RESUMO
Molecular imprinting technology is widely used for the specific identification of compounds, but the selective recognition mechanisms of the same compounds still need to be further studied. Based on differences in hydrogen bond size and orientation, molecularly imprinted polymers (MIPs) were designed to adsorb flavonols with the same parent core and different hydroxyl groups. A surface-imprinted material was designed with silicon dioxide as the carrier, myricetin as the template molecule, and methacrylic acid (MAA) as the functional monomer. Scanning electron microscopy (SEM), Brunauer-Emmett-Teller surface area (BET) analyses, Fourier-transform infrared spectroscopy (FT-IR), and other characterization experiments were carried out. The intrinsic mechanism of the MIPs was also explored. The MIPs showed good adsorption of myricetin and other flavonoids through hydrogen bonding and steric hindrance. The adsorption capacity was 3.12-9.04 mg/g, and the imprinting factor was 1.78-3.37. Flavonoids with different hydroxyl groups in different numbers and directions had different hydrogen bond strengths with functional monomers. R2, R4, and R1 on 2-phenylchromogenone had stronger electronegativity, and the hydroxyl group was also more likely to form and have stronger hydrogen bonds. The hydroxyl negativity and the degree of steric hindrance of flavonoids played a major role in the recognition of molecularly imprinted materials. This study is of great significance for the synthesis of and selection of templates for analogous molecular imprinting materials.
RESUMO
Rifaximin and rifampicin are good broad-spectrum antimicrobials. The irrational use of antimicrobial drugs in veterinary clinics could threaten public health and food safety. It is necessary to develop a reliable detection method of the residue for enhancing the rational supervision of the use of such drugs, reducing and slowing down the generation of bacterial resistance, and promoting animal food safety and human health. So, this study developed an LC-MS/MS method for the detection of rifaximin and rifampicin residues in animal-origin foods. The residual rifaximin and rifampicin of homogenized test materials were extracted with acetonitrile-dichloromethane solution or acetonitrile in the presence of anhydrous sodium sulfate and vitamin C, purified by dispersible solid phase extraction, determined by LC-MS/MS, and quantified by the internal standard method. The specificity, sensitivity, matrix effect, accuracy, and precision of the method were investigated in the edible tissues of cattle, swine, or chicken. In addition, the stability of the standard stock solution and the standard working solution was also investigated. The method was suitable for the muscle, liver, kidney, fat, milk, and eggs of cattle, swine, or chicken, as well as fish and shrimp. The specificity of the method was good, and the detection of the analytes was not affected by different matrices. Both the LOD and LOQ of the two analytes were 5 µg/kg and 10 µg/kg, respectively. The results of matrix effects in each tissue were in the range of 80-120%; there were no significant matrix effects. The average accuracy of rifaximin and rifampicin in different foodstuffs of animal origin was between 80% and 120%, and the method precision was below 20% (RSD). The proposed method showed good performance for determination, which could be employed for the extraction, purification, and detection of residual rifaximin and rifampicin in edible animal tissues. The pretreatment procedure of tissue samples was simple and feasible. The method was highly specific, stable, reliable, and with high sensitivity, accuracy, and precision, which met the requirements of quantitative detection of veterinary drug residues.
Assuntos
Resíduos de Drogas , Rifampina , Rifaximina , Espectrometria de Massas em Tandem , Animais , Rifaximina/análise , Rifampina/análise , Espectrometria de Massas em Tandem/métodos , Resíduos de Drogas/análise , Bovinos , Suínos , Galinhas , Contaminação de Alimentos/análise , Análise de Alimentos/métodos , Cromatografia Líquida/métodos , Extração em Fase Sólida/métodos , Reprodutibilidade dos TestesRESUMO
BACKGROUND: Clinical observations suggest a complex relationship between obesity and coronary artery disease (CAD). This study aimed to characterize the intermediate metabolism phenotypes among obese patients with CAD and without CAD. METHODS: Sixty-two participants who consecutively underwent coronary angiography were enrolled in the discovery cohort. Transcriptional and untargeted metabolomics analyses were carried out to screen for key molecular changes between obese patients with CAD (CAD obese), without CAD (Non-CAD obese), and Non-CAD leans. A targeted GC-MS metabolomics approach was used to further identify differentially expressed metabolites in the validation cohorts. Regression and receiver operator curve analysis were performed to validate the risk model. RESULTS: We found common aberrantly expressed pathways both at the transcriptional and metabolomics levels. These pathways included cysteine and methionine metabolism and arginine and proline metabolism. Untargeted metabolomics revealed that S-adenosylhomocysteine (SAH), 3-hydroxybenzoic acid, 2-hydroxyhippuric acid, nicotinuric acid, and 2-arachidonoyl glycerol were significantly elevated in the CAD obese group compared to the other two groups. In the validation study, targeted cysteine and methionine metabolomics analyses showed that homocysteine (Hcy), SAH, and choline were significantly increased in the CAD obese group compared with the Non-CAD obese group, while betaine, 5-methylpropanedioic acid, S-adenosylmethionine, 4-PA, and vitamin B2 (VB2) showed no significant differences. Multivariate analyses showed that Hcy was an independent predictor of obesity with CAD (hazard ratio 1.7; 95%CI 1.2-2.6). The area under the curve based on the Hcy metabolomic (HCY-Mtb) index was 0.819, and up to 0.877 for the HCY-Mtb.index plus clinical variables. CONCLUSION: This is the first study to propose that obesity with hyperhomocysteinemia is a useful intermediate metabolism phenotype that could be used to identify obese patients at high risk for developing CAD.
Assuntos
Doença da Artéria Coronariana , Hiper-Homocisteinemia , Obesidade , Humanos , Doença da Artéria Coronariana/diagnóstico por imagem , Doença da Artéria Coronariana/etiologia , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/metabolismo , Estudos Transversais , Cisteína , População do Leste Asiático , Hiper-Homocisteinemia/complicações , Hiper-Homocisteinemia/genética , Hiper-Homocisteinemia/metabolismo , Metabolômica , Obesidade/complicações , Obesidade/genética , Obesidade/metabolismo , Estudos Prospectivos , Fatores de Risco , Transcriptoma , Angiografia Coronária , Fatores de Risco Cardiometabólico , Adulto , Pessoa de Meia-Idade , IdosoRESUMO
Deltamethrin (DLM) is a widely used and highly effective insecticide. DLM exposure is harmful to animal and human. Quail, as a bird model, has been widely used in the field of toxicology. However, there is little information available in the literature about quail cerebrum damage caused by DLM. Here, we investigated the effect of DLM on quail cerebrum neurons. Four groups of healthy quails were assigned (10 quails in each group), respectively given 0, 15, 30, and 45 mg/kg DLM by gavage for 12 weeks. Through the measurements of quail cerebrum, it was found that DLM exposure induced obvious histological changes, oxidative stress, and neurons apoptosis. To further explore the possible molecular mechanisms, we performed real-time quantitative PCR to detect the expression of endoplasmic reticulum (ER) stress-related mRNA such as glucose regulated protein 78 kD, activating transcription factor 6, inositol requiring enzyme, and protein kinase RNA (PKR)-like ER kinase. In addition, we detected ATP content in quail cerebrum to evaluate the functional status of mitochondria. The study showed that DLM exposure significantly increased the expression of ER stress-related mRNA and decreased ATP content in quail cerebrum tissues. These results suggest that chronic exposure to DLM induces apoptosis of quail cerebrum neurons via promoting ER stress and mitochondrial dysfunction. Furthermore, our results provide a novel explanation for DLM-induced apoptosis of avian cerebrum neurons.
Assuntos
Cérebro , Estresse do Retículo Endoplasmático , Trifosfato de Adenosina/metabolismo , Animais , Apoptose , Cérebro/metabolismo , Mitocôndrias/metabolismo , Neurônios , Nitrilas , Piretrinas , Codorniz/metabolismo , RNA Mensageiro/metabolismoRESUMO
Imidacloprid (IMI) is a kind of widely used neonicotinoid insecticide. However, the toxicity of IMI is not only applied to target pests but also causes serious negative effects on birds and other creatures. Our previous studies have shown that long-term exposure to IMI can induce liver fibrosis in quails. However, the specific mechanism of quail liver fibrosis induced by IMI is not completely clear. Accordingly, the purpose of this study is to further clarify the potential molecular mechanism of IMI-induced liver fibrosis in quails. Japanese quails (Coturnix japonica) were treated with/without IMI (intragastric administration with 6 mg/kg body weight) in the presence/absence of luteolin (Lut) (fed with 800 mg/kg) for 90 days. The results reveal that IMI can induce hepatic fibrosis, oxidative stress, fatty degeneration, inflammation, and the down-expression of nuclear factor-E2-related factor-2 (Nrf2). Furthermore, the treatment of Lut, a kind of Nrf2 activator, increased the expression of Nrf2 in livers and alleviated liver fibrosis in quails. Altogether, our study demonstrates that inhibition of the Nrf2 pathway is the key to liver fibrosis induced by IMI in quails. These results provide a new understanding for the study of the toxicity of IMI and a practical basis for the treatment of liver fibrosis caused by IMI.
Assuntos
Coturnix , Fator 2 Relacionado a NF-E2 , Animais , Coturnix/metabolismo , Fígado , Cirrose Hepática/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Neonicotinoides/toxicidade , Nitrocompostos , Estresse Oxidativo , Codorniz/metabolismo , Transdução de SinaisRESUMO
Mercury as a toxic heavy metal will accumulate in the body and induce various diseases through the food chain. However, it is unknown that the detailed mechanism of reproductive disorder induced by inorganic mercury in male mice to date. This study investigated the toxicological effect of mercuric chloride (HgCl2 ) exposure on reproductive system in male mice. Male Kunming mice received normal saline daily or HgCl2 (3 mg/kg bodyweight) by intraperitoneal injection for a week. The reproductive function was evaluated, and the HgCl2 exposure induced the decline of sperm quality, pregnancy rate, mean litter size, and survival rate. Notably, we firstly found the HgCl2 -induced immunosuppression and fibrosis in mice testis according to the results of RNA sequencing. Collectively, these findings demonstrate that HgCl2 exposure disrupts the reproductive system and induces testicular immunosuppression and fibrosis via inhibition of the CD74 signaling pathway in male mice.
Assuntos
Mercúrio , Testículo , Animais , Animais não Endogâmicos , Fibrose , Terapia de Imunossupressão , Masculino , Cloreto de Mercúrio/toxicidade , Camundongos , Estresse OxidativoRESUMO
Deltamethrin (DLM) is widely used in agriculture and the prevention of human insect-borne diseases. However, the molecular mechanism of DLM induced liver injury remains unclear to date. This study investigated the potential molecular mechanism that DLM induced liver fibrosis in quails. Japanese quails received resveratrol (500 mg/kg) daily with or without DLM (45 mg/kg) exposure for 12 weeks. Histopathology, transmission electron microscopy, biochemical indexes, TUNEL, quantitative real-time PCR, and western blot analysis were performed. DLM exposure induced hepatic steatosis, oxidative stress, inflammation, and apoptosis. Most importantly, the Nrf2/TGF-ß1/Smad3 signaling pathway played an important role on DLM-induced liver fibrosis in quails. Interestingly, the addition of resveratrol, an Nrf2 activator, alleviates oxidative stress and inflammation response by activating Nrf2, thereby inhibits the liver fibrosis induced by DLM in quails. Collectively, these findings demonstrate that chronic exposure to DLM induces oxidative stress via the Nrf2 expression inhibition and apoptosis, and then results in liver fibrosis in quails by the activation of NF-κB/TNF-α and TGF-ß1/Smad3 signaling pathway.
Assuntos
Inseticidas/toxicidade , Cirrose Hepática/induzido quimicamente , Nitrilas/toxicidade , Substâncias Protetoras/farmacologia , Piretrinas/toxicidade , Codorniz/fisiologia , Resveratrol/farmacologia , Animais , Doença Hepática Induzida por Substâncias e Drogas , Humanos , Fator 2 Relacionado a NF-E2 , NF-kappa B/metabolismo , Estresse Oxidativo , Codorniz/metabolismo , Transdução de Sinais , Proteína Smad3 , Fator de Crescimento Transformador beta1/metabolismoRESUMO
Genomic selection (GS) using the whole-genome molecular makers to predict genomic estimated breeding values (GEBVs) is revolutionizing the livestock and plant breeding. Seeking out novel strategies with higher prediction accuracy for GS has been the ultimate goal of breeders. With the rapid development of artificial intelligence, machine learning algorithms were applied to estimate the GEBVs increasingly. Although some machine learning methods have better performance in phenotype prediction, there is still considerable room for improvement. In this study, we applied an ensemble-learning algorithm, Adaboost.RT, which integrated support vector regression (SVR), kernel ridge regression (KRR) and random forest (RF), to predict genomic breeding values of three economic traits (carcass weight, live weight, and eye muscle area) in Chinese Simmental beef cattle. Predictive accuracy measured as the Pearson correlation between the corrected phenotypes and predicted GEBVs. Moreover, we compared the reliability of SVR, KRR, RF, Adaboost.RT and GBLUP methods. The result showed that machine learning methods outperformed GBLUP, and the average improvement of four machine learning methods over the GBLUP was 12.8%, 14.9%, 5.4% and 14.4%, respectively. Among the four machine learning methods, the reliability of Adaboost.RT was comparable to KRR with higher stability. We therefore believe that the Adaboost.RT algorithm is a reliable and efficient method for GS.
Assuntos
Genômica , Aprendizado de Máquina , Animais , Bovinos , China , Genótipo , Fenótipo , Reprodutibilidade dos TestesRESUMO
AIM: Inflammation within the perivascular adipose tissue (PVAT) in obesity plays an important role in cardiovascular disorders. C-reactive protein (CRP) level in obesity patients is significantly increased and associated with the occurrence and progression of cardiovascular disease. We tested the hypothesis CRP derived from PVAT in obesity contributes to vascular remodeling after injury. METHODS: A high-fat diet (HFD) significantly increased CRP expression in PVAT. We transplanted thoracic aortic PVAT from wild-type (WT) or transgenic CRP-expressing (CRPTG) mice to the injured femoral artery in WT mice. RESULTS: At 4 weeks after femoral artery injury, the neointimal/media ratio was increased significantly in WT mice that received PVAT from CRPTG mice compared with that in WT mice that received WT PVAT. Transplanted CRPTG PVAT also significantly accelerated adventitial macrophage infiltration and vasa vasorum proliferation. It was revealed greater macrophage infiltration in CRPTG adipose tissue than in WT adipose tissue and CRP significantly increased the adhesion rate of monocytes through receptor Fcγ RI. Proteome profiling showed CRP over-expression promoted the expression of chemokine (C-X-C motif) ligand 7 (CXCL7) in adipose tissue, transwell assay showed CRP increased monocyte migration indirectly via the induction of CXCL7 expression in adipocytes. CONCLUSION: CRP derived from PVAT was significantly increased in HFD mice and promoted neointimal hyperplasia after vascular injury.
Assuntos
Tecido Adiposo , Proteína C-Reativa , Tecido Adiposo/patologia , Animais , Humanos , Hiperplasia/patologia , Camundongos , Camundongos Endogâmicos C57BL , Neointima/patologiaRESUMO
BACKGROUND: Body size traits as one of the main breeding selection criteria was widely used to monitor cattle growth and to evaluate the selection response. In this study, body size was defined as body height (BH), body length (BL), hip height (HH), heart size (HS), abdominal size (AS), and cannon bone size (CS). We performed genome-wide association studies (GWAS) of these traits over the course of three growth stages (6, 12 and 18 months after birth) using three statistical models, single-trait GWAS, multi-trait GWAS and LONG-GWAS. The Illumina Bovine HD 770 K BeadChip was used to identify genomic single nucleotide polymorphisms (SNPs) in 1217 individuals. RESULTS: In total, 19, 29, and 10 significant SNPs were identified by the three models, respectively. Among these, 21 genes were promising candidate genes, including SOX2, SNRPD1, RASGEF1B, EFNA5, PTBP1, SNX9, SV2C, PKDCC, SYNDIG1, AKR1E2, and PRIM2 identified by single-trait analysis; SLC37A1, LAP3, PCDH7, MANEA, and LHCGR identified by multi-trait analysis; and P2RY1, MPZL1, LINGO2, CMIP, and WSCD1 identified by LONG-GWAS. CONCLUSIONS: Multiple association analysis was performed for six growth traits at each growth stage. These findings offer valuable insights for the further investigation of potential genetic mechanism of growth traits in Simmental beef cattle.
Assuntos
Tamanho Corporal/genética , Bovinos/genética , Estudo de Associação Genômica Ampla , Locos de Características Quantitativas/genética , Animais , Cruzamento , Bovinos/crescimento & desenvolvimento , Genômica , Haplótipos/genéticaRESUMO
Linear mixed models (LMM) that tests trait association one marker at a time have been the most popular methods for genome-wide association studies. However, this approach has potential pitfalls: over conservativeness after Bonferroni correction, ignorance of linkage disequilibrium (LD) between neighboring markers, and power reduction due to overfitting SNP effects. So, multiple locus models that can simultaneously estimate and test all markers in the genome are more appropriate. Based on the multiple locus models, we proposed a bin model that combines markers into bins based on their LD relationships. A bin is treated as a new synthetic marker and we detect the associations between bins and traits. Since the number of bins can be substantially smaller than the number of markers, a penalized multiple regression method can be adopted by fitting all bins to a single model. We developed an innovative method to bin the neighboring markers and used the least absolute shrinkage and selection operator (LASSO) method. We compared BIN-Lasso with SNP-Lasso and Q + K-LMM in a simulation experiment, and showed that the new method is more powerful with less Type I error than the other two methods. We also applied the bin model to a Chinese Simmental beef cattle population for bone weight association study. The new method identified more significant associations than the classical LMM. The bin model is a new dimension reduction technique that takes advantage of biological information (i.e., LD). The new method will be a significant breakthrough in associative genomics in the big data era.
Assuntos
Bovinos/genética , Estudos de Associação Genética/veterinária , Genômica/métodos , Modelos Genéticos , Animais , Simulação por Computador , Genótipo , Modelos Lineares , Desequilíbrio de Ligação , Polimorfismo de Nucleotídeo ÚnicoRESUMO
The use of hexavalent chromium (Cr(VI)) in many industrial processes has resulted in serious environmental pollution problems. Cr(VI) causes organ toxicity in animals after ingestion or inhalation. However, the exact mechanism by which Cr(VI) produces kidney damage remains elusive. Herein, we investigated whether Cr(VI)-induced kidney damage is related to the disorder of mitochondrial dynamics. In this study, 28 male rats were divided into four groups and intraperitoneally injected with 0, 2, 4, and 6 mg/kg body weight potassium dichromate for 5 weeks. Experiment included analysis of renal histopathology and ultrastructure, determination of biochemical indicators, and measurement of related protein content. The results showed that Cr(VI) induced kidney injury through promotion of oxidative stress, apoptosis, and disorder of mitochondrial dynamics in a dose-dependent manner. The protein levels of the silent information regulator two ortholog 1 (Sirt1), peroxisome proliferation-activated receptor-g coactivator-1a (PGC-1a), and autophagy-related proteins were significantly decreased after Cr(VI) exposure. These findings suggest that Cr(VI) leads to the disorder of mitochondrial dynamics by inhibiting the Sirt1/PGC-1a pathway, which leads to renal apoptosis and autophagy in rats.
Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Cromo/toxicidade , Rim/efeitos dos fármacos , Dinâmica Mitocondrial/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Rim/metabolismo , Rim/ultraestrutura , Nefropatias/induzido quimicamente , Nefropatias/metabolismo , Nefropatias/patologia , Masculino , Dicromato de Potássio/toxicidade , Ratos , Ratos WistarRESUMO
Mitochondria play important roles in the development of diabetic kidney disease (DKD). The SS peptide is a tetrapeptide that is located and accumulated in the inner mitochondrial membrane; it reduces reactive oxygen species (ROS) and prevents mitochondrial dysfunction. Podocytes are key cellular components in DKD progression. However, whether the SS peptide can exert renal protection through podocytes and the mechanism involved are unknown. In the present study, we explored the mechanisms of the SS peptide on podocyte injury in vivo and in vitro. Compared with the control group, the glomerular podocyte number and expression of WT1 were significantly reduced and TUNEL-positive podocytes were significantly increased in renal tissues in the diabetic rat. These effects were further exacerbated by hypochlorite-modified albumin (HOCl-alb) challenge but prevented by SS-31. In vitro, SS-31 blocked apoptosis in podocyte cell line induced by HOCl-alb. SS-31 prevented oxidative stress and mitochondria-dependent apoptosis signalling by HOCl-alb in vivo and in vitro, as evidenced by the release of cytochrome c (cyt c), binding of apoptosis activated factor-1 (Apaf-1) and caspase-9, and activation of caspases. These data suggest that SS-31 may prevent podocyte apoptosis, exerting renal protection in diabetes mellitus, probably through an apoptosis-related signalling pathway involving oxidative stress and culminating in mitochondria.
Assuntos
Apoptose/efeitos dos fármacos , Diabetes Mellitus Experimental/tratamento farmacológico , Ácido Hipocloroso/farmacologia , Mitocôndrias/efeitos dos fármacos , Podócitos/efeitos dos fármacos , Albumina Sérica/metabolismo , Animais , Diabetes Mellitus Experimental/metabolismo , Relação Dose-Resposta a Droga , Masculino , Estrutura Molecular , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-AtividadeRESUMO
Cattle internal organs as accessible raw materials have a long history of being widely used in beef processing, feed and pharmaceutical industry. These traits not only are of economic interest to breeders, but they are intrinsically linked to many valuable traits, such as growth, health, and productivity. Using the Illumina Bovine HD 770K SNP array, we performed a genome-wide association study for heart weight, liver weight, spleen weight, lung weight, and kidney weight in 1,217 Simmental cattle. In our research, 38 significant single nucleotide polymorphisms (SNPs) ( P < 1.49 × 10-6) were identified for five internal organ weight traits. These SNPs are within or near 13 genes, and some of them have been reported previously, including NDUFAF4, LCORL, BT.94996, SLIT2, FAM184B, LAP3, BBS12, MECOM, CD300LF, HSD17B3, TLR4, MXI1, and MB21D2. In addition, we detected four haplotype blocks on BTA6 containing 18 significant SNPs associated with spleen weight. Our results offer worthy insights into understanding the genetic mechanisms of internal organs' development, with potential application in breeding programs of Simmental beef cattle.
Assuntos
Bovinos/genética , Estudo de Associação Genômica Ampla/métodos , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas/genética , Carne Vermelha , Animais , Cruzamento/métodos , Bovinos/fisiologia , Haplótipos , Coração/crescimento & desenvolvimento , Rim/crescimento & desenvolvimento , Fígado/crescimento & desenvolvimento , Pulmão/crescimento & desenvolvimento , Tamanho do Órgão/genética , Baço/crescimento & desenvolvimentoRESUMO
Acute kidney injury (AKI) represents a group of complicated syndromes with a high mortality rate. The administration of adipose-derived mesenchymal stem cells (ADMSCs) has been tested as a possible treatment method for AKI. The long-term evaluation of AKI induced by ischemia/reperfusion (IR) and the probable renal protection of ADMSCs are limited. In this study we have established a rat AKI model induced by IR and investigated the possible protective effects of ADMSCs. Adult Sprague-Dawley (SD) rats were divided into three groups (n = 6/each group). The MOCK group was as the normal control. Rats in the IR-AKI and IR-AKI+ADMSCs groups were subjected to IR injury by clamping both renal pedicles for 40 minutes. Rats in the MOCK and IR-AKI groups were injected with PBS via the tail vein as negative treatment controls. Rats in the IR-AKI+ADMSCs group received ADMSCs therapy (2 × 106 cells were injected into the rats via the tail vein). We found that ADMSC transplantation restored the pathologic morphology induced by IR-AKI to normal compared with the MOCK group, suggesting the reparative function of ADMSCs in kidney tissues. Compared with IR-induced AKI alone, ADMSC treatment significantly decreased the number of apoptotic cells, the level of total urinary protein and serum creatinine, the expression of pro-inflammatory cytokines (IL-6, TNF-α, IL-1ß, IFN-γ, TNF-α, IFN-γ, and TGF-ß), and the inflammation-associated proteins (HGF and SDF1), but increased the expression of the anti-inflammatory cytokine, IL-10, and the anti-apoptotic regulator, Bcl-2. Our data have indicated that ADMSC transplantation may protect against IR-induced AKI by anti-apoptotic and anti-inflammatory effects.
Assuntos
Injúria Renal Aguda/terapia , Tecido Adiposo/citologia , Rim/irrigação sanguínea , Transplante de Células-Tronco Mesenquimais/métodos , Traumatismo por Reperfusão/complicações , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/imunologia , Injúria Renal Aguda/patologia , Animais , Apoptose , Modelos Animais de Doenças , Inflamação , Rim/imunologia , Rim/patologia , Testes de Função Renal , Masculino , Ratos Sprague-DawleyRESUMO
In this work, multifunctional hydrogels with vivid color change and shrinking-swelling response to temperature, ion strength, and alternating magnetic field are fabricated via magnetic assembly. The hydrogels show gradual shift colors from yellowish green to green, cyan, blue, purple, and even reddish violet in response to temperature or ion strength. In the response process, the whole color modulation process is fully reversible and transferable along with a relative short response time. Especially, the magnetism and porous structure of the hybrid hydrogel enable it to be a potential carrier for hydrophobic molecules. Taking advantage of the magnetocaloric responsiveness, the dyed oil loaded hydrogel exhibits a controllable release behavior in each reversible shrinking-swelling cycle under an alternating magnetic field. This multi-responsive hydrogel can hold promise for practical engineering applications, including sensors, displays, and controlled release.
Assuntos
Cor , Corantes/química , Temperatura Alta , Hidrogéis , Campos Magnéticos , Hidrogéis/síntese química , Hidrogéis/química , PorosidadeRESUMO
One of the most important topics in crop information science is how to make use of the crop's information for non-destructive nutrient diagnosis which can be solved with spectrum analysis. The canopy's spectrum feature is a key indicator to describe the nutritional status for the rapeseeds. The original spectrum is to be disturbed with external factors such as environment and climate; however, it is difficult to be directly used for rapeseed biomass diagnosis due to its huge fluctuation. However, the multifractal feature of the spectra remains stable relatively. In order to study the relationship between the canopy's spectrum of the rapeseed and its chlorophyll, based on the multifractal theory, a quantitative model of chlorophyll prediction and a qualitative model of planting pattern identification were proposed in this paper to study the high oleic acid rapeseed samples in 24 transplanting regions and 24 direct planting regions. At first, the generalized Hurst exponent and mass exponents together with other relevant multifractal parameters of the spectra were extracted with popular multifractal detrended fluctuation analysis (MF-DFA) in different six considered wavelength ranges. It shows that all of them possess representative multifractal nature. However, there are some differences of the multifractal characteristics between the two kinds of regions with different planting pattern in some bands. In addition, by correlation analysis and detection between the multifractal parameters of the spectra and the SPAD values in six considered ranges of bands, it demonstrates that there is some difference of the effective information content in the different ranges of bands. In the quantitative model of chlorophyll prediction, for each groups of samples in transplanting regions and direct planting regions and mixed together in each significant bands, a selected multifractal parameter was used to establish the univariate model for predicting the rapeseed leaf's SPAD values, respectively. The results of all the relative root mean square errors are small than 5%. Finally, the qualitative model was proposed to distinguish the samples by the two planting pattern. Youden index, as the identification accuracy was calculated for the six considered ranges of bands by the Fisher's linear discriminant analysis. The best Youden index is 0.902 5 and the corresponding band range is 350~1 350 nm. The significant work provides a theoretical and practical method for predicting rapeseed leaf's SPAD and also provides effective way to find the sensitive bands of the spectra for identification diagnosis.
Assuntos
Brassica rapa , Clorofila , Folhas de Planta , Análise EspectralRESUMO
The advancement of soft bioelectronics hinges critically on the electromechanical properties of hydrogels. Despite ongoing research into diverse material and structural strategies to enhance these properties, producing hydrogels that are simultaneously tough, resilient, and highly conductive for long-term, dynamic physiological monitoring remains a formidable challenge. Here, a strategy utilizing scalable layered heterogeneous hydrogel fibers (LHHFs) is introduced that enables synergistic electromechanical modulation of hydrogels. High toughness (1.4 MJ m-3) and resilience (over 92% recovery from 200% strain) of LHHFs are achieved through a damage-free toughening mechanism that involves dense long-chain entanglements and reversible strain-induced crystallization of sodium polyacrylate. The unique symmetrical layered structure of LHHFs, featuring distinct electrical and mechanical functional layers, facilitates the mixing of multi-walled carbon nanotubes to significantly enhance electrical conductivity (192.7 S m-1) without compromising toughness and resilience. Furthermore, high-performance LHHF capacitive iontronic strain/pressure sensors and epidermal electrodes are developed, capable of accurately and stably capturing biomechanical and bioelectrical signals from the human body under long-term, dynamic conditions. The LHHF offers a promising route for developing hydrogels with uniquely integrated electromechanical attributes, advancing practical wearable healthcare applications.
RESUMO
Hydrogels possess unique features such as softness, wetness, responsiveness, and biocompatibility, making them highly suitable for biointegrated applications that have close interactions with living organisms. However, conventional man-made hydrogels are usually soft and brittle, making them inferior to the mechanically robust biological hydrogels. To ensure reliable and durable operation of biointegrated wearable and implantable devices, mechanical matching and shape adaptivity of hydrogels to tissues and organs are essential. Recent advances in polymer science and processing technologies have enabled mechanical engineering and shaping of hydrogels for various biointegrated applications. In this review, polymer network structuring strategies at micro/nanoscales for toughening hydrogels are summarized, and representative mechanical functionalities that exist in biological materials but are not easily achieved in synthetic hydrogels are further discussed. Three categories of processing technologies, namely, 3D printing, spinning, and coating for fabrication of tough hydrogel constructs with complex shapes are reviewed, and the corresponding hydrogel toughening strategies are also highlighted. These developments enable adaptive fabrication of mechanically robust and functional hydrogel devices, and promote application of hydrogels in the fields of biomedical engineering, bioelectronics, and soft robotics.
Assuntos
Hidrogéis , Dispositivos Eletrônicos Vestíveis , Hidrogéis/química , Humanos , Materiais Biocompatíveis/química , Impressão Tridimensional , Próteses e Implantes , Polímeros/química , Animais , Fenômenos Mecânicos , RobóticaRESUMO
Antarctic Bottom Water (AABW), which supplies the lower limb of the thermohaline circulation, originates from dense shelf water (DSW) forming in Antarctic polynyas. Here, combining a long mooring record of DSW measurements with numerical simulations and satellite data, we show that significant correlation exists between interannual variability of DSW production in the Ross Sea polynyas, where DSW contributes between 20-40% of the global AABW production, and the Southern Annular Mode (SAM). The correlation is largest when the Amundsen Sea Low (ASL) is weakened and shifted east of the Ross Sea. During positive SAM phases, enhanced offshore winds and lower air temperatures over the western Ross Sea increase sea ice production and promote DSW formation, with the opposite response during negative SAM phases. These processes ultimately modulate AABW thickness in the open ocean. A projected positive shift of the SAM and eastward displacement of the ASL thus has implications for the future of DSW and AABW formation.