Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 315
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(D1): D1651-D1660, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37843152

RESUMO

Tropical crops are vital for tropical agriculture, with resource scarcity, functional diversity and extensive market demand, providing considerable economic benefits for the world's tropical agriculture-producing countries. The rapid development of sequencing technology has promoted a milestone in tropical crop research, resulting in the generation of massive amount of data, which urgently needs an effective platform for data integration and sharing. However, the existing databases cannot fully satisfy researchers' requirements due to the relatively limited integration level and untimely update. Here, we present the Tropical Crop Omics Database (TCOD, https://ngdc.cncb.ac.cn/tcod), a comprehensive multi-omics data platform for tropical crops. TCOD integrates diverse omics data from 15 species, encompassing 34 chromosome-level de novo assemblies, 1 255 004 genes with functional annotations, 282 436 992 unique variants from 2048 WGS samples, 88 transcriptomic profiles from 1997 RNA-Seq samples and 13 381 germplasm items. Additionally, TCOD not only employs genes as a bridge to interconnect multi-omics data, enabling cross-species comparisons based on homology relationships, but also offers user-friendly online tools for efficient data mining and visualization. In short, TCOD integrates multi-species, multi-omics data and online tools, which will facilitate the research on genomic selective breeding and trait biology of tropical crops.


Assuntos
Produtos Agrícolas , Bases de Dados Genéticas , Produtos Agrícolas/genética , Transcriptoma , Genoma de Planta
2.
Plant J ; 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38805573

RESUMO

Cassava, a pivotal tropical crop, exhibits rapid growth and possesses a substantial biomass. Its stem is rich in cellulose and serves as a crucial carbohydrate storage organ. The height and strength of stems restrict the mechanised operation and propagation of cassava. In this study, the triple helix transcription factor MeGT2.6 was identified through yeast one-hybrid assay using MeCesA1pro as bait, which is critical for cellulose synthesis. Over-expression and loss-of-function lines were generated, and results revealed that MeGT2.6 could promote a significant increase in the plant height, stem diameter, cell size and thickness of SCW of cassava plant. Specifically, MeGT2.6 upregulated the transcription activity of MeGA20ox1 and downregulated the expression level of MeGA2ox1, thereby enhancing the content of active GA3, resulting in a large cell size, high plant height and long stem diameter in cassava. Moreover, MeGT2.6 upregulated the transcription activity of MeCesA1, which promoted the synthesis of cellulose and hemicellulose and produced a thick secondary cell wall. Finally, MeGT2.6 could help supply additional substrates for the synthesis of cellulose and hemicellulose by upregulating the invertase genes (MeNINV1/6). Thus, MeGT2.6 was found to be a multiple regulator; it was involved in GA metabolism and sucrose decomposition and the synthesis of cellulose and hemicellulose.

3.
Plant Physiol ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38635971

RESUMO

Rapid postharvest physiological deterioration (PPD) of cassava (Manihot esculenta Crantz) storage roots is a major constraint that limits the potential of this plant as a food and industrial crop. Extensive studies have been performed to explore the regulatory mechanisms underlying the PPD processes in cassava to understand their molecular and physiological responses. However, the exceptional functional versatility of alternative splicing (AS) remains to be explored during the PPD process in cassava. Here, we identified several aberrantly spliced genes during the early PPD stage. An in-depth analysis of AS revealed that the abscisic acid (ABA) biosynthesis pathway might serve as an additional molecular layer in attenuating the onset of PPD. Exogenous ABA application alleviated PPD symptoms through maintaining ROS generation and scavenging. Interestingly, the intron retention transcript of MeABA1 (ABA DEFICIENT 1) was highly correlated with PPD symptoms in cassava storage roots. RNA yeast three-hybrid and RNA immunoprecipitation assays showed that the serine/arginine-rich protein MeSCL33 (SC35-like splicing factor 33) binds to the precursor mRNA of MeABA1. Importantly, overexpressing MeSCL33 in cassava conferred improved PPD resistance by manipulating the AS and expression levels of MeABA1 and then modulating the endogenous ABA levels in cassava storage roots. Our results uncovered the pivotal role of the ABA biosynthesis pathway and RNA splicing in regulating cassava PPD resistance and proposed the essential roles of MeSCL33 for conferring PPD resistance, broadening our understanding of SR proteins in cassava development and stress responses.

4.
Acta Biochim Biophys Sin (Shanghai) ; 56(4): 576-585, 2024 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-38433576

RESUMO

Poly ADP-ribose polymerase (PARP) inhibitor monotherapies are selectively effective in patients with pancreatic, breast, prostate, and ovarian cancers with BRCA1 mutations. Cancer patients with more frequent wild-type BRCA show poor responses to PARP inhibitors. Moreover, patients who are initially sensitive to these inhibitors eventually respond poorly to drugs. In the present study, we discover that abrogation of Kruppel-like factor 5 (KLF5) significantly inhibits homologous recombination, which is the main mechanism for DNA double-stranded repair. Furthermore, the downregulation of KLF5 expression promotes the DNA damage induced by olaparib and significantly reduces the IC 50 of the RARP inhibitor in pancreatic cancer cells. Overexpression of BRCA1 reverses the above effects caused by silencing of KLF5. Olaparib combined with a KLF5 inhibitor has an enhanced cytotoxic effect. Mechanistically, we identify BRCA1 as a KLF5 target gene. BRCA1 is positively correlated with KLF5 in PDAC tissue. Our results indicate that inhibition of KLF5 may induce BRCAness in a larger pancreatic cancer subset with proficient BRCA. The combination of KLF5 inhibitors and PARP inhibitors provides a novel treatment strategy to enhance the sensitivity of BRCA1-proficient pancreatic cancer to PARP inhibitors.


Assuntos
Antineoplásicos , Fatores de Transcrição Kruppel-Like , Neoplasias Pancreáticas , Humanos , Antineoplásicos/uso terapêutico , Proteína BRCA1/genética , Linhagem Celular Tumoral , Reparo do DNA , Fatores de Transcrição Kruppel-Like/genética , Neoplasias Ovarianas/genética , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico
5.
Mol Cancer ; 22(1): 148, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37679744

RESUMO

Neutrophils, the most prevalent innate immune cells in humans, have garnered significant attention in recent years due to their involvement in cancer progression. This comprehensive review aimed to elucidate the important roles and underlying mechanisms of neutrophils in cancer from the perspective of their whole life cycle, tracking them from development in the bone marrow to circulation and finally to the tumor microenvironment (TME). Based on an understanding of their heterogeneity, we described the relationship between abnormal neutrophils and clinical manifestations in cancer. Specifically, we explored the function, origin, and polarization of neutrophils within the TME. Furthermore, we also undertook an extensive analysis of the intricate relationship between neutrophils and clinical management, including neutrophil-based clinical treatment strategies. In conclusion, we firmly assert that directing future research endeavors towards comprehending the remarkable heterogeneity exhibited by neutrophils is of paramount importance.


Assuntos
Neoplasias , Neutrófilos , Humanos , Neoplasias/genética , Microambiente Tumoral
6.
Zhongguo Zhong Yao Za Zhi ; 48(16): 4413-4420, 2023 Aug.
Artigo em Zh | MEDLINE | ID: mdl-37802867

RESUMO

The present study investigated the chemical constituents from the aerial parts of Glycyrrhiza uralensis. The ethanol extract of the aerial parts of G. uralensis was separated and purified by different column chromatographies such as macroporous resin, silica gel, and Sephadex LH-20, and through preparative HPLC and recrystallization. Thirteen compounds were isolated and identified as(2S)-6-[(Z)-3-hydroxymethyl-2-butenyl]-5,7,3'-trihydroxy-4'-methoxy-dihydroflavanone(1),(2S)-8-[(E)-3-hydroxymethyl-2-butenyl]-5,7,3',5'-tetrahydroxy-dihydroflavanone(2), α,α'-dihydro-5,4'-dihydroxy-3-acetoxy-2-isopentenylstilbene(3), 6-prenylquercetin(4), 6-prenylquercetin-3-methyl ether(5), formononetin(6), 3,3'-dimethylquercetin(7), chrysoeriol(8), diosmetin(9),(10E,12Z,14E)-9,16-dioxooctadec-10,12,14-trienoic acid(10), 5,7,3',4'-tetrahydroxy-6-prenyl-dihydroflavanone(11), naringenin(12), dibutylphthalate(13). Compounds 1-3 are new compounds, and compounds 10 and 13 are isolated from aerial parts of this plant for the first time.


Assuntos
Glycyrrhiza uralensis , Glycyrrhiza uralensis/química , Componentes Aéreos da Planta/química
7.
Environ Microbiol ; 24(1): 324-340, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35001476

RESUMO

Rhizosphere microbiome adapts their structural compositions to water scarcity and have the potential to mitigate drought stress of plants. To unlock this potential, it is crucial to understand community responses to drought in the interplay between soil properties, water management and exogenous microbes interference. Inoculation with dark septate endophytes (DSE) (Acrocalymma vagum, Paraboeremia putaminum) and Trichoderma viride on Astragalus mongholicus grown in the non-sterile soil was exposed to drought. Rhizosphere microbiome were assessed by Illumina MiSeq sequencing of the 16S and ITS2 rRNA genes. Inoculation positively affected plant growth depending on DSE species and water regime. Ascomycota, Proteobacteria, Actinobacteria, Chloroflexi and Firmicutes were the dominant phyla. The effects of dual inoculation on bacterial community were greater than those on fungal community, and combination of P. putaminum and T. viride exerted a stronger impact on the microbiome under drought stress. The observed changes in soil factors caused by inoculation could be explained by the variations in microbiome composition. Rhizosphere microbiome mediated by inoculation exhibited distinct preferences for various growth parameters. These findings suggest that dual inoculation of DSE and T. viride enriched beneficial microbiota, altered soil nutrient status and might contribute to enhance the cultivation of medicinal plants in dryland agriculture.


Assuntos
Microbiota , Rizosfera , Astragalus propinquus , Secas , Endófitos/genética , Hypocreales , Raízes de Plantas/microbiologia , Microbiologia do Solo
8.
Plant Biotechnol J ; 20(10): 1996-2005, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35767385

RESUMO

Potato (Solanum tuberosum L.) originated in the Andes and evolved its vegetative propagation strategy through short day-dependent tuber development. Herein, we present a high-quality, chromosome-scale reference genome sequence of a tetraploid potato cultivar. The total length of this genome assembly was 2.67 Gb, with scaffold N50 and contig N50 sizes of 46.24 and 2.19 Mb, respectively. In total, 1.69 Gb repetitive sequences were obtained through de novo annotation, and long terminal repeats were the main transposable elements. A total of 126 070 protein-coding genes were annotated, of which 125 077 (99.21%) were located on chromosomes. The 48 chromosomes were classified into four haplotypes. We annotated 31 506 homologous genes, including 5913 (18.77%) genes with four homologues, 11 103 (35.24%) with three homologues, 12 177 (38.65%) with two homologues and 2313 (7.34%) with one homologue. MLH3, MSH6/7 and RFC3, which are the genes involved in the mismatch repair pathway, were found to be significantly expanded in the tetraploid potato genome relative to the diploid potato genome. Genome-wide association analysis revealed that cytochrome P450, flavonoid synthesis, chalcone enzyme, glycosyl hydrolase and glycosyl transferase genes were significantly correlated with the flesh colours of potato tuber in 150 tetraploid potatoes. This study provides valuable insights into the highly heterozygous autotetraploid potato genome and may facilitate the development of tools for potato cultivar breeding and further studies on autotetraploid crops.


Assuntos
Chalconas , Solanum tuberosum , Elementos de DNA Transponíveis , Proteínas de Ligação a DNA/genética , Estudo de Associação Genômica Ampla , Hidrolases/genética , Melhoramento Vegetal , Solanum tuberosum/genética , Tetraploidia , Transferases/genética
9.
Plant Cell Environ ; 45(2): 412-426, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34855989

RESUMO

Long noncoding RNAs (lncRNAs) have been considered to be important regulators of gene expression in a range of biological processes in plants. A large number of lncRNAs have been identified in plants. However, most of their biological functions still remain to be determined. Here, we identified a total of 3004 lncRNAs in cassava under normal or cold-treated conditions from Iso-seq data. We further characterized a cold-responsive intergenic lncRNA 1 (CRIR1) as a novel positive regulator of the plant response to cold stress. CRIR1 can be significantly induced by cold treatment. Ectopic expression of CRIR1 in cassava enhanced the cold tolerance of transgenic plants. Transcriptome analysis demonstrated that CRIR1 regulated a range of cold stress-related genes in a CBF-independent pathway. We further found that CRIR1 RNA can interact with cassava cold shock protein 5 (MeCSP5), which acts as an RNA chaperone, indicating that CRIR1 may recruit MeCSP5 to improve the translation efficiency of messenger RNA. In summary, our study extends the repertoire of lncRNAs in plants as well as their role in cold stress responses. Moreover, it reveals a mechanism by which CRIR1 affected cold stress response by modulating the expression of stress-responsive genes and increasing their translational yield.


Assuntos
Resposta ao Choque Frio/genética , Manihot/genética , RNA Longo não Codificante/genética , RNA de Plantas/genética , Manihot/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , RNA Longo não Codificante/metabolismo , RNA de Plantas/metabolismo
10.
Endocr Pract ; 28(3): 292-297, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34454077

RESUMO

OBJECTIVE: The role of alternate sequential administration of sunitinib and capecitabine/temozolomide (CAPTEM) in metastatic pancreatic neuroendocrine tumors (PanNETs) remains unexplored. We thus aimed to analyze the efficacy and tolerability of this strategy in advanced grade 1/grade 2 PanNETs. METHODS: In total, data of 43 patients with metastatic PanNET were collected from a real-world database of a cancer center. Twenty-four patients were treated with sunitinib followed by CAPTEM (group 1), and 19 patients were treated with CAPTEM followed by sunitinib (group 2). RESULTS: Twenty-three patients were treated with first-line sunitinib or CAPTEM, and 20 patients were pretreated with somatostatin analog (SSA) or SSA in combination with transcatheter arterial chemoembolization. The objective response rate with first-line treatment was similar in both groups, whereas that with second-line treatment was higher in group 1 than in group 2, albeit with no significant differences (21.1% vs 5.3%, respectively; P = .205). Median progression-free survival (mPFS) for first-line and second-line treatments did not differ between the 2 groups (11 and 12 months vs 12 and 8 months, respectively). Following subgroup analyses, treatment with first-line sunitinib and sunitinib after pretreated SSA had a longer mPFS than that with second-line sunitinib after CAPTEM (11 months vs 8 months, respectively; P = .046), whereas treatment with first-line CAPTEM and CAPTEM after pretreated SSA had an mPFS similar to that of second-line CAPTEM after sunitinib treatment. CAPTEM and sunitinib had similar tolerability. CONCLUSION: Alternating sunitinib and CAPTEM were well tolerated and associated with similar mPFS in grade 1/grade 2 PanNETs. However, larger prospective studies are required to investigate the efficacy of alternate sequential therapies for metastatic PanNET.


Assuntos
Capecitabina , Tumores Neuroendócrinos , Neoplasias Pancreáticas , Sunitinibe , Temozolomida , Protocolos de Quimioterapia Combinada Antineoplásica , Capecitabina/administração & dosagem , Capecitabina/uso terapêutico , Quimioembolização Terapêutica , Humanos , Tumores Neuroendócrinos/tratamento farmacológico , Tumores Neuroendócrinos/patologia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Estudos Retrospectivos , Sunitinibe/administração & dosagem , Sunitinibe/uso terapêutico , Temozolomida/administração & dosagem , Temozolomida/uso terapêutico
11.
J Clin Lab Anal ; 36(7): e24517, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35622458

RESUMO

BACKGROUND: The selective pressure imposed by chemotherapy creates a barrier to tumor eradication and an opportunity for metastasis and recurrence. As a newly discovered stemness marker of pancreatic ductal adenocarcinoma (PDAC), the impact of CD9 on tumor progression and patient's prognosis remain controversial. METHODS: A total of 179 and 211 PDAC patients who underwent surgical resection with or without neoadjuvant chemotherapy, respectively, were recruited for immunohistochemical analyses of CD9 expression in both tumor and stromal areas prior to statistical analyses to determine the prognostic impact and predictive accuracy of CD9. RESULTS: The relationship between CD9 and prognostic indicators was not significant in the non-neoadjuvant group. Nevertheless, CD9 expression in both tumor (T-CD9) and stromal areas (S-CD9) was significantly correlated with the clinicopathological features in the neoadjuvant group. High levels of T-CD9 were significantly associated with worse OS (p = 0.005) and RFS (p = 0.007), while positive S-CD9 showed the opposite results (OS: p = 0.024; RFS: p = 0.008). Cox regression analyses identified CD9 in both areas as an independent prognostic factor. The T&S-CD9 risk-level system was used to stratify patients with different survival levels. The combination of T&S-CD9 risk level and TNM stage were accurate predictors of OS (C-index: 0.676; AIC: 512.51) and RFS (C-index: 0.680; AIC: 519.53). The calibration curve of the nomogram composed of the combined parameters showed excellent predictive consistency for 1-year RFS. These results were verified using a validation cohort. CONCLUSION: Neoadjuvant chemotherapy endows CD9 with a significant prognostic value that differs between tumor and stromal areas in patients with pancreatic cancer.


Assuntos
Carcinoma Ductal Pancreático , Terapia Neoadjuvante , Neoplasias Pancreáticas , Tetraspanina 29 , Biomarcadores Tumorais , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/patologia , Humanos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Prognóstico , Estudos Retrospectivos , Neoplasias Pancreáticas
12.
Molecules ; 27(10)2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35630722

RESUMO

(1) Background: The aerial part of G. uralensis had pharmacological effects against chronic non-bacterial prostatitis (CNP), and flavonoids are the main efficacy components. The purpose of this study was to obtain the pharmacokinetics, prostate distribution and metabolic characteristics of some flavonoids in rats. (2) Methods: The prototype flavones and the metabolites of four representative flavonoids, namely puerarin, luteolin, kaempferol and pinocembrin in plasma, prostate, urine and feces of rats were analyzed by UPLC-Q-Exactive Orbitrap-MS. In addition, the pharmacokinetic parameters in plasma and distribution of prostate of four components were analyzed by HPLC-MS/MS. (3) Results: In total, 22, 17, 22 and 11 prototype flavones were detected in the prostate, plasma, urine and feces, respectively. The metabolites of puerarin in the prostate are hydrolysis and glucose-conjugated products, the metabolites of kaempferol and luteolin in the prostate are methylation and glucuronidation, and the metabolites of pinocembrin in the prostate are naringenin, oxidation, sulfation, methylation and glucuronidation products. The t1/2 of puerarin, luteolin, kaempferol and pinocembrin was 6.43 ± 0.20, 31.08 ± 1.17, 18.98 ± 1.46 and 13.18 ± 0.72 h, respectively. The concentrations of the four flavonoids in prostate were ranked as kaempferol > pinocembrin > luteolin > puerarin. (4) Conclusions: Methylation and glucuronidation metabolites were the main metabolites detected in the prostate. A sensitive and validated HPLC−MS/MS method for simultaneous determination of puerarin, luteolin, kaempferol and pinocembrin in rat plasma and prostate was described, and it was successfully applied to the pharmacokinetic and prostate distribution studies.


Assuntos
Flavonas , Glycyrrhiza uralensis , Administração Oral , Animais , Flavonas/farmacocinética , Flavonoides/farmacocinética , Quempferóis , Luteolina , Masculino , Componentes Aéreos da Planta , Próstata , Ratos , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem/métodos
13.
Zhongguo Zhong Yao Za Zhi ; 47(20): 5502-5507, 2022 Oct.
Artigo em Zh | MEDLINE | ID: mdl-36471966

RESUMO

The present study explored the physiological mechanism of the effects of different pH treatments on the growth, physiological characteristics, and stachydrine biosynthesis of Leonurus japonicus to provide references for the cultivation and quality control of L. japonicus. Under hydroponic conditions, different pH treatments(pH 5,6,7,8) were set up. The growth, physiology, and the content of stachydrine and total alkaloids of L. japonicus, as well as the content of key intermediate products in stachydrine biosynthesis pathway(i.e., pyruvic acid, α-ketoglutaric acid, glutamic acid, and ornithine) were monitored to explore the physiological mechanism of the effects of pH on the growth and active components of L. japonicus. The results showed that L. japonicus. could grow normally in the pH 5-8 solution. The pH treatment of neutral acidity was more conducive to the accumulation of photosynthetic pigments and the increase in soluble protein in leaves of L. japonicus. to promote its growth and yield. However, since stachydrine is a nitrogen-containing pyrrolidine alkaloid, its synthesis involves the two key rate-limiting steps of nitrogen addition: reductive ammoniation reaction and Schiff base formation reaction. High pH treatments promote the synthesis and accumulation of substrates and products of the above two reactions, indicating that the alkaline environment can promote the nitrogen addition reaction, thereby promoting the biosynthesis and accumulation of stachydrine.


Assuntos
Alcaloides , Leonurus , Leonurus/química , Hidroponia , Nitrogênio , Concentração de Íons de Hidrogênio
14.
Int J Cancer ; 148(7): 1756-1767, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33236361

RESUMO

Splenectomy is routinely performed during distal or total pancreatectomy (DP or TP) for pancreatic ductal adenocarcinoma (PDAC), but information about its oncological value is limited. TER cells, nonimmune cells discovered in the spleens of tumour-bearing mice, are elicited by tumours and promote tumour progression, while their role in the clinical outcomes of patients with PDAC remains unclear. In our study, postoperative specimens from 622 patients who underwent DP or TP with splenectomy were analysed by flow cytometry or immunofluorescence, and the relationship between splenic TER cell count and clinical parameters was calculated. We also purified human TER cells for functional experiments and mechanistic studies. We found that TER cell numbers were increased only in the spleens of patients with PDAC but not in PDAC tissue and adjacent pancreatic tissue. High splenic TER cell counts independently predicted poor prognosis (P < .001) and indicated large tumour size, lymph node metastasis, advanced 8th AJCC/mAJCC stage and high CA19-9 classification (all P < .050) in patients with PDAC. Mechanistic analysis showed that TER cells express artemin, which facilitates the proliferation and invasion of PDAC cells by activating GFRα3-ERK signalling. Our study reveals that TER cell count is an indicator of poor prognosis of PDAC, while splenectomy during pancreatic surgery might provide oncological benefits in addition to ensuring the radical resection of PDAC.


Assuntos
Carcinoma Ductal Pancreático/metabolismo , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Proteínas do Tecido Nervoso/farmacologia , Neoplasias Pancreáticas/metabolismo , Baço/citologia , Baço/metabolismo , Carcinoma Ductal Pancreático/mortalidade , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Estudos de Coortes , Feminino , Citometria de Fluxo , Imunofluorescência , Humanos , Metástase Linfática , Sistema de Sinalização das MAP Quinases , Masculino , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/metabolismo , Pancreatectomia , Neoplasias Pancreáticas/patologia , Prognóstico , Proteínas Recombinantes , Baço/patologia , Esplenectomia
15.
BMC Plant Biol ; 21(1): 318, 2021 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-34217217

RESUMO

BACKGROUND: Cassava (Manihot esculenta Crantz) efficiently accumulates starch in its storage roots. However, how photosynthates are transported from the leaves to the phloem (especially how they are unloaded into parenchymal cells of storage roots) remains unclear. RESULTS: Here, we investigated the sucrose unloading pattern and its impact on cassava storage root development using microstructural and physiological analyses, namely, carboxyfluorescein (CF) and C14 isotope tracing. The expression profiling of genes involved in symplastic and apoplastic transport was performed, which included enzyme activity, protein gel blot analysis, and transcriptome sequencing analyses. These finding showed that carbohydrates are transported mainly in the form of sucrose, and more than 54.6% was present in the stem phloem. Sucrose was predominantly unloaded symplastically from the phloem into storage roots; in addition, there was a shift from apoplastic to symplastic unloading accompanied by the onset of root swelling. Statistical data on the microstructures indicated an enrichment of plasmodesmata within sieve, companion, and parenchyma cells in the developing storage roots of a cultivar but not in a wild ancestor. Tracing tests with CF verified the existence of a symplastic channel, and [14C] Suc demonstrated that sucrose could rapidly diffuse into root parenchyma cells from phloem cells. The relatively high expression of genes encoding sucrose synthase and associated proteins appeared in the middle and late stages of storage roots but not in primary fibrous roots, or secondary fibrous roots. The inverse expression pattern of sucrose transporters, cell wall acid invertase, and soluble acid invertase in these corresponding organs supported the presence of a symplastic sucrose unloading pathway. The transcription profile of genes involved in symplastic unloading and their significantly positive correlation with the starch yield at the population level confirmed that symplastic sucrose transport is vitally important in the development of cassava storage roots. CONCLUSIONS: In this study, we revealed that the cassava storage root phloem sucrose unloading pattern was predominantly a symplastic unloading pattern. This pattern is essential for efficient starch accumulation in high-yielding varieties compared with low-yielding wild ancestors.


Assuntos
Manihot/metabolismo , Floema/fisiologia , Fotossíntese/fisiologia , Raízes de Plantas/metabolismo , Amido/metabolismo , Transporte Biológico , Biomassa , Parede Celular/metabolismo , Difusão , Fluoresceínas/metabolismo , Regulação da Expressão Gênica de Plantas , Manihot/genética , Modelos Biológicos , Floema/citologia , Floema/ultraestrutura , Plasmodesmos/metabolismo , Frações Subcelulares/metabolismo , Sacarose/metabolismo , Açúcares/metabolismo
16.
J Sci Food Agric ; 101(10): 4050-4058, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-33349937

RESUMO

BACKGROUND: Cassava is rich in nutrition and has high edible value, but the development of the cassava industry is limited by the traditional low added value processing and utilization mode. In this study, cassava tuber was used as beer adjunct to develop a complete set of fermentation technology for manufacturing cassava beer. RESULTS: The activities of transaminase, phenylpyruvate decarboxylase and dehydrogenase in 2-phenylethanol Ehrlich biosynthesis pathway of Saccharomyces cerevisiae were higher in cassava beer than that of malt beer. Aminotransferase ARO9 gene and phenylpyruvate decarboxylase ARO10 gene were up-regulated in the late stage of fermentation, which indicated that they were the main regulated genes of 2-phenylethanol Ehrlich pathway with phenylalanine as substrate in cassava beer preparation. CONCLUSIONS: Compared with traditional wheat beer, cassava beer was similar in the content of nutrition elements, diacetyl, total acid, alcohol and carbon dioxide, but has the characteristics of fresh fragrance and better taste. The hydrocyanic acid contained in cassava root tubes was catabolized during fermentation and compliant with the safety standard of beverage. Further study found that the content of 2-phenylethanol in cassava beer increased significantly, which gave cassava beer a unique elegant and delicate rose flavor. © 2020 Society of Chemical Industry.


Assuntos
Cerveja/análise , Manihot/metabolismo , Álcool Feniletílico/metabolismo , Saccharomyces cerevisiae/metabolismo , Cerveja/microbiologia , Carboxiliases/genética , Carboxiliases/metabolismo , Fermentação , Manihot/química , Manihot/microbiologia , Álcool Feniletílico/análise , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transaminases/genética , Transaminases/metabolismo
17.
Zhongguo Zhong Yao Za Zhi ; 46(6): 1449-1459, 2021 Mar.
Artigo em Zh | MEDLINE | ID: mdl-33787143

RESUMO

Chemical constituents from aerial parts of Glycyrrhiza uralensis were analyzed and identified using ultra-high performance liquid chromatography coupled with hybrid quadrupole-orbitrap mass spectrometry(UPLC-Q-Exactive Orbitrap-MS). The chromatographic column of Waters Acquity UPLC BEH-C_(18)(2.1 mm×100 mm, 1.7 µm) was adopted, with acetonitrile-water(0.5% formic acid) as mobile phase at a flow rate of 0.2 mL·min~(-1). Data was collected in positive and negative modes of electrospray ionization(ESI). A total of 55 compounds, including 42 flavonoids, 9 stilbenes, 2 coumarins, 1 lignin and 1 phenolic acid, which were characterized in the aerial parts of G. uralensis based on accurate molecular mass information of molecular and product ions provided by UPLC-Q-Exactive Orbitrap-MS based on comparison with standard substances and references. It is an effective and accurate method to provide chemical information of constituents in aerial parts of G. uralensis, and can provide a reference for further study on pharmacodynamic material basis and resources development and utilization.


Assuntos
Medicamentos de Ervas Chinesas , Glycyrrhiza uralensis , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas , Componentes Aéreos da Planta
18.
BMC Plant Biol ; 20(1): 325, 2020 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-32646473

RESUMO

BACKGROUND: This study aimed to assess whether licorice (Glycyrrhiza uralensis) can benefit from dual inoculation by Trichoderma viride and dark septate endophytes (DSE) isolated from other medicinal plants. METHODS: First, we isolated and identified three DSE (Paraboeremia putaminum, Scytalidium lignicola, and Phoma herbarum) and Trichoderma viride from medicinal plants growing in farmland of China. Second, we investigated the influences of these three DSE on the performance of licorice at different T. viride densities (1 × 106, 1 × 107, and 1 × 108 CFU/mL) under sterilised condition in a growth chamber. RESULTS: Three DSE strains could colonize the roots of licorice, and they established a positive symbiosis with host plants depending on DSE species and T. viride densities. Inoculation of P. putaminum increased the root biomass, length, surface area, and root:shoot ratio. S. lignicola increased the root length, diameter and surface area and decreased the root:shoot ratio. P. herbarum increased the root biomass and surface area. T. viride increased the root biomass, length, and surface area. Structural equation model (SEM) analysis showed that DSE associated with T. viride augmented plant biomass and height, shoot branching, and root surface area. Variations in root morphology and biomass were attributed to differences in DSE species and T. viride density among treatments. P. putaminum or P. herbarum with low- or medium T. viride density and S. lignicola with low- or high T. viride density improved licorice root morphology and biomass. CONCLUSIONS: DSE isolated from other medicinal plants enhanced the root growth of licorice plants under different densities T. viride conditions and may also be used to promote the cultivation of medicinal plants.


Assuntos
Ascomicetos/fisiologia , Glycyrrhiza/microbiologia , Hypocreales/fisiologia , Phoma/fisiologia , Biomassa , China , Endófitos , Glycyrrhiza/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Plantas Medicinais , Simbiose
19.
Cancer Control ; 27(1): 1073274820977135, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33269614

RESUMO

OBJECTIVES: Numerous studies have suggested that an increase in neutrophil-to-lymphocyte ratio (NLR) before treatment is associated with worse survival in pancreatic adenocarcinoma (PAC). The aim of this study was to investigate the prognostic value of treatment-induced NLR change among PAC patients so as to better identify the characteristics of those who can benefit more from treatment. METHODS: This meta-analysis was undertaken using the PRISMA statement. Previously published studies between the correlation of NLR change and patients' survival were searched in Pubmed, Embase, and Web of Science databases. RevMan 5.3 was used to conduct statistical analysis. RESULTS: A total of 1213 patients with PAC from 6 retrospective studies were included in this meta-analysis. Four studies investigated the HR of pre-treatment NLR, demonstrating its prognostic impact on overall survival (OS) (HR = 2.21, 95%CI: 1.45-3.36). One study reported that an elevated post-treatment NLR was associated with poorer OS (HR = 1.28, 95%CI = 1.08-1.52). Pooled analysis indicated that NLR reduction might predict favorable survival in both the overall population (HR = 1.52, 95% CI: 1.34-1.73) and the subgroup treated with chemotherapy (HR = 1.50, 95% CI: 1.32-1.70). CONCLUSION: Treatment-induced NLR change can act as an early predictor for PAC. Patients with reduced NLR after chemotherapy are expected to have better survival.


Assuntos
Adenocarcinoma/tratamento farmacológico , Antineoplásicos/uso terapêutico , Linfócitos/metabolismo , Neutrófilos/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Adenocarcinoma/mortalidade , Antineoplásicos/farmacologia , Feminino , Humanos , Linfócitos/patologia , Neutrófilos/patologia , Neoplasias Pancreáticas/mortalidade , Análise de Sobrevida , Neoplasias Pancreáticas
20.
Breed Sci ; 70(2): 145-166, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32523397

RESUMO

In Asia, cassava (Manihot esculenta) is cultivated by more than 8 million farmers, driving the rural economy of many countries. The International Center for Tropical Agriculture (CIAT), in partnership with national agricultural research institutes (NARIs), instigated breeding and agronomic research in Asia, 1983. The breeding program has successfully released high-yielding cultivars resulting in an average yield increase from 13.0 t ha-1 in 1996 to 21.3 t ha-1 in 2016, with significant economic benefits. Following the success in increasing yields, cassava breeding has turned its focus to higher-value traits, such as waxy cassava, to reach new market niches. More recently, building resistance to invasive pests and diseases has become a top priority due to the emergent threat of cassava mosaic disease (CMD). The agronomic research involves driving profitability with advanced technologies focusing on better agronomic management practices thereby maintaining sustainable production systems. Remote sensing technologies are being tested for trait discovery and large-scale field evaluation of cassava. In summary, cassava breeding in Asia is driven by a combination of food and market demand with technological innovations to increase the productivity. Further, exploration in the potential of data-driven agriculture is needed to empower researchers and producers for sustainable advancement.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA