Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 396
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 592(7855): 551-557, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33883734

RESUMO

Solid-state lithium (Li)-air batteries are recognized as a next-generation solution for energy storage to address the safety and electrochemical stability issues that are encountered in liquid battery systems1-4. However, conventional solid electrolytes are unsuitable for use in solid-state Li-air systems owing to their instability towards lithium metal and/or air, as well as the difficulty in constructing low-resistance interfaces5. Here we present an integrated solid-state Li-air battery that contains an ultrathin, high-ion-conductive lithium-ion-exchanged zeolite X (LiX) membrane as the sole solid electrolyte. This electrolyte is integrated with cast lithium as the anode and carbon nanotubes as the cathode using an in situ assembly strategy. Owing to the intrinsic chemical stability of the zeolite, degeneration of the electrolyte from the effects of lithium or air is effectively suppressed. The battery has a capacity of 12,020 milliamp hours per gram of carbon nanotubes, and has a cycle life of 149 cycles at a current density of 500 milliamps per gram and at a capacity of 1,000 milliamp hours per gram. This cycle life is greater than those of batteries based on lithium aluminium germanium phosphate (12 cycles) and organic electrolytes (102 cycles) under the same conditions. The electrochemical performance, flexibility and stability of zeolite-based Li-air batteries confer practical applicability that could extend to other energy-storage systems, such as Li-ion, Na-air and Na-ion batteries.

2.
Nucleic Acids Res ; 52(6): 2886-2903, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38142446

RESUMO

Adjusting intracellular metabolic pathways and adopting suitable live state such as biofilms, are crucial for bacteria to survive environmental changes. Although substantial progress has been made in understanding how the histone-like nucleoid-structuring (H-NS) protein modulates the expression of the genes involved in biofilm formation, the precise modification that the H-NS protein undergoes to alter its DNA binding activity is still largely uncharacterized. This study revealed that acetylation of H-NS at Lys19 inhibits biofilm development in Shewanella oneidensis MR-1 by downregulating the expression of glutamine synthetase, a critical enzyme in glutamine synthesis. We further found that nitrogen starvation, a likely condition in biofilm development, induces deacetylation of H-NS and the trimerization of nitrogen assimilation regulator GlnB. The acetylated H-NS strain exhibits significantly lower cellular glutamine concentration, emphasizing the requirement of H-NS deacetylation in Shewanella biofilm development. Moreover, we discovered in vivo that the activation of glutamine biosynthesis pathway and the concurrent suppression of the arginine synthesis pathway during both pellicle and attached biofilms development, further suggesting the importance of fine tune nitrogen assimilation by H-NS acetylation in Shewanella. In summary, posttranslational modification of H-NS endows Shewanella with the ability to respond to environmental needs by adjusting the intracellular metabolism pathways.


Assuntos
Histonas , Shewanella , Acetilação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes , Glutamina/genética , Histonas/metabolismo , Homeostase , Processamento de Proteína Pós-Traducional , Shewanella/genética , Shewanella/metabolismo
3.
PLoS Pathog ; 19(6): e1011470, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37347782

RESUMO

The study of carrier state phages challenged the canonical lytic-lysogenic binary, and carrier state appears to be ubiquitous and ecologically important. However, the mechanisms of the carrier state are not well elucidated due to the limited phage models. Herein, we reported phage HQ103, similar to Escherichia coli phage P2. In contrast to the temperate P2 phage, the HQ103 phage does not insert its genome into the bacterial chromosome and displays a dual behavior depending on the temperature. At 37°C, HQ103 lyses the host and forms clear plaques due to the truncation of repressor CI and mutation of promoter Pc. In contrast, HQ103 maintains a carrier state lifestyle with Y. pestis at an environmental temperature (21°C). Mechanistically, we found that the host-encoded histone-like nucleoid-structuring protein H-NS, which is highly expressed at 21°C to silence the Cox promoter Pe and inhibits the phage lytic cycle. Subsequently, the HQ103 carrier state Y. pestis could grow and co-exist with the phage in the soil at 21°C for one month. Thus, this study reveals a novel carrier state lifestyle of phage HQ103 due to the H-NS mediated xenogeneic silencing and demonstrates that the carrier state lifestyle could promote long-term phage-host coexist in nature.


Assuntos
Bacteriófagos , Yersinia pestis , Bacteriófagos/genética , Solo , Portador Sadio , Temperatura , Lisogenia
4.
Nature ; 566(7744): 368-372, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30692651

RESUMO

The mechanical and electronic properties of two-dimensional materials make them promising for use in flexible electronics1-3. Their atomic thickness and large-scale synthesis capability could enable the development of 'smart skin'1,3-5, which could transform ordinary objects into an intelligent distributed sensor network6. However, although many important components of such a distributed electronic system have already been demonstrated (for example, transistors, sensors and memory devices based on two-dimensional materials1,2,4,7), an efficient, flexible and always-on energy-harvesting solution, which is indispensable for self-powered systems, is still missing. Electromagnetic radiation from Wi-Fi systems operating at 2.4 and 5.9 gigahertz8 is becoming increasingly ubiquitous and would be ideal to harvest for powering future distributed electronics. However, the high frequencies used for Wi-Fi communications have remained elusive to radiofrequency harvesters (that is, rectennas) made of flexible semiconductors owing to their limited transport properties9-12. Here we demonstrate an atomically thin and flexible rectenna based on a MoS2 semiconducting-metallic-phase heterojunction with a cutoff frequency of 10 gigahertz, which represents an improvement in speed of roughly one order of magnitude compared with current state-of-the-art flexible rectifiers9-12. This flexible MoS2-based rectifier operates up to the X-band8 (8 to 12 gigahertz) and covers most of the unlicensed industrial, scientific and medical radio band, including the Wi-Fi channels. By integrating the ultrafast MoS2 rectifier with a flexible Wi-Fi-band antenna, we fabricate a fully flexible and integrated rectenna that achieves wireless energy harvesting of electromagnetic radiation in the Wi-Fi band with zero external bias (battery-free). Moreover, our MoS2 rectifier acts as a flexible mixer, realizing frequency conversion beyond 10 gigahertz. This work provides a universal energy-harvesting building block that can be integrated with various flexible electronic systems.

5.
BMC Genomics ; 25(1): 50, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212691

RESUMO

BACKGROUND: Even though the Buyei are a recognised ethnic group in southwestern China, there hasn't been much work done on forensic population genetics, notably using mitochondrial DNA. The sequences and haplogroups of mitochondrial DNA control regions of the Buyei peoples were studied to provide support for the establishment of a reference database for forensic DNA analysis in East Asia. METHODS AND RESULTS: The mitochondrial DNA control region sequences of 200 Buyei individuals in Guizhou were investigated. The haplotype frequencies and haplogroup distribution of the Buyei nationality in Guizhou were calculated. At the same time, the paired Fst values of the study population and other populations around the world were computed, to explore their genetic polymorphism and population relationship. A total of 179 haplotypes were detected in the Buyei population, with frequencies of 0.005-0.015. All haplotypes were assigned to 89 different haplogroups. The haplotype diversity and random matching probability were 0.999283 and 0.0063, respectively. The paired Fst genetic distances and correlation p-values among the 54 populations revealed that the Guizhou Buyei was most closely related to the Henan Han and the Guizhou Miao, and closer to the Hazara population in Pakistan and the Chiang Mai population. CONCLUSIONS: The study of mitochondrial DNA based on the maternal genetic structure of the Buyei nationality in Guizhou will benefit the establishment of an East Asian forensic DNA reference database and provide a reference for anthropological research in the future.


Assuntos
DNA Mitocondrial , Polimorfismo Genético , Humanos , DNA Mitocondrial/genética , Genética Populacional , Haplótipos , China , Repetições de Microssatélites , Filogenia
6.
J Am Chem Soc ; 146(5): 3373-3382, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38272666

RESUMO

Reticular chemistry effectively yields porous structures with distinct topological lattices for a broad range of applications. Polyhedral oligomeric silsesquioxane (POSS)-based octatopic building blocks with a rare Oh symmetric configuration and attracting inorganic features have great potential for creating three-dimensional (3D) covalent organic frameworks (COFs) with new topologies. However, the intrinsic flexibility and intensive motion of cubane-type POSS molecules make the construction of 3D regular frameworks challenging. Herein, by fastening three or four POSS cores with per aromatic rigid linker from rational steric directions, we successfully developed serial crystalline 3D COFs with unpresented "the" and scu topologies. Both the experimental and theoretical results proved the formation of target 3D POSS-based COFs. The resultant hybrid networks with designable chemical skeletons and high surface areas maintain the superiorities of both the inorganic and organic components, such as their high compatibility with inorganic salts, abundant periodic electroactive sites, excellent thermal stability, and open multilevel nanochannels. Consequently, the polycubane COFs could serve as outstanding solid electrolytes with a high ionic conductivity of 1.23 × 10-4 S cm-1 and a lithium-ion transference number of 0.86 at room temperature. This work offers a pathway to generate ordered lattices with multiconnected flexible cube motifs and enrich the topologies of 3D COFs for potential applications.

7.
J Am Chem Soc ; 146(2): 1305-1317, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38169369

RESUMO

Aprotic lithium-oxygen (Li-O2) batteries are considered to be a promising alternative option to lithium-ion batteries for high gravimetric energy storage devices. However, the sluggish electrochemical kinetics, the passivation, and the structural damage to the cathode caused by the solid discharge products have greatly hindered the practical application of Li-O2 batteries. Herein, the nonsolid-state discharge products of the off-stoichiometric Li1-xO2 in the electrolyte solutions are achieved by iridium (Ir) single-atom-based porous organic polymers (termed as Ir/AP-POP) as a homogeneous, soluble electrocatalyst for Li-O2 batteries. In particular, the numerous atomic active sites act as the main nucleation sites of O2-related discharge reactions, which are favorable to interacting with O2-/LiO2 intermediates in the electrolyte solutions, owing to the highly similar lattice-matching effect between the in situ-formed Ir3Li and LiO2, achieving a nonsolid LiO2 as the final discharge product in the electrolyte solutions for Li-O2 batteries. Consequently, the Li-O2 battery with a soluble Ir/AP-POP electrocatalyst exhibits an ultrahigh discharge capacity of 12.8 mAh, an ultralow overpotential of 0.03 V, and a long cyclic life of 700 h with the carbon cloth cathode. The manipulation of nonsolid discharge products in aprotic Li-O2 batteries breaks the traditional growth mode of Li2O2, bringing Li-O2 batteries closer to being a viable technology.

8.
Appl Environ Microbiol ; 90(4): e0009524, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38497640

RESUMO

Horizontal gene transfer, facilitated by mobile genetic elements (MGEs), is an adaptive evolutionary process that contributes to the evolution of bacterial populations and infectious diseases. A variety of MGEs not only can integrate into the bacterial genome but also can survive or even replicate like plasmids in the cytoplasm, thus requiring precise and complete removal for studying their strategies in benefiting host cells. Existing methods for MGE removal, such as homologous recombination-based deletion and excisionase-based methods, have limitations in effectively eliminating certain MGEs. To overcome these limitations, we developed the Cas9-NE method, which combines the CRISPR/Cas9 system with the natural excision of MGEs. In this approach, a specialized single guide RNA (sgRNA) element is designed with a 20-nucleotide region that pairs with the MGE sequence. This sgRNA is expressed from a plasmid that also carries the Cas9 gene. By utilizing the Cas9-NE method, both the integrative and circular forms of MGEs can be precisely and completely eliminated through Cas9 cleavage, generating MGE-removed cells. We have successfully applied the Cas9-NE method to remove four representative MGEs, including plasmids, prophages, and genomic islands, from Vibrio strains. This new approach not only enables various investigations on MGEs but also has significant implications for the rapid generation of strains for commercial purposes.IMPORTANCEMobile genetic elements (MGEs) are of utmost importance for bacterial adaptation and pathogenicity, existing in various forms and multiple copies within bacterial cells. Integrated MGEs play dual roles in bacterial hosts, enhancing the fitness of the host by delivering cargo genes and potentially modifying the bacterial genome through the integration/excision process. This process can lead to alterations in promoters or coding sequences or even gene disruptions at integration sites, influencing the physiological functions of host bacteria. Here, we developed a new approach called Cas9-NE, allowing them to maintain the natural sequence changes associated with MGE excision. Cas9-NE allows the one-step removal of integrated and circular MGEs, addressing the challenge of eliminating various MGE forms efficiently. This approach simplifies MGE elimination in bacteria, expediting research on MGEs.


Assuntos
Sistemas CRISPR-Cas , RNA Guia de Sistemas CRISPR-Cas , Bactérias/genética , Ilhas Genômicas , Transferência Genética Horizontal , Plasmídeos/genética , Sequências Repetitivas Dispersas
9.
Plant Physiol ; 192(1): 205-221, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36756926

RESUMO

Flowering time is one of the most important agronomic traits affecting the adaptation and yield of rice (Oryza sativa). Heading date 1 (Hd1) is a key factor in the photoperiodic control of flowering time. In this study, two basic helix-loop-helix (bHLH) transcription factors, Hd1 Binding Protein 1 (HBP1) and Partner of HBP1 (POH1) were identified as transcriptional regulators of Hd1. We generated knockout mutants of HBP1 and ectopically expressed transgenic lines of the two bHLH transcription factors and used these lines to investigate the roles of these two factors in regulating flowering time. HBP1 physically associated with POH1 forming homo- or heterodimers to perform their functions. Both HBP1 and POH1 bound directly to the cis-acting elements located in the promoter of Hd1 to activate its expression. CRISPR/Cas9-generated knockout mutations of HBP1, but not POH1 mutations, promoted earlier flowering time; conversely, HBP1 and POH1 overexpression delayed flowering time in rice under long-day and short-day conditions by activating the expression of Hd1 and suppressing the expression of Early heading date 1 (Ehd1), Heading date 3a (Hd3a), and Rice Flowering locus T 1 (RFT1), thus controlling flowering time in rice. Our findings revealed a mechanism for flowering time control through transcriptional regulation of Hd1 and laid theoretical and practical foundations for improving the growth period, adaptation, and yield of rice.


Assuntos
Flores , Oryza , Oryza/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fotoperíodo , Fenótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
10.
Bioorg Chem ; 143: 107004, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38086238

RESUMO

In this study, we identified a newly synthesized compound 7o with potent inhibition on EGFR primary mutants (L858R, Del19) and drug-resistant mutant T790M with nanomolar IC50 values. 7o showed strong antiproliferative effects against EGFR mutant-driven non-small cell lung cancer (NSCLC) cells such as H1975, PC-9 and HCC827, over cells expressing EGFRWT. Molecular docking was performed to investigate the possible binding modes of 7o inside the binding site of EGFRL858R/T790M and EGFRWT. Analysis of cell cycle evidenced that 7o induced cell cycle arrest in G1 phases in the EGFR mutant cells, H1975 and PC-9, which resulted in decreased S-phase populations. Moreover, compound 7o induced cancer cell apoptosis in in vitro assays. In addition, 7o inhibited cellular phosphorylation of EGFR. In vivo, oral administration of 7o caused rapid tumor regression in H1975 xenograft model. Therefore, 7o might deserve further optimization as cancer treatment agent for EGFR mutant-driven NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Receptores ErbB , Simulação de Acoplamento Molecular , Proliferação de Células , Inibidores de Proteínas Quinases , Mutação , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos
11.
Cell Mol Biol Lett ; 29(1): 5, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172714

RESUMO

BACKGROUND: The abnormality of chromosomal karyotype is one factor causing poor prognosis of lymphoma. In the analysis of abnormal karyotype of lymphoma patients, three smallest overlap regions were found, in which MYCT1 was located. MYCT1 is the first tumor suppressor gene cloned by our research team, but its studies relating to the occurrence and development of lymphoma have not been reported. METHODS: R banding analyses were employed to screen the abnormality of chromosomal karyotype in clinical specimen and MYCT1 over-expression cell lines. FISH was to monitor MYCT1 copy number aberration. RT-PCR and Western blot were to detect the mRNA and protein levels of the MYCT1 and RUNX1 genes, respectively. The MYCT1 and RUNX1 protein levels in clinical specimen were evaluated by immunohistochemical DAB staining. The interaction between MYCT1 and MAX proteins was identified via Co-IP and IF. The binding of MAX on the promoter of the RUNX1 gene was detected by ChIP and Dual-luciferase reporter assay, respectively. Flow cytometry and CCK-8 assay were to explore the effects of MYCT1 and RUNX1 on the cell cycle and proliferation, respectively. RESULTS: MYCT1 was located in one of three smallest overlap regions of diffuse large B-cell lymphoma, it altered chromosomal instability of diffuse large B-cell lymphoma cells. MYCT1 negatively correlated with RUNX1 in lymphoma tissues of the patients. MAX directly promoted the RUNX1 gene transcription by binding to its promoter region. MYCT1 may represses RUNX1 transcription by binding MAX in diffuse large B-cell lymphoma cells. MYCT1 binding to MAX probably suppressed RUNX1 transcription, leading to the inhibition of proliferation and cell cycle of the diffuse large B-cell lymphoma cells. CONCLUSION: This study finds that there is a MYCT1-MAX-RUNX1 signaling pathway in diffuse large B-cell lymphoma. And the study provides clues and basis for the in-depth studies of MYCT1 in the diagnosis, treatment and prognosis of lymphoma.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core , Linfoma Difuso de Grandes Células B , Humanos , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Regiões Promotoras Genéticas , Linfoma Difuso de Grandes Células B/genética , Hematopoese , Linhagem Celular Tumoral , Proteínas Nucleares/metabolismo
12.
BMC Public Health ; 24(1): 1074, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632558

RESUMO

BACKGROUND: The prevalence of hyperuricemia in China has been consistently increasing, particularly among the younger generation. The excessive consumption of sugar-sweetened beverages is associated with hyperuricemia. This study examined the knowledge, attitudes, and practices (KAP) of Chinese young adults regarding sugar-sweetened beverage consumption and the correlation with hyperuricemia. METHODS: This cross-sectional investigation was conducted from June 28th, 2023, to July 21st, 2023, and enrolled Chinese young adults. Demographics and KAP were evaluated using a questionnaire (Cronbach's α = 0.787). Factors influencing KAP scores were analyzed using multivariable analyses. RESULTS: A total of 1288 valid questionnaires were analyzed. The median knowledge, attitude, and practice scores were 16 (12,19)/22, 22 (20,24)/30, and 27.5 (23,31.75)/40. The multivariable analysis showed that bachelor's/associate education (OR = 1.912, 95%CI: 1.128-3.239), white collar/employee (OR = 0.147, 95%CI: 0.105-0.206), educator (OR = 0.300, 95%CI: 0.174-0.518), healthcare worker (OR = 0.277, 95%CI: 0.188-0.407), not suffering from hyperuricemia (OR = 0.386, 95%CI: 0.253-0.590), and not having gout (OR = 0.456, 95%CI: 0.282-0.736) were independently associated with knowledge. Age 26-30 (OR = 1.470, 95%CI: 1.052-2.052), age 31-35 (OR = 1.489, 95%CI: 1.097-2.022), age 36-40 (OR = 0.328, 95%CI: 1.010-1.746), age 41-44 (OR = 1.548, 95%CI: 1.091-2.198), and not having hyperuricemia (OR = 0.512, 95%CI: 0.345-0.760) were independently associated with attitude. White collar/employee (OR = 0.386, 95%CI: 0.285-0.521), educator (OR = 0.534, 95%CI: 0.317-0.899), healthcare worker (OR = 0.341, 95%CI: 0.236-0.493), having siblings (OR = 0.725, 95%CI: 0.573-0.917), and not suffering from hyperuricemia (OR = 0.442, 95%CI: 0.296-0.659), were independently associated with practice. CONCLUSION: Chinese young adults display moderate KAP toward sugar-sweetened beverages. Notably, an association was observed between hyperuricemia and each KAP dimension.


Assuntos
Hiperuricemia , Bebidas Adoçadas com Açúcar , Humanos , Adulto Jovem , Adulto , Hiperuricemia/epidemiologia , Estudos Transversais , Inquéritos e Questionários , China , Bebidas
13.
J Paediatr Child Health ; 60(8): 355-360, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39032105

RESUMO

AIM: Surgery for congenital scoliosis correction in children is often associated with considerable blood loss. Decrease in regional oxygen saturation (rScO2) can reflect insufficient cerebral perfusion and predict neurological complications. This retrospective observational study explored the relationship between blood loss during this surgery and a decrease in rScO2 in children. METHODS: The following clinical data of children aged 3-14 years who underwent elective posterior scoliosis correction between March 2019 and July 2021 were collected: age, sex, height, weight, baseline rScO2, basal mean invasive arterial pressure (MAP), preoperative Cobb angle, number of surgical segments, preoperative and postoperative haemoglobin level, percentage of lowest rScO2 below the baseline value that lasted 3 min or more during the operation (decline of rScO2 from baseline, D-rScO2%), intraoperative average invasive MAP, end-tidal carbon dioxide pressure, fluid infusion rate of crystalloids and colloids, operation time, and percentage of total blood loss/patient's blood volume (TBL/PBV). RESULTS: A total of 105 children were included in the study. Massive haemorrhage (TBL/PBV ≥50%) was reported in 53.3% of patients, who had significantly higher D-rScO2 (%) (t = -5.264, P < 0.001) than those who had non-massive haemorrhage (TBL/PBV <50%). Multiple regression analysis revealed that TBL/PBV (ß = 0.04, 95% CI: 0.018-0.062, P < 0.05) was significantly associated with D-rScO2%. CONCLUSIONS: Intraoperative massive blood loss in children significantly increased D-rScO2%. Monitoring should be improved, and timely blood supplementation should be performed to ensure maintenance of the blood and oxygen supply to vital organs, improve the safety of anaesthesia, and avoid neurological complications.


Assuntos
Perda Sanguínea Cirúrgica , Escoliose , Humanos , Criança , Estudos Retrospectivos , Escoliose/cirurgia , Feminino , Masculino , Adolescente , Pré-Escolar , Perda Sanguínea Cirúrgica/prevenção & controle , Saturação de Oxigênio , Circulação Cerebrovascular/fisiologia
14.
Eur Spine J ; 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39122847

RESUMO

PURPOSE: Laminoplasty (LP) combined with C3 laminectomy (LN) can effectively achieve spinal cord decompression while maintaining the integrity of the posterior ligament-muscle complex, thereby minimizing cervical muscle damage. However, its necessity and safety remain controversial. This study aimed to compare the safety and efficacy of LP and LP combined with C3 LN in the treatment of patients with multilevel degenerative cervical spondylotic myelopathy (DCM). METHODS: A systematic review and meta-analysis of the literature was performed. A search of PubMed, Web of Science, Embase, and the Cochrane Library databases was conducted from inception through December 2023 and updated in February 2024. Search terms included laminoplasty, laminectomy, C3 and degenerative cervical spondylosis. The literature search yielded 14 studies that met our inclusion criteria. Outcomes included radiographic results, neck pain, neurologic function, surgical parameters, and postoperative complications. We also assessed methodologic quality, publication bias, and quality of evidence. RESULTS: Fourteen studies were identified, including 590 patients who underwent LP combined with C3 LN (modified group, MG) compared to 669 patients who underwent LP (traditional group, TG). The results of the study indicated a statistically significant improvement in cervical range of motion (WMD = 3.62, 95% CI: 0.39 to 6.85) and cervical sagittal angle (WMD = 2.07, 95% CI: 0.40 to 3.74) in the MG compared to the TG at the last follow-up (very low-level evidence). The TG had a higher number of patients with complications, especially C2-3 bone fusion. There was no significant difference found in improvement of neck pain, JOA, NDI, cSVA, T1 slope at latest follow-up. CONCLUSION: LP combined with C3 LN is an effective and necessary surgical method for multilevel DCM patients to maintain cervical sagittal balance. However, due to the low quality of evidence in existing studies, more and higher quality research on the technology is needed in the future.

15.
Proc Natl Acad Sci U S A ; 118(4)2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33483419

RESUMO

Toxin-antitoxin (TA) loci were initially identified on conjugative plasmids, and one function of plasmid-encoded TA systems is to stabilize plasmids or increase plasmid competition via postsegregational killing. Here, we discovered that the type II TA system, Pseudoalteromonas rubra plasmid toxin-antitoxin PrpT/PrpA, on a low-copy-number conjugative plasmid, directly controls plasmid replication. Toxin PrpT resembles ParE of plasmid RK2 while antitoxin PrpA (PF03693) shares no similarity with previously characterized antitoxins. Surprisingly, deleting this prpA-prpT operon from the plasmid does not result in plasmid segregational loss, but greatly increases plasmid copy number. Mechanistically, the antitoxin PrpA functions as a negative regulator of plasmid replication, by binding to the iterons in the plasmid origin that inhibits the binding of the replication initiator to the iterons. We also demonstrated that PrpA is produced at a higher level than PrpT to prevent the plasmid from overreplicating, while partial or complete degradation of labile PrpA derepresses plasmid replication. Importantly, the PrpT/PrpA TA system is conserved and is widespread on many conjugative plasmids. Altogether, we discovered a function of a plasmid-encoded TA system that provides new insights into the physiological significance of TA systems.


Assuntos
Replicação do DNA/genética , Plasmídeos/genética , Pseudoalteromonas/genética , Sistemas Toxina-Antitoxina/genética , Proteínas de Bactérias/genética , Toxinas Bacterianas/genética , Variações do Número de Cópias de DNA/genética , DNA Topoisomerase IV/genética , Escherichia coli/genética
16.
BMC Med Educ ; 24(1): 864, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39134998

RESUMO

OBJECTIVE: In the surgery-focused field of obstetrics and gynecology (OB-GYN), the development of residents' skills is paramount. This study aims to evaluate the impact of an enhanced Peyton Four-Step Teaching Model on the foundational skill training of first-year OB-GYN residents. METHODS: Utilizing a cohort study design, we assessed 116 first-year residents from the OB-GYN residency program at Shengjing Hospital of China Medical University from June 2021 to June 2023. The 57 residents beginning their training in 2022 were part of the Refined Peyton (RP) group, introduced to the RP method; the 59 residents from 2021 served as the Traditional Teaching-mode (TTM) group, receiving conventional simulation-based instruction. Teaching effectiveness was assessed by comparing theoretical knowledge and skill performance assessments, National Medical Licensing Examination (NMLE) pass rates, direct observation of procedural skills (DOPS) one year post-training, and survey feedback. RESULTS: The theoretical knowledge scores for both groups were comparable at 78.78 ± 4.08 and 78.70 ± 3.83, with no significant difference (P = 0.76). However, the experimental group demonstrated superior performance in skill operation assessments, first-time NMLE pass rates, and DOPS evaluations one year after training [(77.05 ± 5.39) vs. (84.60 ± 5.65), 100.0% (57/57) vs. 86.4% (51/59), and (75.22 ± 3.56) vs. (82.54 ± 3.43)], as well as higher teaching satisfaction scores [(4.63 ± 0.46) vs. (3.92 ± 0.62)], with all differences being statistically significant (P < 0.05). CONCLUSION: The refined Peyton Four-Step Teaching Model significantly improves the immediate acquisition and long-term retention of clinical basic skills among OB-GYN residents, enhancing both teaching efficacy and resident satisfaction.


Assuntos
Competência Clínica , Ginecologia , Internato e Residência , Obstetrícia , Humanos , Obstetrícia/educação , Ginecologia/educação , Feminino , China , Avaliação Educacional , Ensino , Estudos de Coortes , Masculino , Adulto , Educação de Pós-Graduação em Medicina
17.
J Environ Manage ; 368: 122096, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39121629

RESUMO

Protected area are the cornerstone of biodiversity and ecosystem service conservation at the local, regional, and global levels. In 2019, China proposed the establishment of a nature reserve system (NRS)centered on national parks, integrating and improving various existing protected areas. This study focuses on the Qinling‒Daba Mountains, an area crucial for both biodiversity and ecosystem services. Through assessments of carbon storage (CS), water yield (WY), soil conservation (SC), and habitat quality (HQ), different conservation scenarios are considered in the context of Systematic conservation planning (SCP). An optimization scheme for the NRS in the Qinling-Daba Mountains is proposed, incorporating ecosystem services and comparing them with the existing system. Research indicates that the main protected areas are concentrated in the Min Mountain‒Motian Mountain‒Longmen Mountain region, the central Qinling region, and the Shennongjia‒Daba Mountain region. Compared with the original system, the area of protected regions in the NRS expanded by 52,000 km2 after the SCP scheme was incorporated. The number of patches decreased to 50, and the patch density reduced from 2.1 × 10-4(/100 ha) to 1.7 × 10-4(/100 ha), thereby reducing the fragmentation of the conservation system. Additionally, the optimized scheme achieved a conservation ratio of over 30% for CS, WY, SC, and HQ, with the conservation efficiency for WY and HQ increasing by 0.18 and 0.22, respectively. The study results provide support for optimizing the Qinling-Daba Mountains NRS and offer a reference for constructing NRSs in other regions. Considering ecosystem services in the optimization of the NRS helps enhance the supply capacity of ecological products, maintain national ecological security, and achieve harmonious coexistence and sustainable development between humans and nature.

18.
Angew Chem Int Ed Engl ; : e202401910, 2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39034290

RESUMO

The lack of stable solid-state electrolytes (SSEs) with high-ionic conductivity and rational design of electrode/electrolyte interfaces remains challenging for solid-state lithium batteries. Here, for the first time, a high-performance solid-state lithium-oxygen battery is developed based on the Li-ion-conducted hydrogen-bonded organic framework (LHOF) electrolyte and the core-shell HOF-DAT@CNT cathode with a few layers of HOF-DAT on surface of carbon nanotubes. Benefiting from the abundant dynamic hydrogen bonding network in LHOF-DAT SSEs, fast Li+ ion transport (2.2 × 10-4 S cm-1), a high Li+ transfer number (0.88), and a wide electrochemical window of 5.05 V are achieved. Symmetric batteries constructed with LHOF-DAT SSEs exhibit a stably cycled duration of over 1400 h, which mainly stems from the jumping sites that promote a uniformly high rate of Li+ flux and the hydrogen-bonding network structure that can relieve the structural changes during Li+ transport. LHOF-DAT SSEs-based Li-O2 batteries exhibit high specific capacity (10335 mAh g-1), and stable cycling life up to 150 cycles. Moreover, the solid-state lithium metal battery with LHOF-DAT SSEs endow good rate capability (128.8 mAh g-1 at 1 C), long-term discharge/charge stability (210 cycles). The design of LHOF-DAT SSEs opens an avenue for the development of novel SSEs-based solid-state lithium batteries.

19.
Angew Chem Int Ed Engl ; : e202410208, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38988225

RESUMO

Uncontrollable interfacial side reactions generated from common aqueous electrolytes, just like the hydrogen evolution reaction (HER) and dendrite growth, have severely prevented the practical application of zinc-ion batteries (ZIBs). Solid-state ZIBs are considered to be an efficient strategy by adopting high-quality solid-state electrolytes (SSEs). Here, by confining the deep eutectic electrolyte (DEE) into the nanochannels of the metal-organic framework (MOF)-PCN-222, a stable DEE@PCN-222 SSE with internal Zn2+ transport channels was obtained. A distinctive ion-transport network composed of DEE and PCN-222 in the interior of DEE@PCN-222 realizes the efficient Zn2+ conduction, contributing to a high ionic conductivity of 3.13 × 10-4 S cm-1 at room temperature, a low activation energy of 0.12 eV, and a high Zn2+ transference number of 0.76. Furthermore, experimental and theoretical investigations demonstrate that DEE@PCN-222 with its unique channel structure could homogeneously regulate the Zn2+ distribution and effectively alleviate the side reactions. Highly reversible Zn plating/stripping performance of 2476 h can be realized by the SSE. The solid-state ZIBs show a specific capacity of 306 mAh g-1 and display cycling stability of 517 cycles. This unique design concept provides a new perspective in realizing the high-safety and high-performance ZIBs.

20.
Angew Chem Int Ed Engl ; 63(11): e202319211, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38198190

RESUMO

Li-N2 batteries have received widespread attention for their potential to integrate N2 fixation, energy storage, and conversion. However, because of the low activity and poor stability of cathode catalysts, the electrochemical performance of Li-N2 batteries is suboptimal, and their electrochemical reversibility has rarely been proven. In this study, a novel bifunctional photo-assisted Li-N2 battery system was established by employing a plasmonic Au nanoparticles (NPs)-modified defective carbon nitride (Au-Nv -C3 N4 ) photocathode. The Au-Nv -C3 N4 exhibits strong light-harvesting, N2 adsorption, and N2 activation abilities, and the photogenerated electrons and hot electrons are remarkably beneficial for accelerating the discharge and charge reaction kinetics. These advantages enable the photo-assisted Li-N2 battery to achieve a low overpotential of 1.32 V, which is the lowest overpotential reported to date, as well as superior rate capability and prolonged cycle stability (≈500 h). Remarkably, a combination of theoretical and experimental results demonstrates the high reversibility of the photo-assisted Li-N2 battery. The proposed novel strategy for developing efficient cathode catalysts and fabricating photo-assisted battery systems breaks through the overpotential bottleneck of Li-N2 batteries, providing important insights into the mechanism underlying N2 fixation and storage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA