Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(21)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36362335

RESUMO

The SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE (SPL) transcription factor play vital roles in plant growth and development. Although 15 SPL family genes have been recognized in the model medical plant Salvia miltiorrhiza Bunge, most of them have not been functionally characterized to date. Here, we performed a careful characterization of SmSPL2, which was expressed in almost all tissues of S. miltiorrhiza and had the highest transcriptional level in the calyx. Meanwhile, SmSPL2 has strong transcriptional activation activity and resides in the nucleus. We obtained overexpression lines of SmSPL2 and rSmSPL2 (miR156-resistant SmSPL2). Morphological changes in roots, including longer length, fewer adventitious roots, decreased lateral root density, and increased fresh weight, were observed in all of these transgenic lines. Two rSmSPL2-overexpressed lines were subjected to transcriptome analysis. Overexpression of rSmSPL2 changed root architectures by inhibiting biosynthesis and signal transduction of auxin, while triggering that of cytokinin. The salvianolic acid B (SalB) concentration was significantly decreased in rSmSPL2-overexpressed lines. Further analysis revealed that SmSPL2 binds directly to the promoters of Sm4CL9, SmTAT1, and SmPAL1 and inhibits their expression. In conclusion, SmSPL2 is a potential gene that efficiently manipulate both root architecture and SalB concentration in S. miltiorrhiza.


Assuntos
Benzofuranos , Salvia miltiorrhiza , Fatores de Transcrição/metabolismo , Raízes de Plantas , Salvia miltiorrhiza/metabolismo , Benzofuranos/farmacologia , Benzofuranos/metabolismo , Regulação da Expressão Gênica de Plantas
2.
Langmuir ; 34(26): 7714-7725, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29889541

RESUMO

Understanding the capillary filling behaviors in nanopores is crucial for many science and engineering problems. Compared with the classical Bell-Cameron-Lucas-Washburn (BCLW) theory, anomalous coefficient is always observed because of the increasing role of surfaces. Here, a molecular kinetics approach is adopted to explain the mechanism of anomalous behaviors at the molecular level; a unified model taking account of the confined liquid properties (viscosity and density) and slip boundary condition is proposed to demonstrate the macroscopic consequences, and the model results are successfully validated against the published literature. The results show that (1) the effective viscosity induced by the interaction from the pore wall, as a function of wettability and the pore dimension (nanoslit height or nanotube diameter), may remarkably slow down the capillary filling process more than theoretically predicted. (2) The true slip, where water molecules directly slide on the walls, strongly depends on the wettability and will increase as the contact angle increases. In the hydrophilic nanopores, though, the magnitude may be comparable with the pore dimensions and promote the capillary filling compared with the classical BCLW model. (3) Compared with the other model, the proposed model can successfully predict the capillary filling for both faster or slower capillary filling process; meanwhile, it can capture the underlying physics behind these behaviors at the molecular level based on the effective viscosity and slippage. (4) The surface effects have different influence on the capillary filling in nanoslits and nanotubes, and the relative magnitude will change with the variation of wettability as well as the pore dimension.

3.
ACS Omega ; 9(13): 15259-15270, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38585050

RESUMO

Injection of carbon dioxide offers substantial social and economic advantages for reduction of carbon emission reduction. Utilizing CO2 in shale formations can significantly enhance the extraction of shale oil or gas. Conducting fundamental research on how CO2 affects shale rock's physical properties is crucial for enhancing its porosity and permeability. Particularly for deep shale layers, the effects of supercritical CO2 on shale physical properties should be investigated at a high temperature and pressure, differing from the standard conditions applied in shallower layers. A study examined the impact of supercritical CO2 under such conditions on the pore-throat structure and mineral composition of the shale. The experimental parameters included immersing shale rock in supercritical CO2 at pressures ranging from 10 to 70 MPa and temperatures between 55 and 95 °C. This study evaluated changes in mineral composition, pore-throat structure (using scanning electron microscopy and nitrogen adsorption tests), and the porosity and permeability of the shale rocks. Findings indicated that the dissolution of CO2 altered the relative content of certain minerals. The average quartz content rose and, potassium feldspar and the average contents of plagioclase declined conversely. When increasing the pressure, an increase in the relative content of I/S mixed layer and a decrease in illite content were observed and kaolinite content experienced minor changes. When increasing the temperature, kaolinite, I/S mixed layer, and chlorite all exhibited a decreasing trend with increasing temperature, while the relative contents of illite increased. Some of the pores become rounded in a high-magnification view under the impact of CO2 dissolution. Additionally, the Brunauer-Emmett-Teller specific surface area, pore volume, porosity, and permeability generally improved with increasing pressure and temperature. With the temperature and pressure of CO2 increased, the curves of nitrogen absorption had moved first upward and then downward. However, under specific CO2 conditions, the permeability enhancement effect could diminish or even negatively impact the shale's permeability. These findings underscore the need to optimize supercritical CO2 injection parameters under high-temperature and high-pressure conditions. This research aims to provide theoretical guidance for the efficient use of CO2 in deep shale applications to increase the shale gas output.

4.
ACS Omega ; 9(13): 15663-15676, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38585055

RESUMO

Identifying the microscopic mechanism of CO2-oil miscibility is significant for the CO2 enhanced oil recovery (CO2-EOR) in tight sandstone reservoirs. In this work, the effects of oil composition, formation pressure, temperature, and methane content on the characteristics of the CO2-oil miscibility were systematically studied by molecular simulation methods. According to the change of oil-gas centroid displacement, the CO2-oil miscibility behavior was divided into four stages: rapid diffusion, CO2 dissolution and oil swelling, competitive adsorption and oil film detachment, and complete miscibility or dynamic equilibrium stability. The results showed that light or medium component oil is more easily miscible with CO2 under reservoir conditions. The changes in temperature and pressure will greatly influence the oil-gas miscibility. Increasing the temperature is conducive to reducing the adsorption energy between oil and quartz, thus improving the miscibility of CO2 and heavy component oil. However, the static swelling effects of CO2 alone cannot effectively displace the heavy component oil on quartz. The CO2 diffusion coefficient perpendicular to the quartz surface does not increase continuously with the temperature increase due to the adsorption of oil and quartz. There is a critical temperature range of 320-340 K, which makes the miscibility effects the best. A small amount of CH4 can enhance the interaction energy between the two phases of oil and gas, thus promoting the miscibility of CO2 and oil at the interface. However, it is not conducive to oil film detachment, with the CH4 content increasing.

5.
Artigo em Inglês | MEDLINE | ID: mdl-38603541

RESUMO

The urgent need for CO2 capture and hydrogen energy has attracted great attention owing to greenhouse gas emissions and global warming problems. Efficient CO2 capture and H2 purification with membrane technology will reduce greenhouse gas emissions and help reach a carbon-neutral society. Here, 4-sulfocalix[4]arene (SC), which has an intrinsic cavity, was embedded into the Matrimid membrane as a molecular gatekeeper for CO2 capture and H2 purification. The interactions between SC and the Matrimid polymer chains immobilize SC molecules into the interchain gaps of the Matrimid membrane, and the strong hydrogen and ionic bondings were able to form homogeneous mixed-matrix membranes. The incorporation of the SC molecular gatekeeper with exceptional molecular-sieving properties improved the gas separation performance of the mixed-matrix membranes. Compared with that of the Matrimid membrane, the CO2 permeability of the Matrimid-SC-3% membrane increased from 16.75 to 119.78 Barrer, the CO2/N2 selectivity increased from 29.39 to 106.95, and the CO2/CH4 selectivity increased from 29.91 to 140.92. Furthermore, when the permeability of H2 was increased to 172.20 Barrer, the H2/N2 and H2/CH4 selectivities reached approximately 153.75 and 202.59, respectively, which are far superior to those of most existing Matrimid-based materials. The mixed-matrix membranes also exhibited excellent long-term operation stability, with separation performance for several important gas pairs still overtaking the Robeson upper limit after aging for 400 days.

6.
Plant Sci ; 325: 111462, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36126879

RESUMO

Laccase (LAC) is a blue multicopper oxidase that contains four copper ions, which is involved in lignin polymerization and flavonoid biosynthesis in plants. Although dozens of LAC genes have been identified in Salvia miltiorrhiza Bunge (a model medicinal plant), most have not been functionally characterized. Here, we explored the expression patterns and the functionality of SmLAC25 in S. miltiorrhiza. SmLAC25 has a higher expression level in roots and responds to methyl jasmonate, auxin, abscisic acid, and gibberellin stimuli. The SmLAC25 protein is localized in the cytoplasm and chloroplasts. Recombinant SmLAC25 protein could oxidize coniferyl alcohol and sinapyl alcohol, two monomers of G-lignin and S-lignin. To investigate its function, we generated SmLAC25-overexpressed S. miltiorrhiza plantlets and hairy roots. The lignin content increased significantly in all SmLAC25-overexpressed plantlets and hairy roots, compared with the controls. However, the concentrations of rosmarinic acid and salvianolic acid B decreased significantly in all the SmLAC25-overexpressed lines. Further studies revealed that the transcription levels of some key enzyme genes in the lignin synthesis pathway (e.g., SmCCR and SmCOMT) were significantly improved in the SmLAC25-overexpressed lines, while the expression levels of multiple enzyme genes in the salvianolic acid biosynthesis pathway were inhibited. We speculated that the overexpression of SmLAC25 promoted the metabolic flux of lignin synthesis, which resulted in a decreased metabolic flux to the salvianolic acid biosynthesis pathway.


Assuntos
Salvia miltiorrhiza , Salvia miltiorrhiza/genética , Salvia miltiorrhiza/metabolismo , Lignina/metabolismo , Alcenos/metabolismo , Polifenóis/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA