RESUMO
Extreme drought stress is often accompanied by heat stress after anthesis in winter wheat. Whether nitrogen (N) can mitigate the damage caused by combined stress on wheat plants by regulating root physiological characteristics is still unclear. Thus, this study aimed to study the effects of combined heat and drought stress on photosynthesis, leaf water relations, root antioxidant system, osmoregulatory, and yield in wheat to reveal the physiological mechanism of N regulating the adverse impacts of combined stress on wheat. Heat and drought stress markedly reduced photosynthesis, leaf water content, root vitality, and bleeding sap. The combination of heat and drought strengthens these changes. Within a certain stress range, the increase in soluble sugar and proline contents and the activities of superoxide dismutase, peroxidase, catalase, and ascorbate peroxidase under combined stress effectively alleviated the oxidative damage. Compared with those under high N application (N3), wheat plants under low N application (N1) maintained higher yield and yield components under combined stress; the number of grains per spike, 1000-grain weight, and yield increased by 13.65%, 9.07%, and 15.33%, respectively, under N1 compared with those under N3 treatment, which may be attributed to the greater maintenance of photosynthesis, leaf water status, root vitality, and antioxidant and osmoregulation capacities. In summary, reduced N application mitigated the damage caused by combined heat and drought stress in wheat by improving root physiological characteristics and enhanced adaptability to combined stress, which is an appropriate strategy to compensate for yield losses.
Assuntos
Nitrogênio , Triticum , Triticum/fisiologia , Antioxidantes , Secas , ÁguaRESUMO
The impact of drought events on the growth and yield of wheat plants has been extensively reported; however, limited information is available on the changes in physiological characteristics and their effects on the growth and water productivity of wheat after repeated drought stimuli. Moreover, whether appropriate drought stimulus can improve stress resistance in plants by improving physiological traits remains to be explored. Thus, in this study, a pot experiment was conducted to investigate the effects of intermittent and persistent mild [65%-75% soil water-holding capacity (SWHC)], moderate (55%-65% SWHC), and severe drought (45%-55% SWHC) stress on the growth, physiological characteristics, yield, and water-use efficiency (WUE) of winter wheat. After the second stress stimulus, persistent severe drought stress resulted in 30.98%, 234.62%, 53.80%, and 31.00% reduction in leaf relative water content, leaf water potential, photosynthetic rate (Pn), and indole-3-acetic acid content (IAA), respectively, compared to the control plants. However, abscisic acid content, antioxidant enzyme activities, and osmoregulatory substance contents increased significantly under drought stress, especially under persistent drought stress. After the second rehydration stimulus (ASRR), the actual and maximum efficiency of PSII and leaf water status in the plants exposed to intermittent moderate drought (IS2) stress were restored to the control levels, resulting in Pn being 102.56% of the control values; instantaneous WUE of the plants exposed to persistent severe drought stress was 1.79 times that of the control plants. In addition, the activities of superoxide dismutase, peroxidase, catalase, and glutathione reductase, as well as the content of proline, under persistent mild drought stress increased by 52.98%, 33.47%, 51.95%, 52.35%, and 17.07% at ASRR, respectively, compared to the control plants, which provided continuous antioxidant protection to wheat plants. This was also demonstrated by the lower H2O2 and MDA contents after rehydration. At ASRR, the IAA content in the IS2 and persistent moderate drought treatments increased by 36.23% and 19.61%, respectively, compared to the control plants, which favored increased aboveground dry mass and plant height. Compared to the control plants, IS2 significantly increased wheat yield, WUE for grain yield, and WUE for biomass, by 10.15%, 32.94%, and 33.16%, respectively. Collectively, IS2 increased grain growth, yield, and WUE, which could be mainly attributed to improved physiological characteristics after drought-stimulated rehydration.
Assuntos
Secas , Triticum , Água , Triticum/fisiologia , Triticum/crescimento & desenvolvimento , Triticum/metabolismo , Água/metabolismo , Estresse Fisiológico , Folhas de Planta/fisiologia , Folhas de Planta/metabolismo , Antioxidantes/metabolismo , Fotossíntese/fisiologia , Ácido Abscísico/metabolismo , Ácidos Indolacéticos/metabolismoRESUMO
Revealing the turbulent drag reduction mechanism of water flow on microstructured surfaces is beneficial to controlling and using this technology to reduce turbulence losses and save energy during water transportation. Two microstructured samples, including a superhydrophobic and a riblet surface, were fabricated near which the water flow velocity, and the Reynolds shear stress and vortex distribution were investigated using a particle image velocimetry. The dimensionless velocity was introduced to simplify the Ω vortex method. The definition of vortex density in water flow was proposed to quantify the distribution of different strength vortices. Results showed that the velocity of the superhydrophobic surface (SHS) was higher compared with the riblet surface (RS), while the Reynolds shear stress was small. The vortices on microstructured surfaces were weakened within 0.2 times that of water depth when identified by the improved ΩM method. Meanwhile, the vortex density of weak vortices on microstructured surfaces increased, while the vortex density of strong vortices decreased, proving that the reduction mechanism of turbulence resistance on microstructured surfaces was to suppress the development of vortices. When the Reynolds number ranged from 85,900 to 137,440, the drag reduction impact of the superhydrophobic surface was the best, and the drag reduction rate was 9.48%. The reduction mechanism of turbulence resistance on microstructured surfaces was revealed from a novel perspective of vortex distributions and densities. Research on the structure of water flow near the microstructured surface can promote the drag reduction application in the water field.
RESUMO
Extreme temperatures and droughts are considered as the two main factors that limit wheat growth and production. Although responses of wheat plants to heat and drought stress have been extensively investigated, little is known about the extent to which wheat plants can recover after stress relief. In this study, a winter wheat pot experiment was conducted to evaluate the growth, physiological activities, and yield formation responses of wheat to stress and recovery periods under heat stress (36 °C, daily maximum temperature), drought (45-55% of soil water holding capacity), and combined stress conditions. Heat and drought stress significantly reduced photosynthesis, leaf relative water content (LRWC), leaf water potential (LWPnoon), and nitrogen metabolism enzyme activities and increased electrolyte leakage. These parameters showed significant interactions between heat and drought stress. Beneficial osmoregulation of membrane stability was observed in stressed plants because of the accumulation of proline and soluble sugars. Within a range of stresses, the abovementioned physiological processes of individual heat- and drought-stressed plants recovered to levels comparable to those of the control. The recovery capacities of the physiological traits decreased gradually with increasing stress duration, particularly under combined stress. The recovery of LWPnoon and LRWC contributed to the improved photosynthetic performance after stress relief. The combined stress caused greater yield losses than individual heat and drought stress, which was mainly attributed to low levels of thousand grain weight (TGW), the number of grains per ear, and the grain filling rate. After stress relief, the recovery of proline content, glutamine synthetase activity, photosynthetic rate, and LRWC were closely associated with grain yield and thousand grain weight. Collectively, these findings contribute to a better understanding of the coordinated responses of winter wheat during the combined heat and drought stress and recovery periods.
Assuntos
Secas , Triticum , Triticum/metabolismo , Osmorregulação , Fotossíntese , Água/metabolismo , Grão Comestível/metabolismo , Prolina/metabolismo , NitrogênioRESUMO
There will be longer and more intense periods of heat and drought stress in the future for terrestrial ecosystems. Although the responses of wheat plants to heat and drought stress alone have been extensively investigated, little is known about the extent to which their recovery can be assured after stress relief. In this study, a winter wheat pot experiment was conducted to investigate the changes in photosynthetic performance, antioxidant activity, osmoregulation, and membrane lipid peroxidation under heat stress (36 °C), drought (45-55% of soil water holding capacity), and combined stress conditions. The results showed that heat and drought stress significantly reduced the photosynthetic rate and the contents of chlorophyll and carotenoid. Superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and glutathione reductase (GR) activities were greatly activated by heat and drought stress to scavenge overproduced superoxide anion (O2-). Plants exhibited positive osmoregulation through the synthesis of soluble protein (SP), soluble sugar (SS), and proline (Pro) to improve membrane stability. Within a range of stress, combined heat and drought stress exhibited significant interactive effects in the above mentioned indicators. After stress relief, the majority of physiological processes were reversible, as indicated by the effective recovery of pigment contents, photosynthetic rate, antioxidant enzyme activities, osmoregulatory substance contents, and O2- production. Antioxidant enzyme activities tended to increase after recovering from 12 days of combined stress, whereas they were still not effective in mitigating oxidative damage. High levels of O2- and malondialdehyde (MDA) and a low relative growth rate during the recovery confirmed the irreversible damage caused by combined heat and drought stress. ROC (receiver operating characteristic) analysis indicated that GR and SS could accurately detect individual heat and drought stress that wheat plants were suffering or had suffered (AUC = 0.812-0.965), while POD and Pro had greater potential for diagnosing combined heat and drought stress (AUC = 0.871-0.958). Physiological indicators of stress tolerance were closely related to the photosynthetic rate during the stress, particularly Pro and GR. Collectively, the physiological processes of plants are reversible within a certain range of stress. POD, GR, Pro, and SS play vital roles in identifying and resisting heat, drought, and combined stress, and the recovery of these indicators contributed to improving photosynthesis and thereby increasing wheat growth. Our research contributes to the understanding of the underlying physiological mechanisms of plants in response to combined heat and drought stress and after stress relief.
Assuntos
Antioxidantes , Osmorregulação , Antioxidantes/metabolismo , Triticum/metabolismo , Secas , Ecossistema , Fotossíntese , Peroxidases/metabolismo , Superóxido Dismutase/metabolismoRESUMO
Riblet and superhydrophobic surfaces are two typical passive control technologies used to save energy. In this study, three microstructured samples-a micro-riblet surface (RS), a superhydrophobic surface (SHS), and a novel composite surface of micro-riblets with superhydrophobicity (RSHS)-were designed to improve the drag reduction rate of water flows. Aspects of the flow fields of microstructured samples, including the average velocity, turbulence intensity, and coherent structures of water flows, were investigated via particle image velocimetry (PIV) technology. A two-point spatial correlation analysis was used to explore the influence of the microstructured surfaces on coherent structures of water flows. Our results showed that the velocity on microstructured surface samples was higher than that on the smooth surface (SS) samples, and the turbulence intensity of water on the microstructured surface samples decreased compared with that on the SS samples. The coherent structures of the water flow on microstructured samples were restricted by length and structural angles. The drag reduction rates of the SHS, RS, and RSHS samples were -8.37 %, -9.67 %, and -17.39 %, respectively. The novel established RSHS demonstrated a superior drag reduction effect and could improve the drag reduction rate of water flows.