RESUMO
Multimodal measurement of single cells provides deep insights into the intricate relationships between individual molecular layers and the regulatory mechanisms underlying intercellular variations. Here, we reported DMF-DM-seq, a highly integrated, sensitive, and automated platform for single-cell mRNA and microRNA (miRNA) co-sequencing based on digital microfluidics. This platform first integrates the processes of single-cell isolation, lysis, component separation, and simultaneous sequencing library preparation of mRNA and miRNA within a single DMF device. Compared with the current half-cell measuring strategy, DMF-DM-seq enables complete separation of single-cell mRNA and miRNA via a magnetic field application, resulting in a higher miRNA detection ability. DMF-DM-seq revealed differential expression patterns of single cells of noncancerous breast cells and noninvasive and aggressive breast cancer cells at both mRNA and miRNA levels. The results demonstrated the anticorrelated relationship between miRNA and their mRNA targets. Further, we unravel the tumor growth and metastasis-associated biological processes enriched by miRNA-targeted genes, along with important miRNA-interaction networks involved in significant signaling pathways. We also deconstruct the miRNA regulatory mechanisms underlying different signaling pathways across different breast cell types. In summary, DMF-DM-seq offers a powerful tool for a comprehensive study of the expression heterogeneity of single-cell mRNA and miRNA, which will be widely applied in basic and clinical research.
Assuntos
MicroRNAs , RNA Mensageiro , Análise de Célula Única , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , MicroRNAs/análise , RNA Mensageiro/genética , Automação , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Análise de Sequência de RNA , Linhagem Celular Tumoral , Microfluídica/métodosRESUMO
Single-cell microRNA (miRNA) sequencing has allowed for comprehensively studying the abundance and complex networks of miRNAs, which provides insights beyond single-cell heterogeneity into the dynamic regulation of cellular events. Current benchtop-based technologies for single-cell miRNA sequencing are low throughput, limited reaction efficiency, tedious manual operations, and high reagent costs. Here, a highly multiplexed, efficient, integrated, and automated sample preparation platform is introduced for single-cell miRNA sequencing based on digital microfluidics (DMF), named Hiper-seq. The platform integrates major steps and automates the iterative operations of miRNA sequencing library construction by digital control of addressable droplets on the DMF chip. Based on the design of hydrophilic micro-structures and the capability of handling droplets of DMF, multiple single cells can be selectively isolated and subject to sample processing in a highly parallel way, thus increasing the throughput and efficiency for single-cell miRNA measurement. The nanoliter reaction volume of this platform enables a much higher miRNA detection ability and lower reagent cost compared to benchtop methods. It is further applied Hiper-seq to explore miRNAs involved in the ossification of mouse skeletal stem cells after bone fracture and discovered unreported miRNAs that regulate bone repairing.
Assuntos
MicroRNAs , Microfluídica , Animais , Camundongos , MicroRNAs/genética , Análise de Sequência com Séries de OligonucleotídeosRESUMO
Proteins as crucial components of cells are responsible for the majority of cellular processes. Sensitive and efficient protein detection enables a more accurate and comprehensive investigation of cellular phenotypes and life activities. Here, a protein sequencing method with high multiplexing, high throughput, high cell utilization, and integration based on digital microfluidics (DMF-Protein-seq) is proposed, which transforms protein information into DNA sequencing readout via DNA-tagged antibodies and labels single cells with unique cell barcodes. In a 184-electrode DMF-Protein-seq system, ≈1800 cells are simultaneously detected per experimental run. The digital microfluidics device harnessing low-adsorbed hydrophobic surface and contaminants-isolated reaction space supports high cell utilization (>90%) and high mapping reads (>90%) with the input cells ranging from 140 to 2000. This system leverages split&pool strategy on the DMF chip for the first time to overcome DMF platform restriction in cell analysis throughput and replace the traditionally tedious bench-top combinatorial barcoding. With the benefits of high efficiency and sensitivity in protein analysis, the system offers great potential for cell classification and drug monitoring based on protein expression at the single-cell level.
RESUMO
Cells are the basic building blocks of biological systems, with inherent unique molecular features and development trajectories. The study of single cells facilitates in-depth understanding of cellular diversity, disease processes, and organization of multicellular organisms. Single-cell RNA sequencing (scRNA-seq) technologies have become essential tools for the interrogation of gene expression patterns and the dynamics of single cells, allowing cellular heterogeneity to be dissected at unprecedented resolution. Nevertheless, measuring at only transcriptome level or 1D is incomplete; the cellular heterogeneity reflects in multiple dimensions, including the genome, epigenome, transcriptome, spatial, and even temporal dimensions. Hence, integrative single cell analysis is highly desired. In addition, the way to interpret sequencing data by virtue of bioinformatic tools also exerts critical roles in revealing differential gene expression. Here, a comprehensive review that summarizes the cutting-edge single-cell transcriptome sequencing methodologies, including scRNA-seq, spatial and temporal transcriptome profiling, multi-omics sequencing and computational methods developed for scRNA-seq data analysis is provided. Finally, the challenges and perspectives of this field are discussed.