Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
J Nanobiotechnology ; 22(1): 44, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38291444

RESUMO

BACKGROUND: The COVID-19 pandemic is a persistent global threat to public health. As for the emerging variants of SARS-CoV-2, it is necessary to develop vaccines that can induce broader immune responses, particularly vaccines with weak cellular immunity. METHODS: In this study, we generated a double-layered N-S1 protein nanoparticle (N-S1 PNp) that was formed by desolvating N protein into a protein nanoparticle as the core and crosslinking S1 protein onto the core surface against SARS-CoV-2. RESULTS: Vaccination with N-S1 PNp elicited robust humoral and vigorous cellular immune responses specific to SARS-CoV-2 in mice. Compared to soluble protein groups, the N-S1 PNp induced a higher level of humoral response, as evidenced by the ability of S1-specific antibodies to block hACE2 receptor binding and neutralize pseudovirus. Critically, N-S1 PNp induced Th1-biased, long-lasting, and cross-neutralizing antibodies, which neutralized the variants of SARS-CoV-2 with minimal loss of activity. N-S1 PNp induced strong responses of CD4+ and CD8+ T cells, mDCs, Tfh cells, and GCs B cells in spleens. CONCLUSIONS: These results demonstrate that N-S1 PNp vaccination is a practical approach for promoting protection, which has the potential to counteract the waning immune responses against SARS-CoV-2 variants and confer broad efficacy against future new variants. This study provides a new idea for the design of next-generation SARS-CoV-2 vaccines based on the B and T cells response coordination.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Humanos , Camundongos , Linfócitos T CD8-Positivos , Formação de Anticorpos , Vacinas contra COVID-19 , Pandemias , COVID-19/prevenção & controle , Imunização , Vacinação , Anticorpos Antivirais , Anticorpos Neutralizantes
2.
Apoptosis ; 28(7-8): 1076-1089, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37071294

RESUMO

Pyroptosis is one of the mechanisms of programmed cell death (PCD) activated by inflammasomes and involved by the caspase family and the gasdermin family. During the oncogenesis and progression of tumors, pyroptosis is crucial, and complex withal. Currently, pyroptosis is the focus topic in the research field of oncology, but there is no single bibliometric analysis systematically studying 'pyroptosis and cancer'. Our study aimed to visualize the research status of pyroptosis in oncology and excavate the hotspots and prospects in this field. Furthermore, in consideration of the professional direction of researchers, we particularly emphasized articles on pyroptosis in gynecology and formed a mini systematic review. This bibliometric work integrated and analyzed all articles from ISI Web of Science: Science Citation Index Expanded (SCI-Expanded) (dated April 25th, 2022), based on quantitative and visual mapping approaches. Systematically reviewing articles on pyroptosis in gynecology helped us complement our analysis of research advancements in this field. Including 634 articles, our study found that the number of articles on pyroptosis in cancer increased exponentially in recent years. These publications came from 45 countries and regions headed by China and the US mainly aiming at the mechanism of pyroptosis in cell biology and biochemistry molecular biology, as well as the role of pyroptosis in the development and therapeutic application of various cancers. The top 20 most cited studies on this topic mostly came from the US, followed by China and England, and half of the articles cited more than 100 times in total were published in Nature. Moreover, as for gynecologic cancer, in vitro and bioinformatics analysis were the main methodology conducting to explore roles of pyroptosis-related genes (PRGs) and formation of inflammasomes in cancer progression and prognosis. Pyroptosis has evolved into a burgeoning research field in oncology. The cellular and molecular pathway mechanism of pyroptosis, as well as the effect of pyroptosis in oncogenesis, progression, and treatment have been the hot topic of the current study and provided us the future direction as the potential opportunities and challenges. We advocate more active cooperation to improve therapeutic strategies for cancer.


Assuntos
Neoplasias , Piroptose , Feminino , Humanos , Apoptose , Bibliometria , Carcinogênese , Transformação Celular Neoplásica , Inflamassomos , Neoplasias/genética , Piroptose/genética
3.
Molecules ; 27(13)2022 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-35807355

RESUMO

(1) Background: Non-small cell lung cancer (NSCLC) is the most common lung cancer. Enhancer RNA (eRNA) has potential utility in the diagnosis, prognosis and treatment of cancer, but the role of eRNAs in NSCLC metastasis is not clear; (2) Methods: Differentially expressed transcription factors (DETFs), enhancer RNAs (DEEs), and target genes (DETGs) between primary NSCLC and metastatic NSCLC were identified. Prognostic DEEs (PDEEs) were screened by Cox regression analyses and a predicting model for metastatic NSCLC was constructed. We identified DEE interactions with DETFs, DETGs, reverse phase protein arrays (RPPA) protein chips, immunocytes, and pathways to construct a regulation network using Pearson correlation. Finally, the mechanisms and clinical significance were explained using multi-dimensional validation unambiguously; (3) Results: A total of 255 DEEs were identified, and 24 PDEEs were selected into the multivariate Cox regression model (AUC = 0.699). Additionally, the NSCLC metastasis-specific regulation network was constructed, and six key PDEEs were defined (ANXA8L1, CASTOR2, CYP4B1, GTF2H2C, PSMF1 and TNS4); (4) Conclusions: This study focused on the exploration of the prognostic value of eRNAs in the metastasis of NSCLC. Finally, six eRNAs were identified as potential markers for the prediction of metastasis of NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/metabolismo , Prognóstico , RNA
4.
Vet Microbiol ; 290: 110003, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38262114

RESUMO

Porcine epidemic diarrhea virus (PEDV) is a highly infectious pathogen with a high mortality rate, which poses a serious threat to newborn piglets. A rapid, safe and effective vaccine is necessary for protecting pigs from PED infection. Nanoparticles have become molecular scaffolds for displaying soluble antigens due to their unique physical and chemical properties. Here, a vaccine candidate was based on the display of PEDV S1 protein on a mi3 nanoparticle platform using SpyTag/SpyCatcher technology. The size, zeta potential and microstructure of the S1-mi3 NPs were investigated, and their effects on the uptake of antigen-presenting cells (APCs) and maturation of dendritic cells (DCs) were analyzed. Mice were immunized via muscular and intranasal administrations, and the levels of humoral, cellular and mucosal immune responses were analyzed. As a result, S1 proteins were surface-displayed on NPs successfully, which self-assembled into nanoparticles composed of 60 subunits and showed superior safety and stability. In addition, mi3 NPs promoted antigen internalization and dendritic cell (DCs) maturation. In the mouse model, S1-mi3 NPs significantly increased the PEDV-specific antibody including serum IgG, secretory IgA (SIgA) and neutralizing antibodies (NAb). Furthermore, S1-mi3 NPs elicited more CD3+CD4+ and CD3+CD8+ T cell and cellular immune-related cytokines (IFN-γ and IL-4) compared to monomeric S1. In particular, it can induce an effective germinal center-specific (GC) B cell response, which is closely related to the production of neutralizing antibodies. Overall, S1-mi3 NPs are a promising subunit vaccine candidate against PEDV, and this self-assembly NPs also provide an attractive platform for improving vaccine efficacy against emerging pathogens.


Assuntos
Infecções por Coronavirus , Nanopartículas , Vírus da Diarreia Epidêmica Suína , Doenças dos Roedores , Doenças dos Suínos , Vacinas Virais , Animais , Suínos , Camundongos , Imunidade nas Mucosas , Anticorpos Antivirais , Anticorpos Neutralizantes , Infecções por Coronavirus/veterinária
5.
Cell Biosci ; 14(1): 33, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38462627

RESUMO

BACKGROUND: Malignant mesothelioma is a type of infrequent tumor that is substantially related to asbestos exposure and has a terrible prognosis. We tried to produce a fibroblast differentiation-related gene set for creating a novel classification and prognostic prediction model of MESO. METHOD: Three databases, including NCBI-GEO, TCGA, and MET-500, separately provide single-cell RNA sequencing data, bulk RNA sequencing profiles of MESO, and RNA sequencing information on bone metastatic tumors. Dimensionality reduction and clustering analysis were leveraged to acquire fibroblast subtypes in the MESO microenvironment. The fibroblast differentiation-related genes (FDGs), which were associated with survival and subsequently utilized to generate the MESO categorization and prognostic prediction model, were selected in combination with pseudotime analysis and survival information from the TCGA database. Then, regulatory network was constructed for each MESO subtype, and candidate inhibitors were predicted. Clinical specimens were collected for further validation. RESULT: A total of six fibroblast subtypes, three differentiation states, and 39 FDGs were identified. Based on the expression level of FDGs, three MESO subtypes were distinguished in the fibroblast differentiation-based classification (FDBC). In the multivariate prognostic prediction model, the risk score that was dependent on the expression level of several important FDGs, was verified to be an independently effective prognostic factor and worked well in internal cohorts. Finally, we predicted 24 potential drugs for the treatment of MESO. Moreover, immunohistochemical staining and statistical analysis provided further validation. CONCLUSION: Fibroblast differentiation-related genes (FDGs), especially those in low-differentiation states, might participate in the proliferation and invasion of MESO. Hopefully, the raised clinical subtyping of MESO would provide references for clinical practitioners.

6.
Int J Surg ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963751

RESUMO

BACKGROUND: Burn injuries with ≥70% total body surface area (TBSA) are especially acute and life-threatening, leading to severe complications and terrible prognosis, while a powerful model for prediction of overall survival (OS) is lacked. The objective of this study is to identify prognostic factors for the OS of patients with burn injury ≥70% TBSA, construct and validate a feasible predictive model. MATERIALS AND METHODS: Patients diagnosed with burns ≥70% TBSA admitted and treated between 2010 and 2020 in our hospital were included. A cohort of the patients from the Kunshan explosion were assigned as the validation set. The Chi-square test and K-M survival analysis were conducted to identify potential predictors for OS. Then, multi-variate Cox regression analysis was performed to identify the independent factors. Afterwards, we constructed a nomogram to predict OS probability. Finally, the Kunshan cohort was applied as an external validation set. RESULTS: Gender, the percentage of third- and fourth-degree burn as well as organ dysfunction were identified as significant independent factors. A nomogram only based on the factors of the individuals was built and evidenced to have promising predictive accuracy, accordance, and discrimination by both internal and external validation. CONCLUSIONS: This study recognized significant influencing factors for the OS of patients with burns ≥70% TBSA. Furthermore, our nomogram proved to be an effective tool for doctors to quickly evaluate patients' outcomes and make appropriate clinical decisions at an early stage of treatment.

7.
Front Cell Neurosci ; 17: 1334092, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38293650

RESUMO

Background: Apoptosis after spinal cord injury (SCI) plays a pivotal role in the secondary injury mechanisms, which cause the ultimate neurologic insults. A better understanding of the molecular and cellular basis of apoptosis in SCI allows for improved glial and neuronal survival via the administrations of anti-apoptotic biomarkers. The knowledge structure, development trends, and research hotspots of apoptosis and SCI have not yet been systematically investigated. Methods: Articles and reviews on apoptosis and SCI, published from 1st January 1994 to 1st Oct 2023, were retrieved from the Web of Science™. Bibliometrix in R was used to evaluate annual publications, countries, affiliations, authors, sources, documents, key words, and hot topics. Results: A total of 3,359 publications in accordance with the criterions were obtained, which exhibited an ascending trend in annual publications. The most productive countries were the USA and China. Journal of Neurotrauma was the most impactive journal; Wenzhou Medical University was the most prolific affiliation; Cuzzocrea S was the most productive and influential author. "Apoptosis," "spinal-cord-injury," "expression," "activation," and "functional recovery" were the most frequent key words. Additionally, "transplantation," "mesenchymal stemness-cells," "therapies," "activation," "regeneration," "repair," "autophagy," "exosomes," "nlrp3 inflammasome," "neuroinflammation," and "knockdown" were the latest emerging key words, which may inform the hottest themes. Conclusions: Apoptosis after SCI may cause the ultimate neurological damages. Development of novel treatments for secondary SCI mainly depends on a better understanding of apoptosis-related mechanisms in molecular and cellular levels. Such therapeutic interventions involve the application of anti-apoptotic agents, free radical scavengers, as well as anti-inflammatory drugs, which can be targeted to inhibit core events in cellular and molecular injury cascades pathway.

8.
Int J Biol Macromol ; 253(Pt 6): 127276, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37804887

RESUMO

Porcine Epidemic diarrhea virus (PEDV), which can result in severe vomiting, diarrhea, dehydration and death in newborn piglets, poses a great threat to the pig industry around the world. The S1 subunit of S protein is crucial for triggering neutralizing antibodies binding to the receptor. Based on the advantages of high immunogenicity and precise assembly of nanoparticles, the mi3 nanoparticles and truncated S1 protein were assembled by the SpyTag/SpyCatcher system and then expressed in HEK293F cells, whereafter high-efficiency monoclonal antibodies (mAbs) were produced and identified. The obtained five mAbs can bind to various genotypes of PEDV, including a mAb (12G) which can neutralize G1 and G2 genotypes of PEDV in vitro. By further identification of monoclonal antibody target sequences, 507FNDHSF512 and 553LFYNVTNSYG562 were first identified as B-cell linear epitopes, in which 553LFYNVTNSYG562 was a neutralizing epitope. Alanine scans identified the key amino acid sites of two epitopes. Moreover, the results of multiple sequence alignment analysis showed that these two epitopes were highly conserved in various subtype variants. In brief, these findings can serve as a basis for additional research of PEDV and prospective resources for the creation of later detection and diagnostic techniques.


Assuntos
Anticorpos Monoclonais , Vírus da Diarreia Epidêmica Suína , Animais , Suínos , Anticorpos Antivirais , Vírus da Diarreia Epidêmica Suína/genética , Vírus da Diarreia Epidêmica Suína/química , Estudos Prospectivos , Anticorpos Neutralizantes , Epitopos de Linfócito B
9.
Cancer Med ; 12(16): 17445-17467, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37434432

RESUMO

Glioblastoma (GBM) is notorious for malignant neovascularization that contributes to undesirable outcome. However, its mechanisms remain unclear. This study aimed to identify prognostic angiogenesis-related genes and the potential regulatory mechanisms in GBM. RNA-sequencing data of 173 GBM patients were obtained from the Cancer Genome Atlas (TCGA) database for screening differentially expressed genes (DEGs), differentially transcription factors (DETFs), and reverse phase protein array (RPPA) chips. Differentially expressed genes from angiogenesis-related gene set were extracted for univariate Cox regression analysis to identify prognostic differentially expressed angiogenesis-related genes (PDEARGs). A risk predicting model was constructed based on 9 PDEARGs, namely MARK1, ITGA5, NMD3, HEY1, COL6A1, DKK3, SERPINA5, NRP1, PLK2, ANXA1, SLIT2, and PDPN. Glioblastoma patients were stratified into high-risk and low-risk groups according to their risk scores. GSEA and GSVA were applied to explore the possible underlying GBM angiogenesis-related pathways. CIBERSORT was employed to identify immune infiltrates in GBM. The Pearson's correlation analysis was performed to evaluate the correlations among DETFs, PDEARGs, immune cells/functions, RPPA chips, and pathways. A regulatory network centered by three PDEARGs (ANXA1, COL6A1, and PDPN) was constructed to show the potential regulatory mechanisms. External cohort of 95 GBM patients by immunohistochemistry (IHC) assay demonstrated that ANXA1, COL6A1, and PDPN were significantly upregulated in tumor tissues of high-risk GBM patients. Single-cell RNA sequencing also validated malignant cells expressed high levels of the ANXA1, COL6A1, PDPN, and key DETF (WWTR1). Our PDEARG-based risk prediction model and regulatory network identified prognostic biomarkers and provided valuable insight into future studies on angiogenesis in GBM.


Assuntos
Glioblastoma , Humanos , Glioblastoma/patologia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Prognóstico , RNA , Proteínas Serina-Treonina Quinases/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteínas de Ligação a RNA/metabolismo
10.
Vet Microbiol ; 283: 109776, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37270924

RESUMO

African swine fever (ASF) is a highly infectious and lethal viral disease caused by the African swine fever virus (ASFV). The four prominent loop structures on the surface of the primary structural protein P72 are considered to be key protective epitopes. In this study, the four critical loops (ER1-4) of the ASFV p72 protein were individually fused to hepatitis B virus core particles (HBc) and self-assembled into nanoparticles to preserve the natural conformation of the loop structure and enhance its immunogenicity. Then, four recombinant proteins were obtained in E. coli expression system and monoclonal antibodies (mAbs) were developed and characterized. All 10 mAbs obtained were able to react with P72 protein and ASFV with potencies up to 1:204 800. Amino acids 250-274, 279-299 and 507-517 of the P72 protein were identified as linear epitopes and highly conserved. The mAb 4G8 showed the highest inhibition rate of 84% against ASFV positive sera. Importantly, neutralization experiments illustrated that mAb 4G8 has a 67% inhibition rate, indicating that its corresponding epitopes are potential candidates for ASFV vaccine. In conclusion, highly immunogenic nanoparticles of the ASFV P72 key loop were constructed to induce the production of highly effective mAbs and clarify their epitope information for the diagnosis and prevention of ASFV.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Doenças dos Suínos , Suínos , Animais , Anticorpos Monoclonais , Escherichia coli , Epitopos
11.
Front Immunol ; 14: 1098977, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36845163

RESUMO

Background: Rheumatoid Diseases (RDs) are a group of systemic auto-immune diseases that are characterized by chronic synovitis, and fibroblast-like synoviocytes (FLSs) play an important role in the occurrence and progression of synovitis. Our study is the first to adopt bibliometric analysis to identify the global scientific production and visualize its current distribution in the 21st century, providing insights for future research through the analysis of themes and keywords. Methods: We obtained scientific publications from the core collection of the Web of Science (WoS) database, and the bibliometric analysis and visualization were conducted by Biblioshiny software based on R-bibliometrix. Results: From 2000 to 2022, a total of 3,391 publications were reviewed. China is the most prolific country (n = 2601), and the USA is the most cited country (cited 7225 times). The Center of Experimental Rheumatology at University Hospital Zürich supported the maximum number of articles (n = 40). Steffen Gay published 85 records with 6263 total citations, perhaps making him the most impactful researcher. Arthritis and Rheumatism, Annals of Rheumatic Diseases, and Rheumatology are the top three journals. Conclusion: The current study revealed that rheumatoid disease (RD)-related fibroblast studies are growing. Based on the bibliometric analysis, we summarized three important topics: activation of different subsets of fibroblasts; regulation of fibroblast function; and in vitro validation of existing discoveries. They are all valuable directions, which provide reference and guidance for researchers and clinicians engaged in the research of RDs and fibroblasts.


Assuntos
Artrite Reumatoide , Doenças Reumáticas , Sinovite , Humanos , Masculino , Bibliometria , Fibroblastos
12.
Dis Markers ; 2023: 2243928, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36703644

RESUMO

Gliomas including astrocytomas, oligodendrogliomas, mixed oligoastrocytic, and mixed glioneuronal tumors are an important group of brain tumors. Based on the 2016 WHO classification for tumors in the central nervous system, gliomas were classified into four grades, from I to IV, and brain lower grade glioma (LGG) consists of grade II and grade III. Patients with LGG may undergo recurrence, which makes clinical treatment tough. Stem cell-like features of cancer cells play a key role in tumor's biological behaviors, including tumorigenesis, development, and clinical prognosis. In this article, we quantified the stemness feature of cancer cells using the mRNA stemness index (mRNAsi) and identified stemness-related key genes based on correlation with mRNAsi. Besides, hallmark gene sets and translate factors (TFs) which were highly related to stemness-related key genes were identified. Therefore, a recurrency-specific network was constructed and a potential regulation pathway was identified. Several online databases, assay for transposase-accessible chromatin using sequencing (ATAC-seq), single-cell sequencing analysis, and immunohistochemistry were utilized to validate the scientific hypothesis. Finally, we proposed that aurora kinase A (AURKA), positively regulated by Non-SMC Condensin I Complex Subunit G (NCAPG), promoted E2F target pathway in LGG, which played an important role in LGG recurrence.


Assuntos
Astrocitoma , Neoplasias Encefálicas , Glioma , Humanos , Prognóstico , Glioma/genética , Glioma/patologia , Neoplasias Encefálicas/patologia , Encéfalo/patologia
13.
Front Endocrinol (Lausanne) ; 14: 1109456, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37124747

RESUMO

Background: Diabetic foot ulcers (DFUs) are one of the most popular and severe complications of diabetes. The persistent non-healing of DFUs may eventually contribute to severe complications such as amputation, which presents patients with significant physical and psychological challenges. Fibroblasts are critical cells in wound healing and perform essential roles in all phases of wound healing. In diabetic foot patients, the disruption of fibroblast function exacerbates the non-healing of the wound. This study aimed to summarize the hotspots and evaluate the global research trends on fibroblast-related DFUs through bibliometric analysis. Methods: Scientific publications on the study of fibroblast-related DFUs from January 1, 2000 to April 27, 2022 were retrieved from the Web of Science Core Collection (WoSCC). Biblioshiny software was primarily performed for the visual analysis of the literature, CiteSpace software and VOSviewer software were used to validate the results. Results: A total of 479 articles on fibroblast-related DFUs were retrieved. The most published countries, institutions, journals, and authors in this field were the USA, The Chinese University of Hong Kong, Wound Repair and Regeneration, and Seung-Kyu Han. In addition, keyword co-occurrence networks, historical direct citation networks, thematic map, and the trend topics map summarize the research hotspots and trends in this field. Conclusion: Current studies indicated that research on fibroblast-related DFUs is attracting increasing concern and have clinical implications. The cellular and molecular mechanisms of the DFU pathophysiological process, the molecular mechanisms and therapeutic targets associated with DFUs angiogenesis, and the measures to promote DFUs wound healing are three worthy research hotspots in this field.


Assuntos
Pé Diabético , Humanos , Amputação Cirúrgica , Bibliometria , Fibroblastos
14.
Front Immunol ; 14: 1067830, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36875117

RESUMO

Background: Rheumatism covers a wide range of diseases with complex clinical manifestations and places a tremendous burden on humans. For many years, our understanding of rheumatism was seriously hindered by technology constraints. However, the increasing application and rapid advancement of sequencing technology in the past decades have enabled us to study rheumatism with greater accuracy and in more depth. Sequencing technology has made huge contributions to the field and is now an indispensable component and powerful tool in the study of rheumatism. Methods: Articles on sequencing and rheumatism, published from 1 January 2000 to 25 April 2022, were retrieved from the Web of Science™ (Clarivate™, Philadelphia, PA, USA) database. Bibliometrix, the open-source tool, was used for the analysis of publication years, countries, authors, sources, citations, keywords, and co-words. Results: The 1,374 articles retrieved came from 62 countries and 350 institutions, with a general increase in article numbers during the last 22 years. The leading countries in terms of publication numbers and active cooperation with other countries were the USA and China. The most prolific authors and most popular documents were identified to establish the historiography of the field. Popular and emerging research topics were assessed by keywords and co-occurrence analysis. Immunological and pathological process in rheumatism, classification, risks and susceptibility, and biomarkers for diagnosis were among the hottest themes for research. Conclusions: Sequencing technology has been widely applied in the study of rheumatism and propells research in the area of discovering novel biomarkers, related gene patterns and physiopathology. We suggest that further efforts be made to advance the study of genetic patterns related to rheumatic susceptibility, pathogenesis, classification and disease activity, and novel biomarkers.


Assuntos
Doenças Reumáticas , Humanos , Bibliometria , China , Bases de Dados Factuais , Tecnologia
15.
Front Microbiol ; 14: 1091060, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36819034

RESUMO

Introduction: Over the last several decades, the gut microbiota has been implicated in the formation and stabilization of health, as well as the development of disease. With basic and clinical experiments, scholars are gradually understanding the important role of gut microbiota in trauma, which may offer novel ideas of treatment for trauma patients. In this study, we purposed to summarize the current state and access future trends in gut microbiota and trauma research. Methods: We retrieved relevant documents and their published information from the Web of Science Core Collection (WoSCC). Bibliometrix package was responsible for the visualized analysis. Results: Totally, 625 documents were collected and the number of annual publications kept increasing, especially from 2016. China published the most documents while the USA had the highest local citations. The University of Colorado and Food & Function are respectively the top productive institution and journal, as PLOS One is the most local cited journal. With the maximum number of articles and local citations, Deitch EA is supported to be the most contributive author. Combining visualized analysis of keywords and documents and literature reading, we recognized two key topics: bacteria translocation in trauma and gut microbiota's effect on inflammation in injury, especially in nervous system injury. Discussion: The impact of gut microbiota on molecular and pathological mechanism of inflammation is the focus now. In addition, the experiments of novel therapies based on gut microbiota's impact on trauma are being carried out. We hope that this study can offer a birds-eye view of this field and promote the gradual improvement of it.

16.
Microbiol Spectr ; : e0013523, 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37768071

RESUMO

Gut microbiota can regulate many physiological processes within gastrointestinal tract and other distal sites. Dysbiosis may not only influence chronic diseases like the inflammatory bowel disease (IBD), metabolic disease, tumor and its therapeutic efficacy, but also deteriorate acute injuries. This article aims to review the documents in this field and summarize the research hotspots as well as developing processes. Gut microbiota and immune microenvironment-related documents from 1976 to 2022 were obtained from the Web of Science Core Collection database. Bibliometrics was used to assess the core authors and journals, most contributive countries and affiliations together with hotspots in this field and keyword co-occurrence analysis. Data were visualized to help comprehension. Nine hundred and twelve documents about gut microbiota and immune microenvironment were retrieved, and the annual publications increased gradually. The most productive author, country, and affiliation were "Zitvogel L," USA and "UNIV TEXAS MD ANDERSON CANC CTR," respectively. FRONTIERS IN IMMUNOLOGY, CANCERS, and INTERNATIONAL JOURNAL OF MOLECULAR SCIENCE were the periodicals with most publications. Keyword co-occurrence analysis identified three clusters, including gut microbiota, inflammation, and IBD. Combined with the visualized analysis of documents and keyword co-occurrence as well as literature reading, we recognized three key topics of gut microbiota: cancer and therapy; immunity, inflammation and IBD; acute injuries and metabolic diseases. This article revealed researches on gut microbiota and immune microenvironment were growing. More attention should be given to the latest hotspots like gut microbiota, inflammation, IBD, cancer and immunotherapy, acute traumas, and metabolic diseases.IMPORTANCEGut microbiota can regulate many physiological processes within gastrointestinal tract and other distal sites. Dysbiosis may not only influence chronic diseases like inflammatory bowel disease (IBD), metabolic disease, tumor and its therapeutic efficacy, but also deteriorate acute injuries. While the application of bibliometrics in the field of gut microbiota and immune microenvironment still remains blank, which focused more on the regulation of the gut microbiota on the immune microenvironment of different kinds of diseases. Here, we intended to review and summarize the presented documents in gut microbiota and immune microenvironment field by bibliometrics. And we revealed researches on gut microbiota and immune microenvironment were growing. More attention should be given to the latest hotspots like gut microbiota, inflammation, IBD, cancer and immunotherapy, acute traumas, and metabolic diseases.

17.
Environ Technol ; 43(12): 1833-1842, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-33225859

RESUMO

A novel macroporous strong acidic cation exchange resin (D001) modified by nano-sized goethite (nFeOOH@D001) was fabricated by using a facile ethanol dispersion and impregnation method, and its efficiency for Cr(VI) removal was tested thereafter. Due to the dispersing effect of ethanol, FeOOH particles of 20-150 nm were coated on the D001 surfaces. The nFeOOH@D001 obtained a Cr(VI) removal efficiency and capacity of 80.2% and 7.4 mg/g respectively, 5 times and 8 times higher than that of the pristine D001. The Cr(VI) removal by nFeOOH@D001 followed the pseudo second-order kinetics and the Langmuir adsorption model. Column experiments also demonstrated that the nFeOOH@D001 exhibited a much better ability to remove Cr(VI) as compared to the D001. Additionally, the nFeOOH@D001 showed a potential for reusability and renewability. The adsorbed nFeOOH@D001 could be easily desorbed by 0.1 M acetic acid and a reuse efficiency of 92.7% could be maintained after 4 desorption-adsorption cycles. The used nFeOOH@D001 could be eluted by 0.1 M HCl to remove nFeOOH, and the renewed D001 could be recoated by nFeOOH and achieved a regeneration rate of 97.8% for Cr(VI) removal. The above results indicated that nano-sized goethite modification is a promising method to endow D001 with the ability to remove Cr(VI) from water.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Adsorção , Resinas de Troca de Cátion , Cromo/análise , Etanol , Concentração de Íons de Hidrogênio , Compostos de Ferro , Cinética , Minerais , Água , Poluentes Químicos da Água/análise , Purificação da Água/métodos
18.
Burns Trauma ; 10: tkac045, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36518877

RESUMO

Background: Currently, various external tissue expansion devices are becoming widely used. Considering the scarcity of relevant application standards, this systematic review was performed to explore the effectiveness and safety of external tissue expansion techniques for the reconstruction of soft tissue defects. Method: A systematic review and meta-analysis on the efficacy and safety of external tissue expansion technique was conducted. A comprehensive search was performed in the following electronic databases: PubMed/Medline, Embase, Cochrane Library (Wiley Online Library), and Web of Science. Studies reporting patients with soft tissue defects under the treatment of external tissue expansion technique were included. Results: A total of 66 studies with 22 different types of external tissue expansion devices met the inclusion criteria. We performed a descriptive analysis of different kinds of devices. A single-arm meta-analysis was performed to evaluate the efficacy and safety of the external tissue expansion technique for different aetiologies. The pooled mean wound healing time among patients with defects after fasciotomy was 10.548 days [95% confidence interval (CI) = 5.796-15.299]. The pooled median wound healing times of patients with defects after excisional surgery, trauma, chronic ulcers and abdominal defects were 11.218 days (95% CI = 6.183-16.253), 11.561 days (95% CI = 7.062-16.060), 15.956 days (95% CI = 11.916-19.996) and 12.853 days (95% CI=9.444-16.227), respectively. The pooled wound healing rates of patients with defects after fasciotomy, excisional surgery, trauma, chronic ulcers and abdominal defects were 93.8% (95% CI=87.1-98.2%), 97.2% (95%CI=92.2-99.7%), 97.0% (95%CI=91.2-99.8%), 99.5% (95%CI=97.6-100%), and 96.8% (95%CI=79.2-100%), respectively. We performed a subgroup analysis in patients with diabetic ulcers and open abdominal wounds. The pooled median wound healing time of patients with diabetic ulcers was 11.730 days (95% CI = 10.334-13.125). The pooled median wound healing time of patients with open abdomen defects was 48.810 days (95% CI = 35.557-62.063) and the pooled successful healing rate was 68.8% (95% CI = 45.9-88.1%). A total of 1686 patients were included, 265 (15.7%) of whom experienced complications. The most common complication was dehiscence (n = 53, 3.14%). Conclusions: Our systematic review is the first to demonstrate the efficacy and safety of external tissue expansion in the management of soft tissue defects. However, we must interpret the meta-analysis results with caution considering the limitations of this review. Large-scale randomized controlled trials and long-term follow-up studies are still needed to confirm the effectiveness and evaluate the quality of healing.

19.
Front Microbiol ; 13: 1056117, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36466651

RESUMO

African swine fever virus (ASFV), a DNA double-stranded virus with high infectivity and mortality, causing a devastating blow to the pig industry and the world economy. The CD2v protein is an essential immunoprotective protein of ASFV. In this study, we expressed the extracellular region of the CD2v protein in the 293F expression system to achieve proper glycosylation. Monoclonal antibodies (mAbs) were prepared by immunizing mice with the recombinant CD2v protein. Eventually, four mAbs that target the extracellular region of the ASFV CD2v protein were obtained. All four mAbs responded well to the ASFV HLJ/18 strain and recognized the same linear epitope, 154SILE157. The specific shortest amino acid sequence of this epitope has been accurately identified for the first time. Meaningfully, the 154SILE157 epitope was highly conformed in the ASFV Chinese epidemic strain and Georgia2008/1 strains according to the analysis of the conservation and have a fair protective effect. These findings contribute to further understanding of the protein function of CD2v and provide potential support for the development of diagnostic tools and vaccines for ASFV.

20.
Biomed Res Int ; 2022: 9940566, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35127947

RESUMO

Mesothelioma (MESO) is a mesothelial originate neoplasm with high morbidity and mortality. Despite advancement in technology, early diagnosis still lacks effectivity and is full of pitfalls. Approaches of cancer diagnosis and therapy utilizing immune biomarkers and transcription factors (TFs) have attracted more and more attention. But the molecular mechanism of these features in MESO bone metastasis has not been thoroughly studied. Utilizing high-throughput genome sequencing data and lists of specific gene subsets, we performed several data mining algorithm. Single-sample Gene Set Enrichment Analysis (ssGSEA) was applied to identify downstream immune cells. Potential pathways involved in MESO bone metastasis were identified using Gene Oncology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, Gene Set Variation Analysis (GSVA), Gene Set Enrichment Analysis (GSEA), and Cox regression analysis. Ultimately, a model to help early diagnosis and to predict prognosis was constructed based on differentially expressed immune-related genes between bone metastatic and nonmetastatic MESO groups. In conclusion, immune-related gene SDC2, regulated by TFs TCF7L1 and POLR3D, had an important role on immune cell function and infiltration, providing novel biomarkers and therapeutic targets for metastatic MESO.


Assuntos
Neoplasias Ósseas , Mesotelioma , Neoplasias Ósseas/diagnóstico , Neoplasias Ósseas/genética , Humanos , Mesotelioma/diagnóstico , Mesotelioma/genética , Prognóstico , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA