circulatory support induces blood damage (or function alteration) not only of blood cell components but also of plasma proteins. METHODS: In the present study, fresh, healthy human blood was used to prime a blood circuit assisted by a CentriMag centrifugal pump at a flow rate of 4.5 L/min under three pump pressure heads (75, 150, and 350 mm Hg) for 4 h. Blood samples were collected for analyses of plasma-free hemoglobin (PFH), von Willebrand factor (VWF) degradation and platelet glycoprotein (GP) IIb/IIIa receptor shedding. RESULTS: The extent of all investigated aspects of blood damage increased with increasing cross-pump pressure and duration. Loss of high-molecular-weight multimers (HMWM)-VWF in Loop 2 and Loop 3 significantly increased after 2 h. PFH, loss of HMWM-VWF, and platelet GPIIb/IIIa receptor shedding showed a good linear correlation with mean shear stress corresponding to the three pump pressure heads. CONCLUSIONS: HMSS could damage red blood cells, cause pathological VWF degradation, and induce platelet activation and platelet receptor shedding. Different blood components can be damaged to different degrees by HMSS; VWF and VWF-enhanced platelet activation may be more susceptible to HMSS.

3.
Sensors (Basel) ; 23(2)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36679571

RESUMO

Person re-identification (Re-ID) plays an important role in the search for missing people and the tracking of suspects. Person re-identification based on deep learning has made great progress in recent years, and the application of the pedestrian contour feature has also received attention. In the study, we found that pedestrian contour feature is not enough in the representation of CNN. On this basis, in order to improve the recognition performance of Re-ID network, we propose a contour information extraction module (CIEM) and a contour information embedding method, so that the network can focus on more contour information. Our method is competitive in experimental data; the mAP of the dataset Market1501 reached 83.8% and Rank-1 reached 95.1%. The mAP of the DukeMTMC-reID dataset reached 73.5% and Rank-1 reached 86.8%. The experimental results show that adding contour information to the network can improve the recognition rate, and good contour features play an important role in Re-ID research.


Assuntos
Armazenamento e Recuperação da Informação , Pedestres , Humanos , Reconhecimento Psicológico , Registros
4.
Sensors (Basel) ; 23(2)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36679469

RESUMO

Lung cancer is the leading cause of cancer deaths worldwide. Although several lung cancer diagnostic methods are available for lung nodule biopsy, there are limitations in terms of accuracy, safety, and invasiveness. Transbronchial needle aspiration (TBNA) is a common method for diagnosing and treating lung cancer that involves a robot-assisted medical flexible needle moving along a curved three-dimensional trajectory, avoiding anatomical barriers to achieve clinically meaningful goals in humans. Inspired by the puncture angle between the needle tip and the vessel in venipuncture, we suggest that different orientations of the medical flexible needle puncture path affect the cost of the puncture trajectory and propose an effective puncture region based on the optimal puncture direction, which is a strategy based on imposing geometric constraints on the search space of the puncture direction, and based on this, we focused on the improved implementation of RCS*. Planning within the TBNA-based lung environment was performed using the rapidly exploring random tree (RRT), resolution-complete search (RCS), and RCS* (a resolution-optimal version of RCS) within an effective puncture region. The experimental results show that the optimal puncture direction corresponding to the lowest cost puncture trajectory is consistent among the three algorithms and RCS* is more efficient for planning. The experiments verified the feasibility and practicality of our proposed minimum puncture angle and puncture effective region and facilitated the study of the puncture direction of flexible needle puncture.


Assuntos
Neoplasias Pulmonares , Agulhas , Humanos , Pulmão/patologia , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/patologia , Biópsia por Agulha Fina , Flebotomia
5.
Sensors (Basel) ; 23(18)2023 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-37765994

RESUMO

In the context of predicting pedestrian trajectories for indoor mobile robots, it is crucial to accurately measure the distance between indoor pedestrians and robots. This study aims to address this requirement by extracting pedestrians as regions of interest and mitigating issues related to inaccurate depth camera distance measurements and illumination conditions. To tackle these challenges, we focus on an improved version of the H-GrabCut image segmentation algorithm, which involves four steps for segmenting indoor pedestrians. Firstly, we leverage the YOLO-V5 object recognition algorithm to construct detection nodes. Next, we propose an enhanced BIL-MSRCR algorithm to enhance the edge details of pedestrians. Finally, we optimize the clustering features of the GrabCut algorithm by incorporating two-dimensional entropy, UV component distance, and LBP texture feature values. The experimental results demonstrate that our algorithm achieves a segmentation accuracy of 97.13% in both the INRIA dataset and real-world tests, outperforming alternative methods in terms of sensitivity, missegmentation rate, and intersection-over-union metrics. These experiments confirm the feasibility and practicality of our approach. The aforementioned findings will be utilized in the preliminary processing of indoor mobile robot pedestrian trajectory prediction and enable path planning based on the predicted results.

6.
Artif Organs ; 46(11): 2244-2256, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35596611

RESUMO

BACKGROUND: Left ventricular assist devices (LVADs) have been used as a standard treatment option for patients with advanced heart failure. However, these devices are prone to adverse events. Nonsurgical bleeding (NSB) is the most common complication in patients with continuous flow (CF) LVADs. The development of acquired von Willebrand syndrome (AVWS) in CF-LVAD recipients is thought to be a key factor. However, AVWS is seen across a majority of LVAD patients, not just those with NSB. The purpose of this study was to examine the link between acquired platelet defects and NSB in CF-LVAD patients. METHODS: Blood samples were collected from 62 CF-LVAD patients at pre- and 4 post-implantation timepoints. Reduced adhesion receptor expression (GPIbα and GPVI) and activation of platelets (GPIIb/IIIa activation) were used as markers for acquired platelet defects. RESULTS: Twenty-three patients experienced at least one NSB episode. Significantly higher levels of platelet activation and receptor reduction were seen in the postimplantation blood samples from bleeders compared with non-bleeders. All patients experienced the loss of high molecular weight monomers (HMWM) of von Willebrand Factor (vWF), but no difference was seen between the two groups. Multivariable logistic regression showed that biomarkers for reduced platelet receptor expression (GPIbα and GPVI) and activation (GPIIb/IIIa) have more predictive power for NSB, with the area under curve (AUC) values of 0.72, 0.68, and 0.62, respectively, than the loss of HMWM of vWF (AUC: 0.57). CONCLUSION: The data from this study indicated that the severity of acquired platelet defects has a direct link to NSB in CF-LVAD recipients.


Assuntos
Insuficiência Cardíaca , Coração Auxiliar , Doenças de von Willebrand , Humanos , Coração Auxiliar/efeitos adversos , Fator de von Willebrand , Hemorragia/terapia , Hemorragia/complicações , Doenças de von Willebrand/etiologia , Ativação Plaquetária , Insuficiência Cardíaca/cirurgia
7.
Artif Organs ; 45(6): 577-586, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33237583

RESUMO

High mechanical shear stresses (HMSS) can cause damage to blood, which manifests as morphologic changes, shortened life span, biochemical alterations, and complete rupture of blood cells and proteins, leading to the alterations of normal blood function. The aim of this study is to determine the state of neutrophil activation and function alterations caused by HMSS with short exposure time relevant to ventricular assist devices. Blood from healthy donors was exposed to three levels of HMSS (75Pa, 125Pa, and 175Pa) for a short exposure time (0.5 s) using our Couette-type blood-shearing device. Neutrophil activation (Mac-1, platelet-neutrophil aggregates) and surface expression levels of two key functional receptors (CD62L and CD162) on neutrophils were evaluated by flow cytometry. Neutrophil phagocytosis and transmigration were also examined with functional assays. Results showed that the expression of Mac-1 on neutrophils and platelet-neutrophil aggregates increased significantly while the level of CD62L expression on neutrophils decreased significantly after the exposure to HMSS. The Mac-1 expression progressively increased while the CD62L expression progressively decreased with the increased level of HMSS. The level of CD162 expression on neutrophils slightly increased after the exposure to HMSS, but the increase was not significant. The phagocytosis assay data revealed that the ability of neutrophils to phagocytose latex beads coated with fluorescently labeled rabbit IgG increased significantly with the increased level of HMSS. The transmigration ability of neutrophils slightly increased after the exposure to HMSS, but did not reach a significant level. In summary, HMSS with a short exposure time of 0.5 seconds could induce neutrophil activation, platelet-neutrophil aggregation, shedding of CD62L receptor, and increased phagocytic ability. However, the exposure to the three levels of HMSS did not cause a significant change in neutrophil transmigration capacity and shedding of CD162 receptor on neutrophils.


Assuntos
Circulação Assistida/efeitos adversos , Circulação Assistida/instrumentação , Neutrófilos/metabolismo , Neutrófilos/patologia , Estresse Mecânico , Movimento Celular , Citometria de Fluxo , Humanos , Selectina L/metabolismo , Antígeno de Macrófago 1/metabolismo , Glicoproteínas de Membrana/metabolismo , Fagocitose
8.
Artif Organs ; 44(1): 28-39, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30512218

RESUMO

The purpose of this study was to evaluate the hemodynamic properties and microemboli capture associated with different vacuum-assisted venous drainage (VAVD) vacuum levels and venous reservoir levels in a neonatal cardiopulmonary bypass circuit. Trials were conducted in 2 parallel circuits to compare the performance of Capiox Baby RX05 oxygenator with separate AF02 arterial filter to Capiox FX05 oxygenator with integrated arterial filter. Arterial cannula flow rate to the patient was held at 500 mL/min and temperature maintained at 32°C, while VAVD vacuum levels (0 mm Hg, -15 mm Hg, -30 mm Hg, -45 mm Hg, -60 mm Hg) and venous reservoir levels (50 mL, 200 mL) were evaluated in both oxygenators. Hemodynamic parameters measuring flow, pressure, and total hemodynamic energy were made in real time using a custom-made data acquisition system and Labview software. Nearly 10 cc bolus of air was injected into the venous line and gaseous microemboli detected using an Emboli Detection and Classification Quantifier. Diverted blood flow via the arterial filter's purge line and mean pressures increased with increasing VAVD levels (P < 0.01). Mean pressures were lower with lower venous reservoir levels and were greater in RX05 groups compared to FX05 (P < 0.01). Microemboli detected at the preoxygenator site increased with higher VAVD vacuum levels and lower venous reservoir levels (P < 0.01). The amount of microemboli captured by the FX05 oxygenator with integrated arterial filter was greater than by the RX05 oxygenator alone, although both oxygenators were able to clear microemboli before reaching the pseudo-patient.


Assuntos
Ponte Cardiopulmonar/instrumentação , Hemodinâmica , Oxigenadores de Membrana , Drenagem/instrumentação , Desenho de Equipamento , Humanos , Recém-Nascido , Modelos Cardiovasculares , Vácuo , Dispositivos de Acesso Vascular
9.
Artif Organs ; 44(1): 16-27, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30793346

RESUMO

The objective of this translational study was to evaluate the FDA-approved PediMag, CentriMag, and RotaFlow centrifugal blood pumps in terms of hemodynamic performance using simulated neonatal and pediatric extracorporeal membrane oxygenation (ECMO) circuits with different sizes of arterial and venous cannulae. Cost of disposable pump heads was another important variable for this particular study. The experimental circuit was composed of one of the centrifugal pump heads, a polymethylpentene membrane oxygenator, neonatal and pediatric arterial/venous cannulae, and 1/4-inch ID tubing. Circuits were primed with lactated Ringer's solution and packed human red blood cells (hematocrit 35%). Trials were conducted at 36°C using the three pump heads and different cannulae (arterial/venous cannulae: 8 Fr/18 Fr, 10 Fr/20 Fr, and 12 Fr/22 Fr) at various flow rates (200-2400 mL/min, 200 mL/min increments) and rotational speeds. Pseudo patient pressure was 60 mm Hg. Real-time pressure and flow data were recorded for analysis. The RotaFlow pump had a higher pressure head and flow range compared with the PediMag and CentriMag pumps at the same rotational speed and identical experimental settings (P < 0.001). The PediMag pump had lower flow output than others (P < 0.001). Small-caliber arterial cannulae and higher flow rates predictably created higher circuit pressures and pressure drops. There was no significant difference in hemodynamic energy delivered to the pseudo patient with each of the three pumps. The arterial cannula had the highest pressure drop and hemodynamic energy loss in the circuit when compared to the oxygenator and arterial tubing. The RotaFlow centrifugal pump had a significantly better hemodynamic performance when compared to the PediMag and CentriMag blood pumps at identical experimental conditions in simulated neonatal and pediatric ECMO settings. In addition, the cost of the RotaFlow pump head ($400) is 20 to 30-fold less than the other centrifugal pumps [CentriMag ($12 000) or PediMag ($8000)] that were evaluated in this translational study.


Assuntos
Oxigenação por Membrana Extracorpórea/instrumentação , Hemodinâmica , Modelos Cardiovasculares , Criança , Desenho de Equipamento , Oxigenação por Membrana Extracorpórea/economia , Humanos , Recém-Nascido , Pressão
10.
Artif Organs ; 44(7): 717-726, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31970795

RESUMO

The roles of the large membrane surface of the oxygenator and the high mechanical shear stress (HMSS) of the pump in the extracorporeal membrane oxygenation (ECMO) circuit were examined under a pediatric support setting. A clinical centrifugal pump and a pediatric oxygenator were used to construct the ECMO circuit. An identical circuit without the oxygenator was constructed for comparison. Fresh human blood was circulated in the two circuits for 4 hours under the identical pump speed and flow. Blood samples were collected hourly for blood damage assessment, including platelet activation, generation of platelet-derived microparticles (PDMP), losses of key platelet hemostasis receptors (glycoprotein (GP) Ibα (GPIbα) and GPVI), and high molecular weight multimers (HMWM) of von Willebrand factor (VWF) and plasma free hemoglobin (PFH). Platelet adhesion on fibrinogen, VWF, and collagen was further examined. The levels of platelet activation and generation of PDMP and PFH exhibited an increasing trend with circulation time while the expression levels of GPIbα and GPVI receptors on the platelet surface decreased. Correspondingly, the platelets in the blood samples exhibited increased adhesion capacity to fibrinogen and decreased adhesion capacities on VWF and collagen with circulation time. Loss of HMWM of VWF occurred in both circuits. No statistically significant differences were found in all the measured parameters for blood damage and platelet adhesion function between the two circuits. The results indicate that HMSS from the pump played a dominant role in blood damage associated with ECMO and the impact of the large surface of the oxygenator on blood damage was insignificant.


Assuntos
Plaquetas/metabolismo , Oxigenação por Membrana Extracorpórea/efeitos adversos , Hemorragia/etiologia , Oxigenadores de Membrana/efeitos adversos , Trombose/etiologia , Plaquetas/citologia , Micropartículas Derivadas de Células/metabolismo , Criança , Oxigenação por Membrana Extracorpórea/instrumentação , Voluntários Saudáveis , Hemorragia/sangue , Hemorragia/prevenção & controle , Humanos , Ativação Plaquetária , Complexo Glicoproteico GPIb-IX de Plaquetas/metabolismo , Glicoproteínas da Membrana de Plaquetas/metabolismo , Estresse Mecânico , Trombose/sangue , Trombose/prevenção & controle
11.
Appl Opt ; 59(21): 6315-6326, 2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32749295

RESUMO

The ability of the human visual system (HVS) to perceive a three-dimensional (3D) image at once is finite, but the detail contrast of the light field display (LFD) is typically degraded during both acquisition and imaging stages. It is consequently difficult for viewers to rapidly find a region of interest from the displayed 3D scene. Existing image detail boosting solutions suffer from noise amplification, over-exaggeration, angular variations, or heavy computational burden. In this paper, we propose a selective enhancement method for the captured light field image (LFI) that empowers an attention-guiding LFD. It is based on the fact that the visually salient details within a LFI normally co-occur frequently in both spatial and angular domains. These co-occurrence statistics are effectively exploited. Experimental results show that the LFDs improved by our efficient method are free of undesirable artifacts and robust to disparity errors while retaining correct parallaxes and occlusion relationships, thus reducing HVS's efforts to cognitively process 3D images. Our work is, to the best of our knowledge, the first in-depth research on computational and content-aware LFD contrast editing, and is expected to facilitate numerous LFD-based applications.

12.
Opt Express ; 27(17): 24207-24222, 2019 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-31510314

RESUMO

This paper realizes a computational integral imaging reconstruction method via scale invariant feature transform (SIFT) and patch matching to improve the visual quality of reconstructed 3D view images. To our knowledge, the 3D view images reconstructed from the elemental images suffer from artifacts, which leads to degradations in the visual quality. To prevent image degradation, in this paper, we use the correct regions obtained from the view images taken directly from the original object or use patch matching to replace the distorted regions. However, the initial matching regions could not meet our requirements owing to the limitations of the equipment and the inevitable shortcomings of the experimental operation. To solve these problems, we adopt SIFT descriptors and perspective transform to get the satisfying correct regions. We present the simulation and experimental results of the 3D view images and the evaluation of the quality of the corresponding images to test the performance of the proposed method. The simulation and experimental results indicate that the proposed method can significantly improve the visual quality of the 3D view images and verify the feasibility and effectiveness of the proposed method.

13.
Artif Organs ; 43(8): E165-E177, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30589448

RESUMO

The objective of this study was to do an in vitro evaluation of venous line pressure using different venous line lengths and venous cannula sizes in pediatric venoarterial extracorporeal life support (VA-ECLS) and venovenous ECLS (VV-ECLS) circuits. The pediatric VA-ECLS circuit consisted of a Xenios i-cor diagonal pump, a Maquet Quadrox-i pediatric oxygenator, a Medtronic Biomedicus arterial cannula, a Biomedicus venous cannula, and 1/4″ ID arterial and venous tubing. The pediatric VV-ECLS circuit was similar, except it included a Maquet Avalon ELITE bi-caval dual lumen cannula. Circuits were primed with lactated Ringer's solution and packed red blood cells (hematocrit 40%). Trials were conducted at various flow rates (VA-ECLS: 250-1250 mL/min, VV-ECLS: 250-2000 mL/min) using different venous tubing lengths (2, 4, and 6 feet) and cannula sizes (VA-ECLS: A8Fr/V10Fr, A10Fr/V12Fr and A12Fr/V14Fr, VV-ECLS: 13Fr, 16Fr, 19Fr, 20Fr and 23Fr) at 36°C. Real-time pressure and flow data were recorded for analysis. The use of a small-caliber venous cannula significantly increased the venous line pressure in the 2 pediatric circuits (P < 0.01). Shorter venous tubing lengths significantly reduced the venous line pressure at high flow rates (P < 0.01). The VV-ECLS circuit had larger negative pre-pump pressure drops (7.2 to -102.2 mm Hg) when compared to the VA-ECLS circuit (0.7 to -60.7 mm Hg). Selecting an appropriate venous cannula and a shorter venous tubing when feasible may significantly reduce the pressure drop of the venous line in pediatric VA-ECLS and VV-ECLS circuits and improve venous drainage.


Assuntos
Cânula , Oxigenação por Membrana Extracorpórea/instrumentação , Artérias/fisiologia , Velocidade do Fluxo Sanguíneo , Criança , Desenho de Equipamento , Hematócrito , Hemodinâmica , Humanos , Modelos Cardiovasculares , Pressão , Veias/fisiologia
14.
Artif Organs ; 43(1): 30-40, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30129978

RESUMO

The objective of this study is to evaluate the hemodynamic characteristics of two femoral arterial cannulae in terms of circuit pressure, pressure drop, and hemodynamic energy transmission under non-pulsatile and pulsatile modes in a simulated adult extracorporeal life support (ECLS) system. The ECLS circuit consisted of i-cor diagonal pump and console (Xenios AG, Heilbronn, Germany), an iLA membrane ventilator (Xenios AG), an 18 Fr or 16 Fr femoral arterial cannula (Xenios AG), and a 23/25 Fr Estech remote access perfusion (RAP) femoral venous cannula (San Ramon, CA, USA). The circuit was primed with lactated Ringer's solution and packed red blood cells to achieve a hematocrit of 35%. All trials were conducted at room temperature with flow rates of 1-4 L/min (1 L/min increments). The pulsatile flow settings were set at pulsatile frequency of 75 bpm and pulsatile amplitudes of 1000-4000 rpm (1000 rpm increments). Flow and pressure data were collected using a custom data acquisition system. Total hemodynamic energy (THE) is calculated by multiplying the ratio between the area under the hemodynamic power curve (∫flow × pressure dt) and the area under the pump flow curve (∫flow dt) by 1332. The pressure drop across the arterial cannula increased with increasing flow rate and decreasing cannula size. The pressure drops of 18 Fr and 16 Fr cannulae were 19.4-24.5 and 38.4-45.3 mm Hg at 1 L/min, 55.2-56.8 and 110.9-118.3 mm Hg at 2 L/min, 94.1-105.1 and 209.7-215.1 mm Hg at 3 L/min, and 169.2-172.6 and 376.4 mm Hg at 4 L/min, respectively. Pulsatile flow created more hemodynamic energy than non-pulsatile flow, especially at lower flow rates. The percentages of THE loss across 18 Fr and 16 Fr cannula were 16.0-18.7 and 27.5-30.8% at 1 L/min, 35.1-35.7 and 52.3-53.8% at 2 L/min, 48.3-50.3 and 67.3-68.4% at 3 L/min and 62.9-63.1 and 79.0% at 4 L/min. The hemodynamic performance of the arterial cannula should be evaluated before use in clinical practice. The pressure drops and percentages of THE loss across two cannulae tested using human blood were higher compared to the manufacturer's data tested using water. The cannula size should be chosen to match the expected flow rate. In addition, this novel i-cor ECLS system can provide non-pulsatile and ECG-synchronized pulsatile flow without significantly increasing the cannula pressure drop and hemodynamic energy loss.


Assuntos
Cânula/efeitos adversos , Oxigenação por Membrana Extracorpórea/instrumentação , Modelos Cardiovasculares , Complicações Pós-Operatórias/prevenção & controle , Dispositivos de Acesso Vascular/efeitos adversos , Adulto , Artéria Femoral/cirurgia , Humanos , Complicações Pós-Operatórias/etiologia , Fluxo Pulsátil
15.
Artif Organs ; 43(1): 41-53, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30273959

RESUMO

Translational research is a useful tool to provide scientific evidence for cannula selection during extracorporeal life support (ECLS). The objective of this study was to evaluate four Avalon Elite bi-caval dual lumen cannulas and nine femoral arterial cannulas in terms of flow range, circuit pressure, pressure drop, and hemodynamic energy transmission in a simulated adult ECLS model. A veno-venous ECLS circuit was used to evaluate four Avalon Elite bi-caval dual lumen cannulas (20, 23, 27, and 31 Fr), and a veno-arterial ECLS circuit was used to evaluate nine femoral arterial cannulas (15, 17, 19, 21, and 23 Fr). The two circuits included a Rotaflow centrifugal pump, a Quadrox-D adult oxygenator, and 3/8 in ID tubing for arterial and venous lines. The circuits were primed with lactated Ringer's solution and packed human red blood cells (hematocrit 40%). Trials were conducted at rotational speeds from 1000 to 5000 RPM (250 rpm increments) for each Avalon cannula, and at different flow rates (0.5-7 L/min) for each femoral arterial cannula. Real-time pressure and flow data were recorded for analysis. Small caliber cannulas created higher circuit pressures, higher pressure drops and higher M-numbers compared with large ones. The inflow side of Avalon dual lumen cannula had a significantly higher pressure drop than the outflow side (inflow vs. outflow: 20 Fr-100.2 vs. 49.2 mm Hg at 1.1 L/min, 23 Fr-93.7 vs. 41.4 mm Hg at 1.6 L/min, 27 Fr-102.3 vs. 42.8 mm Hg at 2.6 L/min, 31 Fr-98.1 vs. 44.7 mm Hg at 3.8 L/min). There was more hemodynamic energy lost in the veno-arterial ECLS circuit using small cannulas compared to larger ones (17 Fr vs. 19 Fr vs. 21 Fr at 4 L/min-Medtronic: 71.0 vs. 64.8 vs. 60.9%; Maquet: 71.4 vs. 65.6 vs. 62.0%). Medtronic femoral arterial cannulas had lower pressure drops (Medtronic vs. Maquet at 4 L/min: 17 Fr-121.7 vs. 125.0 mm Hg, 19 Fr-71.2 vs. 73.7 mm Hg, 21 Fr-42.9 vs. 47.4 mm Hg) and hemodynamic energy losses (Medtronic vs. Maquet at 4 L/min: 17 Fr-43.6 vs. 44.4%, 19 Fr-31.0 vs. 31.4%, 21 Fr-20.8 vs. 22.4%) at high flow rates when compared with the Maquet cannulae. The results for this study provided valuable hemodynamic characteristics of all evaluated adult cannulas with human blood in order to guide ECLS cannula selection in clinical practice. Use of larger cannulas are suggested for VV- and VA-ECLS.


Assuntos
Cânula/efeitos adversos , Oxigenação por Membrana Extracorpórea/métodos , Modelos Cardiovasculares , Dispositivos de Acesso Vascular/efeitos adversos , Adulto , Desenho de Equipamento , Artéria Femoral/cirurgia , Hemodinâmica , Humanos , Veias Cavas/cirurgia
16.
Artif Organs ; 43(1): 81-89, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30151915

RESUMO

The experimental circuit consisted of an i-cor diagonal pump, a Medos Hilite 800 LT oxygenator, an 8Fr Biomedicus arterial cannula, a 10Fr Biomedicus venous cannula, and six feet of 1/4 in ID tubing for arterial and venous lines. The circuit was primed with lactated Ringer's solution and packed red blood cells (hematocrit 40%). Trials were conducted at various heart rates (90, 120, and 150 bpm) and flow rates (200, 400, and 600mL/min) under nonpulsatile and pulsatile mode with pulsatile amplitudes of 1000-4000rpm (1000 rpm increments). Real-time pressure and flow data were recorded for analysis. The i-cor pump was capable of creating nonpulsatile and electrocardiography (ECG)-synchronized pulsatile flow, and automatically reducing pulsatile frequency by increasing the assist ratio at higher heart rates. Reduced pulsatile frequency led to lower hemodynamic energy generation but did not affect circuit pressure drop. Pulsatile flow delivered more hemodynamic energy to the pseudopatient when compared with nonpulsatile flow. The pump generated more hemodynamic energy with higher pulsatile amplitudes. The i-cor pump can automatically adjust the pulsatile assist ratio to create pulsatile flow at higher heart rates, although this caused some hemodynamic energy loss. Compared with nonpulsatile flow, pulsatile flow generated and transferred more hemodynamic energy to the neonate during ECLS (200-600mL/min), especially at high pulsatile amplitudes and low flow rates.


Assuntos
Oxigenação por Membrana Extracorpórea/métodos , Frequência Cardíaca , Modelos Cardiovasculares , Fluxo Pulsátil , Eletrocardiografia , Desenho de Equipamento , Oxigenação por Membrana Extracorpórea/instrumentação , Humanos , Recém-Nascido
17.
Artif Organs ; 43(1): 60-75, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30374991

RESUMO

The objective of this study is to compare hemodynamic performances under different pulsatile control algorithms between Medos DeltaStream DP3 and i-cor diagonal pumps in simulated pediatric and adult ECLS systems. An additional pilot study was designed to test hemolysis using two pumps during 12h-ECLS. The experimental circuit consisted of parallel combined pediatric and adult ECLS circuits using an i-cor pump head and either an i-cor console or Medos DeltaStream MDC console, a Medos Hilite 2400 LT oxygenator for the pediatric ECLS circuit, and a Medos Hilite 7000 LT oxygenator for the adult ECLS circuit. The circuit was primed with lactated Ringer's solution and human packed red blood cells (hematocrit 40%). Trials were conducted at various flow rates (pediatric circuit: 0.5 and 1L/min; adult circuit: 2 and 4L/min) under nonpulsatile and pulsatile modes (pulsatile amplitude: 1000-5000rpm [1000 rpm increments] for i-cor pump, 500-2500rpm [500 rpm increments] for Medos pump) at 36°C. In an additional protocol, fresh whole blood was used to test hemolysis under nonpulsatile and pulsatile modes using the two pump systems in adult ECLS circuits. Under pulsatile mode, energy equivalent pressures (EEP) were always greater than mean pressures for the two systems. Total hemodynamic energy (THE) and surplus hemodynamic energy (SHE) levels delivered to the patient increased with increasing pulsatile amplitude and decreased with increasing flow rate. The i-cor pump outperformed at low flow rates, but the Medos pump performed superiorly at high flow rates. There was no significant difference between two pumps in percentage of THE loss. The plasma free hemoglobin level was always higher in the Medos DP3 pulsatile group at 4 L/min compared to others. Pulsatile control algorithms of Medos and i-cor consoles had great effects on pulsatility. Although high pulsatile amplitudes delivered higher levels of hemodynamic energy to the patient, the high rotational speeds increased the risk of hemolysis. Use of proper pulsatile amplitude settings and intermittent pulsatile mode are suggested to achieve better pulsatility and decrease the risk of hemolysis. Further optimized pulsatile control algorithms are needed.


Assuntos
Desenho de Equipamento , Oxigenação por Membrana Extracorpórea/instrumentação , Hemodinâmica , Hemólise , Modelos Cardiovasculares , Adulto , Algoritmos , Criança , Oxigenação por Membrana Extracorpórea/efeitos adversos , Testes Hematológicos , Humanos , Oxigenadores/efeitos adversos , Projetos Piloto , Fluxo Pulsátil
18.
Artif Organs ; 43(11): 1085-1091, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31188477

RESUMO

The objective of this study was to describe a single-center experience with neonatal and pediatric extracorporeal life support (ECLS) and compare patient-related outcomes with those of the Extracorporeal Life Support Organization (ELSO) Registry. A retrospective review of subject characteristics, outcomes, and complications of patients who received the ECLS at Penn State Health Children's Hospital (PSHCH) from 2000 to 2016 was performed. Fisher's exact test was used to compare the PSHCH outcomes and complications to the ELSO Registry report. Data from 118 patients were included. Survival to discontinuation of the ECLS was 70.3% and 65.2% to discharge/transfer. Following circuitry equipment changes, the survival to discharge/transfer improved for both neonatal (<29 days) and pediatric (29 days to <18 years) patients. The most common complications associated with ECLS were clinical seizures, intracranial hemorrhage, and culture-proven infection. ECLS for pulmonary support appeared to be associated with a higher risk of circuit thrombus and cannula problems. When compared to the ELSO Registry, low volume ECLS centers, like our institution, can have outcomes that are no different or statistically better as noted with neonatal and pediatric cardiac patients. Pediatric patients requiring pulmonary support appeared to experience more mechanical complications during ECLS suggesting the need for ongoing technological improvement.


Assuntos
Oxigenação por Membrana Extracorpórea , Adolescente , Criança , Pré-Escolar , Oxigenação por Membrana Extracorpórea/efeitos adversos , Oxigenação por Membrana Extracorpórea/instrumentação , Oxigenação por Membrana Extracorpórea/métodos , Feminino , Humanos , Lactente , Recém-Nascido , Hemorragias Intracranianas/etiologia , Masculino , Sistema de Registros , Estudos Retrospectivos , Convulsões/etiologia , Trombose/etiologia , Resultado do Tratamento
19.
Appl Opt ; 58(36): 9921-9930, 2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31873638

RESUMO

A robust, asymmetric, multidepth, three-dimensional object encryption scheme based on a computer-generated Fresnel hologram in the cascaded fractional Fourier domain is proposed. A layer-based Fresnel transform is used to generate a computer-generated hologram, which is then decomposed into two phase-only masks with a random phase distribution using matrix composition and decomposition methods. Encryption is implemented by using the created phase-only masks in two cascaded fractional Fourier transform domains, and a pair of private keys is generated in the encryption process. The cryptosystem is asymmetric and possesses high resistance against various potential attacks, such as brute-force, chosen-plaintext, known-plaintext, and ciphertext-only attacks. The simulation results and cryptanalysis confirmed the feasibility and effectiveness of the proposed encryption scheme.

20.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 36(4): 649-656, 2019 Aug 25.
Artigo em Zh | MEDLINE | ID: mdl-31441267

RESUMO

Based on the noninvasive detection indeices and fuzzy mathematics method, this paper studied the noninvasive, convenient and economical cardiovascular health assessment system. The health evaluation index of cardiovascular function was built based on the internationally recognized risk factors of cardiovascular disease and the noninvasive detection index. The weight of 12 indexes was completed by the analytic hierarchy process, and the consistency test was passed. The membership function, evaluation matrix and evaluation model were built by fuzzy mathematics. The introducted methods enhanced the scientificity of the evaluation system. Through the Kappa consistency test, McNemer statistical results ( P = 0.995 > 0.05) and Kappa values (Kappa = 0.616, P < 0.001) suggest that the comprehensive evaluation results of model in this paper are relatively consistent with the clinical, which is of certain scientific significance for the early detection of cardiovascular diseases.


Assuntos
Doenças Cardiovasculares/diagnóstico , Sistema Cardiovascular , Lógica Fuzzy , Modelos Cardiovasculares , Humanos , Pesquisa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA