Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Langmuir ; 40(21): 11039-11048, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38743262

RESUMO

The synergistic effect between bimetallic catalysts has been confirmed as an effective method for activating persulfate (PMS). Therefore, we immobilized copper-cobalt on chitosan to prepare bimetallic carbon catalysts for PMS activation and degradation of reactive dyes. Experimental results demonstrate that the CuCo-CTs/PMS catalytic degradation system exhibits excellent degradation performance toward various types of reactive dyes (e.g., Ethyl violet, Chlortalidone, and Di chlorotriazine), with degradation rates reaching 90% within 30 min. CuCo-CTs exhibit high catalytic activity over a wide pH range of 3-11 at room temperature and under static conditions, degrading over 92% of RV5 within 60 min. ultraviolet-visible (UV-vis) spectroscopy and color changes in the dye solution confirm the effective degradation of RV5, with a degradation rate of 97.2% within 10 min. Additionally, CuCo-CTs demonstrate good stability and reusability, maintaining a degradation rate of 92.8% after eight cycles. Kinetic studies indicate that the degradation follows pseudo-first-order kinetics. Furthermore, based on the results of radical scavenging experiments, the catalytic degradation mechanism of the dye involves both radical and nonradical pathways, with 1O2 identified as the primary active species. This study provides insights and experimental evidence for the application of persulfate oxidation in the treatment of dyeing wastewater.

2.
Cancer Sci ; 114(2): 533-545, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36380570

RESUMO

Tuftelin (TUFT1) is highly expressed in various tumor types and promotes tumor growth and metastasis by activating AKT and other core signaling pathways. However, the effects of post-translational modifications of TUFT1 on its oncogenic function remain unexplored. In this study, we found that TUFT1 was SUMOylated at K79. SUMOylation deficiency significantly impaired the ability of TUFT1 to promote the proliferation, migration, and invasion of gastric cancer (GC) cells by blocking AKT/mTOR signaling pathway activation. SUMOylation of TUFT1 is mediated by the E3 SUMO ligase tripartite motif-containing protein 27 (TRIM27), and these two proteins regulate the malignant behavior of GC cells and AKT activation in the same pathway. TUFT1 binds to TRIM27 through its N-terminus, and decreased binding affinity of TUFT1 to TRIM27 significantly impairs its oncogenic effect. In addition, data collected from GC clinical samples indicated that the combined detection of TUFT1 and TRIM27 expression reflected tumor malignancy and patient survival with higher precision. In addition, we proved that SUMOylated TUFT1 is not only an upstream signal for AKT activation but also directly activates mTOR by forming a complex with Rab GTPase activating protein 1, which further inhibits Rab GTPases and promotes the perinuclear accumulation of mTORC1. Altogether, these data indicate that SUMOylated TUFT1 is the active form that affects GC progression through the AKT/mTOR signaling pathway and might be a promising therapeutic target or biomarker for GC progression.


Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sumoilação , Linhagem Celular Tumoral , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Fatores de Transcrição/metabolismo , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Movimento Celular
3.
BMC Biol ; 17(1): 73, 2019 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-31521166

RESUMO

BACKGROUND: Spindle microtubule organization, regulated by microtubule-associated proteins, is critical for cell division. Proper organization of kinetochore fiber (K-fiber), connecting spindle poles and kinetochores, is a prerequisite for precise chromosomal alignment and faithful genetic material transmission. However, the mechanisms of K-fiber organization and dynamic maintenance are still not fully understood. RESULTS: We reveal that two previously uncharacterized coiled-coil domain proteins CCDC74A and CCDC74B (CCDC74A/B) are spindle-localized proteins in mammalian cells. They bind directly to microtubules through two separate domains and bundle microtubules both in vivo and in vitro. These functions are required for K-fiber organization, bipolar spindle formation, and chromosomal alignment. Moreover, CCDC74A/B form homodimers in vivo, and their self-association activity is necessary for microtubule bundling and K-fiber formation. CONCLUSIONS: We characterize CCDC74A and CCDC74B as microtubule-associated proteins that localize to spindles and are important K-fiber crosslinkers required for bipolar spindle formation and chromosome alignment.


Assuntos
Cinetocoros/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Fuso Acromático/metabolismo , Animais , Células COS , Chlorocebus aethiops , Células HEK293 , Células HeLa , Humanos , Proteínas Associadas aos Microtúbulos/genética , Mitose
4.
Micromachines (Basel) ; 15(5)2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38793235

RESUMO

High-dynamic-range integrated magnetometers demonstrate extensive potential applications in fields involving complex and changing magnetic fields. Among them, Diamond Nitrogen Vacancy Color Core Magnetometer has outstanding performance in wide-range and high-precision magnetic field measurement based on its inherent high spatial resolution, high sensitivity and other characteristics. Therefore, an innovative frequency-tracking scheme is proposed in this study, which continuously monitors the resonant frequency shift of the NV color center induced by a time-varying magnetic field and feeds it back to the microwave source. This scheme successfully expands the dynamic range to 6.4 mT, approximately 34 times the intrinsic dynamic range of the diamond nitrogen-vacancy (NV) center. Additionally, it achieves efficient detection of rapidly changing magnetic field signals at a rate of 0.038 T/s.

5.
Curr Biol ; 34(6): 1295-1308.e5, 2024 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-38452759

RESUMO

Lysine acetylation of non-histone proteins plays crucial roles in many cellular processes. In this study, we examine the role of lysine acetylation during sister chromatid separation in mitosis. We investigate the acetylation of securin at K21 by cell-cycle-dependent acetylome analysis and uncover its role in separase-triggered chromosome segregation during mitosis. Prior to the onset of anaphase, the acetylated securin via TIP60 prevents its degradation by the APC/CCDC20-mediated ubiquitin-proteasome system. This, in turn, restrains precocious activation of separase and premature separation of sister chromatids. Additionally, the acetylation-dependent stability of securin is also enhanced by its dephosphorylation. As anaphase approaches, HDAC1-mediated deacetylation of securin promotes its degradation, allowing released separase to cleave centromeric cohesin. Blocking securin deacetylation leads to longer anaphase duration and errors in chromosome segregation. Thus, this study illustrates the emerging role of securin acetylation dynamics in mitotic progression and genetic stability.


Assuntos
Cromátides , Lisina , Separase/metabolismo , Securina/genética , Securina/metabolismo , Cromátides/metabolismo , Acetilação , Lisina/genética , Lisina/metabolismo , Proteínas de Ciclo Celular/metabolismo , Anáfase , Endopeptidases , Segregação de Cromossomos
6.
Int J Biol Macromol ; 261(Pt 2): 129804, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38296151

RESUMO

With the diversification of people's demand for textile functions, the preparation of multifunctional fabrics is still a current research hotspot. In this study, the water-soluble epoxy compound N1, N6-bis(oxiran-2-ylmethyl) hexane-1,6-diamine (EH) was introduced into cellulose macromolecule blended fabrics (cotton/modal) by two-phase vaporization technique, resulting in excellent wrinkle, hydrophobicity, and certain UV protection effects. It could be observed by electron microscopy that EH formed a polymer film on the fiber surface. In addition, the results of EDS scans and fiber swelling rate tests showed that EH was uniformly distributed and formed a cross-linked structure in the amorphous zones inside the fibers. Compared with the control fabrics, the wrinkle recovery angle of the EH-treated fabric was increased by 39.7 %. The fabrics could reach a contact angle of 136.9°, providing excellent hydrophobic effect. In addition, the fabrics achieved certain UV protection effects (UPF of 50+). The EH-treated fabrics were less stabilized in strong acid and alkali conditions, but exhibited greater durability in other environments. In summary, the internal and external synergistic effects of EH in forming polymer films on the fibers surface and internal cross-linking structures provided a cleaner, simple, and feasible method for the preparation of multifunctional cellulose macromolecule fibers textiles.


Assuntos
Celulose , Óxido de Etileno , Humanos , Celulose/química , Têxteis , Diaminas
7.
Cell Rep ; 43(2): 113696, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38280197

RESUMO

In animal cells, the dysregulation of centrosome duplication and cohesion maintenance leads to abnormal spindle assembly and chromosomal instability, contributing to developmental disorders and tumorigenesis. However, the molecular mechanisms involved in maintaining accurate centrosome number control and tethering are not fully understood. Here, we identified coiled-coil domain-containing 102A (CCDC102A) as a centrosomal protein exhibiting a barrel-like structure in the proximal regions of parent centrioles, where it prevents centrosome overduplication by restricting interactions between Cep192 and Cep152 on centrosomes, thereby ensuring bipolar spindle formation. Additionally, CCDC102A regulates the centrosome linker by recruiting and binding C-Nap1; it is removed from the centrosome after Nek2A-mediated phosphorylation at the onset of mitosis. Overall, our results indicate that CCDC102A participates in controlling centrosome number and maintaining centrosome cohesion, suggesting that a well-tuned system regulates centrosome structure and function throughout the cell cycle.


Assuntos
Centrossomo , Proteínas Serina-Treonina Quinases , Animais , Proteínas Serina-Treonina Quinases/metabolismo , Ciclo Celular , Centrossomo/metabolismo , Centríolos/metabolismo , Proteínas/metabolismo
8.
Environ Technol ; 44(19): 2913-2923, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35227172

RESUMO

Antimony (Sb) and arsenic (As), carcinogenic and toxic elements, cause environmental pollution, in addition, the different chemical properties of Sb and As make them difficult to co-removal. In this study, we incorporated of nano-TiO2 in the chitosan matrix to synthesized an efficient adsorption material nano-titania-crosslinked chitosan (TA-chitosan) beads, which was used to simultaneous removal of Sb and As from aqueous solution. TA-chitosan possesses a robust high removal performance for Sb and As under weakly acidic and neutral conditions; however, the removal is significantly inhibited under alkaline pH values. The adsorption kinetics of Sb and As on TA-chitosan conformed to the pseudo-second-order model, indicating that the removal of Sb and As was a chemical adsorption process. The adsorption isotherms of Sb(III/V) and As(III/V) on TA-chitosan follow the Langmuir model, and their maximum adsorption capacities are 70.19, 25.32, 64.52 and 102.89 mg·g-1, respectively. The zeta potential showed that the surface of TA-chitosan was negatively charged over the full pH range upon Sb and As adsorption, demonstrating that negatively charged inner-sphere complexes were formed on TA-chitosan. This work may also provide a new perspective in titanium-chitosan material synthesis and heavy metal ions co-removal.


Assuntos
Arsênio , Quitosana , Metais Pesados , Poluentes Químicos da Água , Antimônio/química , Quitosana/química , Concentração de Íons de Hidrogênio , Adsorção , Poluentes Químicos da Água/química , Cinética
9.
Environ Pollut ; 303: 119160, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35304178

RESUMO

Currently, alleviating antimony (Sb) contamination in aqueous solutions is crucial for restoring and recovering ecological and environmental health. Due to its toxicity, bioaccumulation and mobile characteristics, developing an efficient technique for antimony decontamination is imperative. Herein, we prepared a Fe-Cu-chitosan (FCC) composite by a one-step coprecipitation method, in which nanoscale Fe/Cu acts as the active sites and the whole structure is exhibited as porous microscale particles. A Fe/Cu proportion of 2/1 (FCC-2/1) was determined to be the optimum proportion for antimony adsorption, specifically 34.5 mg g-1 for Sb(III) and 26.8 mg g-1 for Sb(V) (initial concentration: 5.0 mg L-1). Spectral characterization, batch experiments and density functional theory (DFT) simulations were applied to determine the adsorption mechanism, in which surface hydroxyls (-OH) were responsible for antimony complexion and Fe-Cu coupling was a major contributor to adsorption enhancement. According to kinetic analysis, Cu provided an electrostatic attraction during the adsorption process, which facilitated the transportation of antimony molecules to the material interface. In the meantime, the FCC electronic structure was modified due to the optimization of the Fe-Cu interface coupling. Based on the Mullikan net charge, the intrinsic Fe-O-Cu bond might favor interfacial electronic redistribution. When the antimony molecule contacted the adsorption interface, the electrons transferred swiftly as Fe/Cu 3d and O 2p orbital hybridization occurred, thus inducing a stabilizing effect. This work may offer a new perspective for binary oxide construction and its adsorption mechanism analysis.


Assuntos
Antimônio , Quitosana , Adsorção , Antimônio/química , Cinética , Óxidos
10.
Sci Total Environ ; 830: 154831, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35346707

RESUMO

Currently, metalloid co-contamination, such as antimony and arsenic in soil, poses a serious threat to ecological stability and human health. Stabilization, a low-cost, effective, environmentally mild remediation strategy, shows enormous potential for mitigating environmental concerns. In this study, a novel FeMg modified porous biochar with different Fe/Mg proportions was prepared using the co-precipitation method to investigate the stabilizing efficiency in aqueous solutions and real soils. The optimal removal performance for Sb(V) and As(V) was the 1/3 mol ratio of Fe/Mg (3FMKBC), in which the maximum adsorption capacities of Sb(V) and As(V) were 296.9 and 195.4 mg/g, respectively. Detailed morphological and BET analyses suggested that BC effectively reduced Fe and Mg oxide agglomeration and endowed more interfacial active sites. Meanwhile, detailed adsorption behavior and surface analysis of 3FMKBC indicated that electrostatic interactions, hydrogen bonds, surface hydroxyl complexation, and ligand exchange induced by ≡C-O-Fe/Mg-OH dominated the stabilization process. Moreover, according to a 40-day incubation study in soil, 3FMKBC (1 wt. ml) decreased the available Sb (28.5% and 23.0%) and As (83.1% and 31.1%) extracted by toxicity characteristic leaching procedure (TCLP) and 0.1 M Na2HPO4, respectively. The above results indicated that 3FMKBC was an optimal amendment for limiting the migration and bioavailability of Sb and As. In addition, the sequential extraction and soil properties confirmed that 3FMKBC could realize the redistribution of resolved Sb and As between the soil solution and solid particles effectively, thereby converting the bioavailable/labile fraction of Sb and As to a more stabilized fraction. All results demonstrated that 3FMKBC could be a prospective material for Sb and As co-contamination stabilization.


Assuntos
Arsênio , Poluentes do Solo , Antimônio/análise , Arsênio/análise , Carvão Vegetal , Humanos , Solo/química , Poluentes do Solo/análise
11.
Sci Total Environ ; 803: 150084, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34500274

RESUMO

Currently, the environmental and ecological damage caused by As(V) and Sb(V) co-contamination has attracted widespread attention worldwide. Due to the similar intrinsic structure configuration and electrostatic repulsion of As(V) and Sb(V), the long-standing issue of their low co-removal capacity remains unresolved. In this study, novel Fe-Cu (FC) binary materials with varied Fe/Cu proportions were synthesized via a simple co-precipitation method to co-eliminate aquatic As(V) and Sb(V). A 2/1 ratio of Fe/Cu was determined to be a suitable proportion with a higher co-adsorption capacity, specifically 70.9 mg·g-1 for As(V) and 94.3 mg·g-1 for Sb(V). Detailed morphological and structural analyses indicated that the FC material gradually changed from microscale aggregates to nanoscale spheres with increasing Cu content, accompanied by an increasing crystalline degree and higher surface area. Additionally, the transformation of amorphous ferrihydrite (FO) into FeO(OH) was suppressed by Fe-Cu complexion during the co-adsorption process, in which ferrihydrite (FO) had more adsorption sites than FeO(OH). In addition, the addition of Cu promoted the pHpzc of FC materials from the acidic range into the neutral or alkaline range. The increased potential difference of FC materials accelerated the As(V) and Sb(V) diffusion rate and effectively offset native electrostatic repulsion, which exhibited a considerable effect than the adsorption sites. Through detailed kinetic data analysis, it was determined that the proportion of the diffusion layer thickness around Sb(V) was suppressed to the As(V) level, and the adsorption kinetics of the two species were both promoted by the self-driven force field. All the results indicated that the co-adsorption capacity depended on the coupling contribution of Fe and Cu, where Fe oxide acted as the major adsorption potential and Cu provided a self-driven force for As(V) and Sb(V) diffusion. This study may provide a novel prospective for homogeneous metal ion co-removal.


Assuntos
Óxidos , Poluentes Químicos da Água , Adsorção , Antimônio , Cobre , Concentração de Íons de Hidrogênio , Estudos Prospectivos , Água
12.
J Colloid Interface Sci ; 628(Pt A): 607-618, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-35940145

RESUMO

Efficient and durable nonprecious catalysts for the oxygen evolution reaction (OER) are crucial for practical water electrolysis for hydrogen production. A self-supported OER catalytic electrode with sufficient exposure of the catalyst and tight anchoring onto the current collector is vital for the catalytic activity and stability, and is therefore deemed to be a preferable tactic to enhance water electrolysis performance. Herein, a polyoxometalate (POM) molecular cluster-mediated electroplating and activation tactics are proposed to design a self-supported molybdenum nickel oxide (MoNiOx) catalytic electrode for the OER. The MoNiOx active layer can anchor tightly onto the Ni foam current collector with sufficient surface exposure and high structural stability, therefore enabling high alkali OER catalytic efficiency (222 mV at 10 mA cm-2) and robust durability (only slight decay in catalytic efficiency upon 12 days of chronopotentiometry (V-t) test). Moreover, the easily processable electroplating and active protocol can serve as a general approach to prepare other OER catalytic electrodes by altering the reactants and current collectors. The current work paves a facile and universal way to design a highly active and durable molybdenum (Mo) based hybrid catalytic electrode for OER via molecular cluster-assisted electroplating and activation treatment.

13.
Phytomedicine ; 67: 153140, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31884405

RESUMO

BACKGROUND: Hedansanqi Tiaozhi Tang extract (HTT) consists of Notoginseng, Danshen, Hawthorn and Lotus leaf from traditional Chinese medicine, which has significant therapeutic effects on hyperlipidemia in patients with non-alcoholic fatty liver disease (NAFLD). PURPOSE: This study sought to evaluate the pharmacological effects and molecular mechanism of HTT for the treatment of hyperlipidemia in adipocytes and animal model with NAFLD. METHODS: Quantitative phytochemical analysis of HTT was performed by HPLC. Antioxidant activity and the adipogenesis in 3T3-L1 cells were assessed. In the rat model induced by high-fat diet, lipid-related and antioxidant markers in serum and liver were detected. Moreover, the organ weights, non-alcoholic steatohepatitis (NASH) score and the levels of Nrf2 and HO-1 in liver sections were analyzed by tissue pathological techniques. RESULTS: 8 constituents were identified in HTT including saponins, flavonoids, alkaloids and others. HTT treatment enhanced antioxidant activities and promoted lipolysis in 3T3-L1 adipocytes. We also found that HTT inhibited weight gain, reduced the lipid profiles and improved the liver function and pathological characteristics induced by high-fat diet. In addition, HTT activated the Nrf2/HO-1 antioxidant pathway in the liver. CONCLUSION: HTT has protective effect against NAFLD in vitro and in vivo by activating the Nrf2/HO-1 antioxidant pathway.


Assuntos
Antioxidantes/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Heme Oxigenase (Desciclizante)/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Células 3T3-L1 , Animais , Crataegus/química , Dieta Hiperlipídica/efeitos adversos , Medicamentos de Ervas Chinesas/química , Hiperlipidemias/tratamento farmacológico , Hiperlipidemias/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Compostos Fitoquímicos/análise , Ratos Sprague-Dawley , Salvia miltiorrhiza
14.
Cell Rep ; 29(7): 2078-2091.e5, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31722219

RESUMO

In animal cells, centriole number is strictly controlled in order to guarantee faithful cell division and genetic stability, but the mechanism by which the accuracy of centrosome duplication is maintained is not fully understood. Here, we show that CCDC84 constrains centriole number by modulating APC/CCdh1-mediated HsSAS-6 degradation. More importantly, CCDC84 acetylation oscillates throughout the cell cycle, and the acetylation state of CCDC84 at lysine 31 is regulated by the deacetylase SIRT1 and the acetyltransferase NAT10. Deacetylated CCDC84 is responsible for its centrosome targeting, and acetylated CCDC84 promotes HsSAS-6 ubiquitination by enhancing the binding affinity of HsSAS-6 for Cdh1. Our findings shed new light on the function of (de)acetylation in centriole number regulation as well as refine the established centrosome duplication model.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ciclo Celular/metabolismo , Duplicação Cromossômica , Cromossomos Humanos/metabolismo , Proteólise , Acetilação , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas de Ciclo Celular/genética , Cromossomos Humanos/genética , Células HEK293 , Células HeLa , Humanos
15.
RSC Adv ; 9(7): 3816-3827, 2019 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35518093

RESUMO

A general solution-phase strategy is developed to synthesize nanostructure niobates such as MnNb2O6, SnNb2O6 and ZnNb2O6 on natural mineral diatomite for water environmental remediation. (NH4)2C2O4 aqueous solution is the key to achieve a scalable and controllable synthesis of niobate/diatomite hybrid systems, which generates NH3·H2O for surface etching activation of diatomite, and H2C2O4 for complexation dissolution of Nb2O5, enabling the heterogeneous crystallization process to proceed with controllable growth kinetics. First principle calculations indicate that both niobium atom and niobium-oxygen species have the lowest adsorption energy on SiO2 surface, and then induce the nucleating process of Nb-O-Mn (or Zn, Sn) networks. Cr(vi), Fe(iii), and Pb(ii) ions are taken as target pollutants to evaluate the water-cleaning ability of the niobate-modified diatomite. Possible mechanisms for the photoreduction of Cr(vi), physical adsorption of Fe(OH)3 colloids, and chemisorption of Pb(ii) ions are proposed on the basis of experimentally investigations. The possibility of combining the advantages of natural mineral diatomite and nanostructured niobates provides a highly robust and potential material system with versatile functionalities of heavy metal ion removal, demonstrating great promise for a wide range of water purification.

16.
Nat Commun ; 7: 10151, 2016 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-26743940

RESUMO

The spindle assembly checkpoint (SAC) arrests cells in mitosis by sensing unattached kinetochores, until all chromosomes are bi-oriented by spindle microtubules. Kinetochore accumulation of the SAC component Mad1-Mad2 is crucial for SAC activation. However, the mechanism by which Mad1-Mad2 accumulation at kinetochores is regulated is not clear. Here we find that Cep57 is localized to kinetochores in human cells, and binds to Mis12, a KMN (KNL1/Mis12 complex/Ndc80 complex) network component. Cep57 also interacts with Mad1, and depletion of Cep57 results in decreased kinetochore localization of Mad1-Mad2, reduced SAC signalling and increased chromosome segregation errors. We also show that the microtubule-binding activity of Cep57 is involved in the timely removal of Mad1 from kinetochores. Thus, these findings reveal that the KMN network-binding protein Cep57 is a mitotic kinetochore component, and demonstrate the functional connection between the KMN network and the SAC.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Cinetocoros/metabolismo , Pontos de Checagem da Fase M do Ciclo Celular , Proteínas Mad2/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Linhagem Celular , Segregação de Cromossomos , Proteínas do Citoesqueleto , Células HEK293 , Células HeLa , Humanos , Microscopia de Fluorescência , Organismos Geneticamente Modificados , Polimerização , Ligação Proteica , Interferência de RNA , Saccharomyces cerevisiae , Imagem com Lapso de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA