Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 61(8): 3736-3745, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35175759

RESUMO

Constructing high-quality white organic light-emitting diodes (WOLEDs) remains a big challenge because of high demands on the electroluminescence (EL) performance including high efficiency, excellent spectral stability, and low roll-off simultaneously. To achieve effective energy transfer and trap-assisted recombination in the emissive layer, herein, four Ir(III) phosphors, namely, mOMe-Ir-PI (1), pOMe-Ir-PI (2), mOMe-Ir-PB (3), and pOMe-Ir-PB (4), were strategically designed via simple regulation of the substituent moiety and π conjugation of the chelated ligands. Their photophysical and EL properties were systematically investigated. When these phosphors are employed as doped emitters, the monochromic green organic light-emitting diodes not only exhibit a superior performance with the characteristics of 50.2 cd A-1, 39.2 lm W-1, and 15.1%, but also maintain a negligible roll-off ratio of 0.2% at 1000 cd m-2, which are better than those of commercial green Ir(ppy)2acac and Ir(ppy)3 in the same device configuration. Inspired by these outstanding performances, we successfully fabricated the warm WOLED utilizing 2 as a green component, affording a peak efficiency of 42.0 cd A-1, 29.3 lm W-1, and 18.6% and retaining at 39.9 cd A-1, 23.7 lm W-1, and 17.4% even at 1000 cd m-2. The results herein demonstrate the superiority of the molecular design and propose a simple method toward the development of promising Ir(III) phosphors for high-efficiency WOLEDs.

2.
FASEB J ; 34(2): 2524-2540, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31908026

RESUMO

The main mechanism of hyaluronidase 1(HYAL-1) in the development of postoperative pancreatic fistula (POPF) after pancreatoduodenectomy (PD) was unknown. In this study, a comprehensive inventory of pre-, intra-, and postoperative clinical and biological data of two cohorts (62 pancreatic cancer [PCa] and 111 pancreatic ductal adenocarcinoma [PDAC]) which could induce POPF were retrospectively analyzed. Then, a total of 7644 genes correlated with HYAL-1 was predicted in PDAC tissues and the enriched pathway, kinase targets and biological process of those correlated genes were evaluated. Finally, a mouse pancreatic fistula (PF) model was first built and in vitro studies were performed to investigate the effects of HYAL-1 on PF progression. Our data indicated that preoperative serum HYAL-1 level, pancreatic fibrosis score, and pancreatic duct size were valuable factors for detecting POPF of Grade B and C. The serum HYAL-1 level of 2.07 mg/ml and pancreatic fibrosis score of 2.5 were proposed as the cutoff values for indicating POPF. The bioinformatic analysis and in vitro and in vivo studies demonstrated that HYAL-1 facilitates pancreatic acinar cell autophagy via the dephosphorylation of adenosine 5'-monophosphate-activated protein kinase (AMPK) and signal transducers and activators of transcription 3 (STAT3) signaling pathways, which exacerbate pancreatic secretion and inflammation. In summary, the preoperative serum HYAL-1 was a significant predictor for POPF in patients who underwent PD. Tumor-induced HYAL-1 is one of core risk in accelerating PF and then promoting pancreatic secretion and acute inflammation response through the AMPK and STAT3-induced autophagy.


Assuntos
Autofagia/fisiologia , Hialuronoglucosaminidase/sangue , Fístula Pancreática/patologia , Pancreaticoduodenectomia , Adulto , Idoso , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/cirurgia , Feminino , Humanos , Intestinos/patologia , Masculino , Pessoa de Meia-Idade , Pâncreas/patologia , Fístula Pancreática/diagnóstico , Fístula Pancreática/cirurgia , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/cirurgia , Pancreaticoduodenectomia/métodos , Estudos Retrospectivos , Fatores de Risco , Neoplasias Pancreáticas
3.
Inorg Chem ; 60(10): 7364-7371, 2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-33891407

RESUMO

Photocatalytic carbon dioxide reduction (CO2RR) is considered to be a promising sustainable and clean approach to solve environmental issues. Polyoxometalates (POMs), with advantages in fast, reversible, and stepwise multiple-electron transfer without changing their structures, have been promising catalysts in various redox reactions. However, their performance is often restricted by poor thermal or chemical stability. In this work, two transition-metal-modified vanadoborate clusters, [Co(en)2]6[V12B18O54(OH)6]·17H2O (V12B18-Co) and [Ni(en)2]6[V12B18O54(OH)6]·17H2O (V12B18-Ni), are reported for photocatalytic CO2 reduction. V12B18-Co and V12B18-Ni can preserve their structures to 200 and 250 °C, respectively, and remain stable in polar organic solvents and a wide range of pH solutions. Under visible-light irradiation, CO2 can be converted into syngas and HCOO- with V12B18-Co or V12B18-Ni as catalysts. The total amount of gaseous products and liquid products for V12B18-Co is up to 9.5 and 0.168 mmol g-1 h-1. Comparing with V12B18-Co, the yield of CO for V12B18-Ni declines by 1.8-fold, while that of HCOO- increases by 35%. The AQY of V12B18-Co and V12B18-Ni is 1.1% and 0.93%, respectively. These values are higher than most of the reported POM materials under similar conditions. The density functional theory (DFT) calculations illuminate the active site of CO2RR and the reduction mechanism. This work provides new insights into the design of stable, high-performance, and low-cost photocatalysts for CO2 reduction.

4.
Nanotechnology ; 32(7): 075602, 2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33241790

RESUMO

The mercury ions in waste water have threatened public health and environmental protection. In this sense, novel materials with outstanding performances for removal of Hg2+ are imperative. Herein, we demonstrate a thiol-functionalized zirconium metal-organic cage (MOC-(SH)2) with excellent dispersion displays ideal properties for Hg2+ capture. MOC-(SH)2 exhibits the ability of removing Hg2+ in aqueous solutions with a capacity of 335.9 mgHg2+/gMOC-(SH)2, which surpasses that of classical Zr-based metal-organic framework Uio-66-(SH)2 by 1.89 folds. The higher loading capacity of MOC-(SH)2 is probably owing to the excellent dispersion of the discrete cage, which makes the accessibility of binding sites (thiol) easier. Additionally, 99.6% of Hg2+ can be effectively captured by MOC-(SH)2 with the concentration decreased from 5 to 0.02 ppm reaching the permissible limit for Hg2+, outperforming the performance of Uio-66-(SH)2. The excellent absorption property of MOC-(SH)2 is also achieved in terms of superior selectivity under the presence of competitive metal ions. Meanwhile, the regenerated MOC-(SH)2 can be reused without apparent loss of Hg2+ loading capacity. UV-vis absorption spectra, IR spectra and emission spectra further verified the strong chemical affinity between Hg2+ and the thiol of MOC-(SH)2. The study lays the groundwork for using Zr-MOCs in the removal of toxic metal ions and environmental sustainability.

5.
Nanotechnology ; 31(25): 255402, 2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-32143193

RESUMO

A system containing polyoxometalate ([Co-POM]2-) and [Ru(bpy)3]2+ as constructed for visible-light-induced CO2 conversion to syngas. In diluted CO2, high efficiency of 56.8 mmol g-1 h-1 in syngas production was gained, exceeding that of reported systems with [Ru(bpy)3]2+ participation in similar conditions. Mechanism studies revealed efficient photo-induced charge separation is achieved in the system and CO2 reduction tends to occur on [Ru(bpy)3]2+.

6.
Nanotechnology ; 31(21): 215605, 2020 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-32018234

RESUMO

Halide perovskites have been employed as photocatalysts for CO2 photoreduction due to their excellent optical properties and unique electronic structure. However, their photocatalytic performance is relatively poor. Herein, we demonstrate a new strategy with Mn-doped CsPb(Br/Cl)3 mixed-halide perovskites as catalysts to enhance the efficiency of CO2 photoreduction. By tuning the content of Mn, a series of CsPb(Br/Cl)3:Mn perovskites are obtained and show high efficiency in CO2 conversion to CO and CH4. For the optimum catalyst sample, especially, the yields of CO and CH4 reach 1917 µmol g-1 and 82 µmol g-1 which are 14.2 and 1.4 times higher than those of CsPbBr3. This work provides new insights into improving the reactivity of perovskites in CO2 photoreduction.

7.
Chem Soc Rev ; 48(1): 260-284, 2019 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-30451261

RESUMO

Dye-sensitized solar cells (DSSCs) are the third generation of photovoltaic cells developed by Grätzel and O'Regan. They have the characteristics of low cost, simple manufacturing process, tunable optical properties, and higher photoelectric conversion efficiency (PCE). With an ever increasing energy crisis, there is an urgent need to develop highly efficient, environmentally benign, and energy-saving cell materials. Polyoxometalates (POMs), a kind of molecular inorganic quasi-semiconductor, are promising candidates for use in different parts of DSSCs due to their excellent photosensitivity, redox, and catalytic properties, as well as their relative stability. Following a brief introduction to the development of DSSCs and the potential virtues of POMs in DSSCs, we attempt to make some generalizations about the energy level regulation of POMs that is the underlying theoretical basis for their application in DSSCs, and then we summarize the research progress of POMs in DSSCs in recent years. This is organized in terms of the properties of POMs, namely, electron acceptor, photosensitivity, redox and catalysis, based on the accumulation of our research into POMs over many years. Meanwhile, in view of the fact that the properties of POMs depend primarily on their electronic structural diversity, we keep this point in mind throughout the article with a view to revealing their structure-property relationships. Finally we provide a short summary and remarks on the future outlook. This review may be of interest to synthetic chemists devoted to designing POMs with specific structures, and researchers engaged in the extension of POMs to photoelectric materials.

8.
Chemistry ; 25(72): 16617-16624, 2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31631411

RESUMO

Hybrid materials have obtained well-deserved attention for energy storage devices, because they show high capacitances and high energy densities induced by the synergistic effect between complementary components. Polyoxometalate-based metal-organic frameworks (POMOFs) possess the abundant redox-active sites and ordered structures of polyoxometalates (POMs) and metal-organic frameworks (MOFs), respectively. Here, an asymmetric supercapacitor (ASC) NENU-5/PPy/60//FeMo/C was fabricated in which both its electrodes are prepared from POMOF precursors. A typical POMOF material, NENU-5, was first connected with polypyrrole (PPy) through electrodeposition to form the cathode material NENU-5/PPy. Another representative POMOFs material, PMo12 @MIL-100, was carbonized to obtain the anode material FeMo/C. Cathode NENU-5/PPy exhibited an extraordinary capacitance of 508.62 F g-1 (areal capacitance: 2034.51 mF cm-2 ). In addition, anode FeMo/C shows excellent cyclic stability attributed to its unique structure. Finally, benefiting from the outstanding capacitances and structural merits of the anode and cathode, assembled asymmetric supercapacitor NENU-5/PPy/60//FeMo/C achieves an energy density of 1.12 mWh cm-3 at a power density output of 27.78 mW cm-3 , as well as a notable life of 10 000 cycles with an capacity retention of 80.62 %. Thus, the unique ASC is strongly competitive in high capacitance, long cycle life, and high energy-required energy storage devices.

9.
Chemistry ; 25(11): 2824-2830, 2019 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-30575148

RESUMO

Metal-organic polyhedra (MOPs) are promising candidates for many potential applications; however, their use as photocatalysts for hydrogen production has yet to be developed. Herein, the photocatalytic performance of a water-stable Zr-MOP, ZrT-1-NH2 , was evaluated, for the first time, through photocatalytic hydrogen evolution under visible-light irradiation. ZrT-1-NH2 shows clearly enhanced photocatalytic activity (510.42 µmol g-1 h-1 ) for hydrogen production, in comparison with that of other homogeneous crystalline materials. If platinum nanoparticles were introduced into the photocatalytic system, the hydrogen production efficiency of ZrT-1-NH2 could be further improved. For ZrT-1-NH2 , the conspicuous improvement in photocatalysis can be attributed to efficient electron-hole separation, targeted electron transfer, and excellent recombination suppression. Furthermore, ZrT-1-NH2 shows excellent stability during photocatalytic hydrogen evolution over five continuous runs. This work illustrates that MOP-based photocatalysts hold promise for broad applications in the domain of clean energy.

10.
Chemistry ; 25(1): 379-385, 2019 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-30353588

RESUMO

As the main component of syngas, reducing CO2 to CO with high selectivity through photocatalysis could provide a sustainable way to alleviate energy shortage issues. Developing a photocatalytic system with low cost and high performance that is environmentally friendly is the ultimate goal towards CO2 photoreduction. Herein, an efficient and economic three-component heterojunction photocatalyst is designed and fabricated for converting CO2 to CO in the absence of organic sacrificial agents. The heterojunction is made of Cu2-x S nanotubes coated with a carbon layer (C-Cu2-x S) and g-C3 N4 . By using the classical MOF material HKUST-1 as a precursor, hollow tubular-like metal sulfides (C-Cu2-x S) with carbon coating were synthesized and further loaded on g-C3 N4 , forming a three-component heterojunction C-Cu2-x S@g-C3 N4 . The carbon coat in C-Cu2-x S@g-C3 N4 acts as an electron reservoir, which facilitates electron-hole pair separation. The optimized C-Cu2-x S@g-C3 N4 acted as a photocatalyst in CO2 reduction with a high reactivity of 1062.6 µmol g-1 and selectivity of 97 %. Compared with bare g-C3 N4 (158.4 µmol g-1 ) and C-Cu2-x S, the reactivity is nearly 7 and 23-fold enhanced and this CO generation rate is higher than most of the reported Cu2 S or g-C3 N4 composites under similar conditions. The prominent activity may result from enhanced light adsorption and effective charge separation. This work might open up an alternative method for the design and fabrication of high-performance and low-cost photocatalysts for efficiently and durably converting CO2 to CO with high selectivity.

11.
Inorg Chem ; 58(19): 12895-12904, 2019 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-31532221

RESUMO

The reaction of mid-lanthanide (Ln) ions with the preformed {Se6W39} precursor under reasonably acidic aqueous conditions in the presence of organic amine cations results in an unprecedented nanoscale lanthanide-functionalized polyoxotungstate family, which are rare examples of mid-lanthanide-containing selenotungstates. (C4H10NO)9Na3[Dy3Se3.5W30O107.5(H2O)10]·22H2O (1) and (NH4)3(C2H8N)Na2[Dy4Se6W38O132(H2O)26(OH)6]·18H2O (2) reveal a trimeric Keggin assembly and a cyclic {Se6W38}-based chain, respectively, whereas (NH4)4Na8[Gd4Se6W48O166(H2O)20(OH)4]·21H2O (3) and (NH4)9(C2H8N)4Na5[Ln6Se6W58O202(H2O)20(OH)4]·58H2O (4; Ln = Gd, Tb, or Dy) are a few examples of polyoxometalates consisting of both classical Keggin and Wells-Dawson building blocks, and (NH4)4(C2H8N)5Na13[Ln4Se8W56O196(H2O)x(OH)10]·40H2O (5; Ln = Gd, Tb, or Dy; x = 12 for Gd and Tb and 10 for Dy) features the largest "pure" Wells-Dawson selenotungstate {Se8W56} bearing a length of 3.73 nm. A library of Se-templated species involving the first reported Keggin {α-SeW8} and Wells-Dawson {α-Se2W16} building blocks as well as some decisive assembly factors during the synthesis is responsible for these architectures. All of the compounds were structurally characterized in the solid and solution by single-crystal X-ray diffraction, IR, thermogravimetric-differential thermal analysis, and electrospray ionization mass spectrometry. Magnetic properties indicate that 1 and 4-Dy show probable single-molecule-magnet behavior with obvious frequency dependence, whereas 3 and 4-Gd present the antiferromagnetic interactions between the GdIII centers.

12.
Chemistry ; 24(56): 15089-15095, 2018 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-30051935

RESUMO

Luminescent organogold(III) complex AuIII with highly emissive triplet excited state was encapsulated in two metal-organic frameworks (MOFs) with different pore sizes and structures (MOF1 and ZJU-28). Compared with the AuIII complex in solution, the resultant composites AuIII @MOF1 and AuIII @ZJU-28 exhibit enhanced emission intensity, lifetime, and quantum yield. Under irradiation, AuIII @MOFs are efficient, selective, and recyclable catalysts for light-induced aerobic C-N bond formation. When used as a heterogeneous catalyst for oxidizing secondary amines to the corresponding imines, AuIII @ZJU-28 achieved high TONs of 876-1548, which are about 2.8-3.5 times higher than that of the homogenous AuIII complex. In addition, different selectivities in oxidizing mixed substrates is realized by means of different host MOFs, and thus encapsulating the AuIII complex in an appropriate MOF allowed the desired product to be obtained. Inherent shortcomings of homogeneous catalysts in cyclic use are also overcome by using composite catalysts, and high conversion of the AuIII @ZJU-28 catalyst was still observed after ten cycles.

13.
Chemistry ; 22(43): 15513-15520, 2016 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-27607355

RESUMO

Rational design of earth-abundant photocatalysts is an important issue for solar energy conversion and storage. Polyoxometalate (POM)@Co3 O4 composites doped with highly dispersive molecular metal-oxo clusters, synthesized by loading a single Keggin-type POM cluster into each confined space of a metal-organic framework (MOF), exhibit significantly improved photocatalytic activity in water oxidation compared to the pure MOF-derived nanostructure. The systematic synthesis of these composite nanocrystals allows the conditions to be tuned, and their respective water oxidation catalytic performance can be efficiently adjusted by varying the thermal treatment temperature and the feeding amount of the POM. This work not only provides a modular and tunable synthetic strategy for preparing molecular cluster@TM oxide (TM=transition metal) nanostructures, but also showcases a universal strategy that is applicable to design and construct multifunctional nanoporous metal oxide composite materials.

14.
Bioorg Med Chem Lett ; 26(22): 5507-5512, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27765504

RESUMO

Ganoderma mushrooms are of great nutritious and medicinal values. This study was designed to characterize compounds from the fruiting bodies of Ganoderma cochlear and investigate their protective effects against kidney disorders. Six novel meroterpenoids cochlearoids F-K (1-6) were isolated by utilizing phytochemical approaches. Their structures were identified on the basis of extensive spectroscopic data and calculation methods. Biological evaluation shows that compounds 1-4 and 6 exhibit potent inhibitory activity on fibronectin overproduction in TGF-ß1-induced HKC-8 cells.


Assuntos
Carpóforos/química , Ganoderma/química , Rim/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Terpenos/química , Terpenos/farmacologia , Linhagem Celular , Fibronectinas/metabolismo , Humanos , Rim/metabolismo , Terpenos/isolamento & purificação , Fator de Crescimento Transformador beta1/metabolismo
15.
Inorg Chem ; 55(24): 12923-12929, 2016 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-27989155

RESUMO

In the present work we report the design, synthesis, crystal structure determination, and adsorption properties of two new cadmium-based porous coordination polymers, [Cd(pda)0.5(spiro-4-py)0.5(HCOO)]·2H2O·DMF (compound 1, pda = p-phenylenediacetate, spiro-4-py = (2,2',7,7'-tetra(pyridin-4-yl)-9,9'-spirobi[fluorene], DMF = N,N'-dimethylformamide), and [Cd2(pda)(spiro-4-py) (CH3COO)2]·DMA (compound 2, DMA = N,N'-dimethylacetamide) with similar structures. The coordination between cadmium and two organic linkers, pda and spiro-4-py, has yielded two-dimensional frameworks with rhombic openings. Stacking of these two-dimensional networks does not block the openings but rather results in permanent porosity with one-dimensional channels in the final structures. The permanent porosity of these compounds is confirmed by gas adsorption measurements. Compounds 1 and 2 have Brunauer-Emmett-Teller surface areas of 687 and 584 m2/g, respectively. Both compounds show favorable adsorption toward carbon dioxide over other light gases such as nitrogen, oxygen, and carbon monoxide. Ideal adsorbed solution theory is employed to predict the adsorption selectivity of binary gas mixtures. Though compounds 1 and 2 possess similar structures, differences are observed in their gas adsorption behaviors, which can be attributed to their different terminal ligands of formate and acetate, respectively. Strikingly, both compounds show exceptionally high stability in aqueous media with a wide pH range, a characteristic that is highly desirable for gas separation-related applications. The robustness of these structures suggests that the use of hydrophobic spiro-based multipyridine ligands can lead to water stable frameworks built on late-transition metals that are otherwise sensitive to moisture.

16.
Chemistry ; 21(37): 13058-64, 2015 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-26235593

RESUMO

Different from the conventional synthesis approaches, such as hydrothermal or solvothermal synthesis, a porous metal azolate framework encapsulating Keggin-type [SiW12 O40 ](4-) anions was prepared by an environmentally friendly, low-cost, and highly efficient steam-assisted conversion method for the first time. The nanosized polyoxometalates as a template were encapsulated by a zeotype 6(4) 4(8) cage constructed by 28 nuclear zinc atoms connected through 32 Trz ligands. The obtained composite exhibits excellent thermal and chemical stability; meanwhile, its special ability to selectively absorb water from alcohols makes it efficiently separate water from analytically pure ethanol, with the result that water content decreases from 0.23 to 0.05 wt %, which is superior to the standard of chromatographic grade ethanol (<0.1 wt %). Besides, alternating current (ac) impedance experiments also reveal that the hybrid is a kind of proton conductive material.

17.
Chemistry ; 21(33): 11894-8, 2015 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-26179161

RESUMO

A stable metal-organic framework pillared by Keggin-type polyoxometalate, Cu6 (Trz)10 (H2O)4 [H2 SiW12 O40 ]⋅8 H2O (Trz=1,2,4-triazole) (1), has been prepared under hydrothermal condition. The 2D layer structure with a 22-member ring was formed by Cu(2+) ions, which are connected with each other via the Trz ligands on the ab plane. Thus, the 2D layers are further interconnected through Keggin polyoxoanions to generate a 3D porous network with a small 1D channel. Moreover, the presence of polyoxoanions make it exhibit selective adsorption of water and proton-conducting properties. Additionally it showed efficient intrinsic peroxidase-like activity, providing a simple and sensitive colorimetric assay to detect H2O2 .


Assuntos
Técnicas Biossensoriais/métodos , Colorimetria/métodos , Complexos de Coordenação/química , Íons/química , Compostos de Tungstênio/química , Cristalografia por Raios X , Modelos Moleculares
18.
Chemistry ; 21(19): 7238-44, 2015 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-25801082

RESUMO

Two pillared-layer metal-organic frameworks (MOFs; PMOF-55 and NH2 -PMOF-55) based on 1,2,4-triazole and terephthalic acid (bdc)/NH2 -bdc ligands were assembled and display framework stabilities, to a certain degree, in both acid/alkaline solutions and toward water. They exhibit high CO2 uptakes and selective CO2 /N2 adsorption capacities, with CO2 /N2 selectivity in the range of 24-27, as calculated by the ideal adsorbed solution theory method. More remarkably, the site and interactions between the host network and the CO2 molecules were investigated by single-crystal X-ray diffraction, which showed that the main interaction between the CO2 molecules and PMOF-55 is due to multipoint supramolecular interactions of C-H⋅⋅⋅O, C⋅⋅⋅O, and O⋅⋅⋅O. Amino functional groups were shown to enhance the CO2 adsorption and identified as strong adsorption sites for CO2 by X-ray crystallography.

19.
Inorg Chem ; 54(23): 11083-7, 2015 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-26595328

RESUMO

An unprecedented octavanadium-substituted polyoxoniobate Na18[Nb48V8(OH)30O130] · 33H2O (1), with a multiple-strand wheel structure, was successfully synthesized via a conventional aqueous method, which represents the largest vanadoniobate cluster reported to date. Single-crystal X-ray diffraction, ESI-MS spectrum, IR spectra, and UV-vis spectra were investigated. In addition, photocatalytic H2 evolution activity for 1 under UV light was observed with TEA as a sacrificial electron donor.

20.
J Asian Nat Prod Res ; 17(4): 329-32, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25295637

RESUMO

Two pairs of new enantiomers, lucidulactones A and B (1 and 2), and two known compounds were isolated from Ganoderma lucidum. Their structures were determined by means of spectroscopic methods. The chiral HPLC was used to separate the ( - )- and (+)-antipodes of the new compounds.


Assuntos
Ganoderma/química , Lactonas/isolamento & purificação , China , Cromatografia Líquida de Alta Pressão , Lactonas/química , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Reishi/química , Estereoisomerismo , Triterpenos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA