Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 164
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
Nano Lett ; 24(5): 1579-1586, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38284987

RESUMO

Engineering room-temperature strong coupling of few-exciton in transition-metal dichalcogenides (TMDCs) with plasmons promises to construct compact and high-performance quantum optical devices. But it remains unimplemented due to their in-plane excitons. Here, we demonstrate the strong coupling of few-exciton within 10 in monolayer WS2 with the plasmonic mode with a large tangential component of the electric field tightly trapped around the sharp corners of an Au@Ag nanocuboid, the fewest number of excitons observed in the TMDC family so far. Furthermore, we for the first time report a significant deviation with a relative difference of up to 100.6% between the spectrum and eigenlevel splitting dispersions, which increases with decreasing coupling strength. It is also shown that the coupling strength obtained by the conventional concept of both being equal to the measured spectrum splitting is markedly overestimated. Our work enriches the understanding of strong light-matter interactions at room temperature.

2.
Nano Lett ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38568013

RESUMO

Metalenses are typically designed for a fixed focal length, restricting their functionality to static scenarios. Various methods have been introduced to achieve the zoom function in metalenses. These methods, however, have a very limited zoom range, or they require additional lenses to achieve direct imaging. Here, we demonstrate a zoom metalens based on axial movement that performs both the imaging and the zoom function. The key innovation is the use of a polynomial phase profile that mimics an aspheric lens, which allows an extended depth of focus, enabling a large zoom range. Experimental results show that this focal length variation, combined with the extended depth of focus, translates into an impressive zoom range of 11.9× while maintaining good imaging quality. We see applications for such a zoom metalens in surveillance cameras of drones or microrobots to reduce their weight and volume, thus enabling more flexible application scenarios.

3.
Nano Lett ; 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39041646

RESUMO

Chiral nanostructures allow engineering of chiroptical responses; however, their design usually relies on empirical approaches and extensive numerical simulations. It remains unclear if a general strategy exists to enhance and maximize the intrinsic chirality of subwavelength photonic structures. Here, we suggest a microscopic theory and uncover the origin of strong chiral responses of resonant nanostructures. We reveal that the reactive helicity density is critically important for achieving maximum chirality at resonances. We demonstrate our general concept on the examples of planar photonic crystal slabs and metasurfaces, where out-of-plane mirror symmetry is broken by a bilayer design. Our findings provide a general recipe for designing photonic structures with maximum chirality, paving the way toward many applications, including chiral sensing, chiral emitters and detectors, and chiral quantum optics.

4.
Opt Express ; 31(6): 9376-9386, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-37157509

RESUMO

Employing nanostructure to generate large chiroptical response has been cultivated as an emerging field, for its great potentials in integrated optics, biochemistry detections, etc. However, the lack of intuitive approaches for analytically describing the chiroptical nanoparticles has discouraged researchers from effectively designing advanced chiroptical structures. In this work, we take the twisted nanorod dimer system as a basic example to provide an analytical approach from the perspective of mode coupling, including far-field coupling and near-field coupling of nanoparticles. Using this approach, we can calculate the expression of circular dichroism (CD) in the twisted nanorod dimer system, which can establish the analytical relationship between the chiroptical response and the basic parameters of this system. Our results show that the CD response can be engineered by modulating the structure parameters, and a high CD response of ∼ 0.78 under the guidance of this approach has been achieved.

5.
Opt Lett ; 48(2): 379-382, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36638462

RESUMO

We propose an absorption intensity heartbeat modulation-averaged shifted histogram (AIHM-ASH) method for estimating human heart rate (HR) using color videos of lip image sequences. When heartbeat occurs, AIHM is generated. Based on the AIHM, HR signals can be demodulated by computing the instantaneous HR modulation depth that presents the relative red blood cell (RBC) concentration from the green channel image of the RGB color video. In addition, the ASH algorithm further suppresses the background tissue and vein signals, and increases the signal-to-noise ratio (SNR). The experimental results for flow phantoms, chicken embryos, and human lips validated the proposed method's optimal estimation conditions and effectiveness, where the accuracy and root mean square error (RMSE) were 99.23% and 0.8 bpm, respectively. The proposed HR estimation method has significant potential to advance health monitoring and disease prevention via conventional color video cameras installed in public places.


Assuntos
Algoritmos , Embrião de Galinha , Humanos , Animais , Frequência Cardíaca/fisiologia , Razão Sinal-Ruído , Cor
6.
Phys Rev Lett ; 130(14): 143601, 2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37084440

RESUMO

The single-exciton strong coupling with the localized plasmon mode (LPM) at room temperature is highly desirable for exploiting quantum technology. However, its realization has been a very low probability event due to the harsh critical conditions, severely compromising its application. Here, we present a highly efficient approach for achieving such a strong coupling by reducing the critical interaction strength at the exceptional point based upon the damping inhibition and matching of the coupled system, instead of enhancing the coupling strength to overcome the system's large damping. Experimentally, we compress the LPM's damping linewidth from about 45 nm to about 14 nm using a leaky Fabry-Perot cavity, a good match to the excitonic linewidth of about 10 nm. This method dramatically relaxes the harsh requirement in mode volume by more than an order of magnitude and allows a maximum direction angle of the exciton dipole relative to the mode field of up to around 71.9°, significantly improving the success rate of achieving the single-exciton strong coupling with LPMs from about 1% to about 80%.

7.
Nano Lett ; 22(12): 4686-4693, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35638870

RESUMO

A single quantum dot (QD) strongly coupled with a plasmonic nanoparticle yields a promising qubit for scalable solid-state quantum information processing at room temperature. However, realizing such a strong coupling remains challenging due to the difficulty of spatial overlap of the QD excitons with the plasmonic electric fields (EFs). Here, by using a transmission electron microscope we demonstrate for the first time that this overlap can be realized by integrating a deterministic single QD with a single Au nanorod. When a wedge nanogap cavity consisting of them and the substrate is constructed, the plasmonic EFs can be more effectively "dragged" and highly confined in the QD's nanoshell where the excitons mainly reside. With these advantages, we observed the largest spectral Rabi splitting (reported so far) of ∼234 meV for a single QD strong coupling with plasmons. Our work opens a pathway to the massive construction of room-temperature strong coupling solid qubits.

8.
Int J Mol Sci ; 24(22)2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-38003274

RESUMO

Traumatic brain injury (TBI) is a major health concern. Each year, over 50 million individuals worldwide suffer from TBI, and this leads to a number of acute and chronic health issues. These include affective and cognitive impairment, as well as an increased risk of alcohol and drug use. The dopaminergic system, a key component of reward circuitry, has been linked to alcohol and other substance use disorders, and previous research indicates that TBI can induce plasticity within this system. Understanding how TBI modifies the dopaminergic system may offer insights into the heightened substance use and reward-seeking behavior following TBI. The hippocampus, a critical component of the reward circuit, is responsible for encoding and integrating the spatial and salient aspects of rewarding stimuli. This study explored TBI-related changes in neuronal D2 receptor expression within the hippocampus, examining the hypothesis that sex differences exist in both baseline hippocampal D2 receptor expression and its response to TBI. Utilizing D2-expressing tdTomato transgenic male and female mice, we implemented either a sham injury or the lateral fluid percussion injury (FPI) model of TBI and subsequently performed a region-specific quantification of D2 expression in the hippocampus. The results show that male mice exhibit higher baseline hippocampal D2 expression compared to female mice. Additionally, there was a significant interaction effect between sex and injury on the expression of D2 in the hippocampus, particularly in regions of the dentate gyrus. Furthermore, TBI led to significant reductions in hippocampal D2 expression in male mice, while female mice remained mostly unaffected. These results suggest that hippocampal D2 expression varies between male and female mice, with the female dopaminergic system demonstrating less susceptibility to TBI-induced plasticity.


Assuntos
Lesões Encefálicas Traumáticas , Dopamina , Feminino , Masculino , Camundongos , Animais , Dopamina/metabolismo , Lesões Encefálicas Traumáticas/metabolismo , Hipocampo/metabolismo , Neurônios/metabolismo , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo
9.
J Environ Manage ; 341: 117941, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37178544

RESUMO

Treatment of the planting and breeding waste is becoming a big issue due to their significant quantities. Composting could be an effective alternative for planting and breeding waste management which could be used as fertilizer. The purpose of this research was to evaluate the effect of planting and breeding waste on baby cabbage growth and soil properties, to establish a suitable agricultural cycle model for semi-arid area in central Gansu Province. The planting and breeding wastes [sheep manure (SM), tail vegetable (TV), cow manure (CM), mushroom residue (MR) and corn straw (CS)] were used as the raw materials in this study, which were designed 8 compost formulas for composting fermentation. With no fertilization (CK1) and local commercial organic fertilizer (CK2) as the control, the comprehensive evaluation of planting and breeding waste composts on the yield of baby cabbage, fertilizer utilization rate, soil physical and chemical properties and microbial diversity were studied to select the best compost formula suitable for the growth of baby cabbage. And the material flow and energy flow analysis of the circulation model established by the formula were carried out. The results showed that the biological yield and economic yield of baby cabbage, absorption and recycling utilization of total phosphorus (TP) and total potassium (TK) reached the maximum under the formula of SM: TV: MR: CS = 6:2:1:1. Compared with CK2, the formula of SM: TV: MR: CS = 6:2:1:1 significantly increased the richness of soil bacteria and beneficial bacteria Proteobacteria, and decreased the relative abundance of harmful bacteria Olpidiomycota. Principal component analysis showed the comprehensive score of SM: TV: MR: CS = 6:2:1:1 was the best organic compost formula suitable for producing high-quality and high-yield baby cabbage and improving soil environment. Therefore, this formula can be used as a reference organic fertilizer formula for field cultivation of baby cabbage.


Assuntos
Brassica , Compostagem , Bovinos , Feminino , Animais , Ovinos , Solo/química , Esterco , Fertilizantes , Melhoramento Vegetal , Nutrientes
10.
J Digit Imaging ; 35(5): 1153-1163, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35581408

RESUMO

Automatic segmentation and measurement of the choroid layer is useful in studying of related fundus diseases, such as diabetic retinopathy and high myopia. However, most algorithms are not helpful for choroid layer segmentation due to its blurred boundaries and complex gradients. Therefore, this paper aimed to propose a novel choroid segmentation method that combines image enhancement and attention-based dense (AD) U-Net network. The choroidal images obtained from optical coherence tomography (OCT) are pre-enhanced by algorithms that include flattening, filtering, and exponential and linear enhancement to reduce choroid-independent information. Experimental results obtained from 800 OCT B-scans of the choroid layers from both normal eyes and high myopia showed that image enhancement significantly increased the performance of ADU-Net, with an AUC of 99.51% and a DSC of 97.91%. The accuracy of segmentation using the ADU-Net method with image enhancement is superior to that of the existing networks. In addition, we describe some algorithms that can measure automatically choroidal foveal thickness and the volume of adjacent areas. Statistical analyses of the choroidal parameters variation indicated that compared with normal eyes, high myopia has a reduction of 86.3% of the choroidal foveal thickness and 90% of the adjacent volume. It proved that high myopia is likely to cause choroid layer attenuation. These algorithms would have wide application in the diagnosis and precaution of related fundus lesions caused by choroid thinning from high myopia in future studies.


Assuntos
Aprendizado Profundo , Retinopatia Diabética , Miopia , Humanos , Tomografia de Coerência Óptica/métodos , Corioide/diagnóstico por imagem , Corioide/patologia , Miopia/diagnóstico por imagem , Miopia/patologia
11.
Environ Microbiol ; 23(8): 4631-4645, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34190385

RESUMO

Diversity and community composition of soil microorganisms along the elevation climosequences have been widely studied, while the microbial metabolic potential, particularly in regard to carbon (C) cycling, remains unclear. Here, a metagenomic analysis of C related genes along five elevations ranging from 767 to 4190 m at Mount Kilimanjaro was analysed to evaluate the microbial organic C transformation capacities in various ecosystems. The highest gene abundances for decomposition of moderate mineralizable compounds, i.e. carbohydrate esters, chitin and pectin were found at the mid-elevations with hump-shaped pattern, where the genes for decompositions of recalcitrant C (i.e. lignin) and easily mineralizable C (i.e. starch) showed the opposite trend (i.e. U-shaped pattern), due to high soil pH and seasonality in both low and high elevations. Notably, the gene abundances for the decompositions of starch, carbohydrate esters, chitin and lignin had positive relationships with corresponding C compounds, indicating the consistent responses of microbial functional profiles and metabolites to elevation climosequences. Understanding of adaptation of microbial communities, potential function and metabolites to elevation climosequences and their influencing factors provided a new insight for the regulation of terrestrial C storage.


Assuntos
Microbiota , Solo , Carbono , Microbiota/genética , Microbiologia do Solo , Tanzânia
12.
Environ Sci Technol ; 55(20): 14305-14315, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34617741

RESUMO

Globally increasing trace metal contamination of soils requires a better mechanistic understanding of metal-stress impacts on microbially mediated nutrient cycling. Herein, a 5-month laboratory experiment was employed to assess the effects of cadmium (Cd) on soil microbial N-cycling processes and associated functional gene abundance, with and without urea amendment. In non-N-amended soils, Cd progressively stimulated microbial populations for N acquisition from initial dissolved organic N (DON) to later recalcitrant organic N. The acceleration of N catabolism was synchronously coupled with C catabolism resulting in increased CO2/N2O fluxes and adenosine triphosphate (ATP) contents. The abundance of microbes deemed inefficient in N catabolism was gradually repressed after an initial stimulation period. We posit that enhanced exergonic N processes diminished the need for endergonic activities as a survival strategy for N communities experiencing metal stress. With urea amendment, Cd exhibited an initial stimulation effect on soil nitrification and a later a promotion effect on mineralization, along with an increase in the associated microbial populations. In N-amended soils, Cd accelerated N/C transformation processes, but decreased N2O and CO2 fluxes by 19 and 14%, respectively. This implies that under eutrophic conditions, Cd synchronously altered microbial C/N metabolism from a dominance of catabolic to anabolic processes. These results infer a nutrient-based adjustment of microbial N-cycling strategies to enhance their metal resistance.


Assuntos
Cádmio , Solo , Nitrificação , Nitrogênio/análise , Microbiologia do Solo
13.
J Electrocardiol ; 65: 96-101, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33588259

RESUMO

BACKGROUND: Coronavirus disease 2019 (COVID-19) continues to impact populations around the globe. Information regarding the incidences and implications of arrhythmias in COVID-19 is limited. METHODS: A total of 463 patients with COVID-19 and who had at least one electrocardiogram recording from February 1 to March 19, 2020, in Wuhan Union Hospital were enrolled in the study. RESULTS: Arrhythmias occurred in 85 of 463 (18.4%) patients: atrial arrhythmias in 10.2%, junctional arrhythmias in 0.2%, ventricular arrhythmias in 3.5%, and conduction block in 7.3%. Compared with patients without arrhythmias, those with arrhythmias had higher mortality, both during the time from symptom onset (p < 0.001) and from admission to follow-up (p < 0.001). The frequencies of severe COVID-19 (44.7% vs. 21.2%; p < 0.001) and death (25.9% vs. 10.1%; p < 0.001) were higher in patients with arrhythmias than in those without arrhythmias. Atrial arrhythmias and ventricular arrhythmias could predict severity and mortality, their odds ratios (OR) were 4.45 (95% confidence interval [CI] 2.35 to 8.40), 5.80 (95% CI 1.89 to 17.76) respectively for severity, and were 3.51 (95% CI 1.74 to 7.08), 3.41 (95% CI 1.13 to 10.24) respectively for mortality. High levels of interleukin-6 (IL-6) and IL-10 were associated with the occurrence of arrhythmias (all p < 0.05). CONCLUSION: Arrhythmias were significantly associated with COVID-19 severity and mortality. Atrial arrhythmia was the most frequent arrhythmia type. IL-6 and IL-10 levels can predict the risk of arrhythmias in COVID-19 patients.


Assuntos
Arritmias Cardíacas/epidemiologia , COVID-19/complicações , Idoso , Arritmias Cardíacas/diagnóstico , Arritmias Cardíacas/virologia , China/epidemiologia , Eletrocardiografia , Feminino , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Fatores de Risco
14.
Mikrochim Acta ; 188(11): 367, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34617147

RESUMO

Covalent organic frameworks (COFs), a type of crystalline polymers, have attracted increasing interest because of their controllability of geometry and functionality. Featuring infinitely extended networks and tremendous interaction sites, COFs emerge as a potential platform for separation science. Here, a novel chiral COF (ß-CD COFBPDA) constructed by the imine condensation of 4,4'-biphenyldicarboxaldehyde and heptakis(6-amino-6-deoxy)-ß-cyclodextrin was introduced into an electrochromatographic system via a photopolymerization method and applied to the separation of enantiomers. The structure and properties of as-synthesized ß-CD COFBPDA were investigated by powder X-ray diffraction (PXRD) patterns, Fourier transform infrared (FT-IR) spectroscopy, thermogravimetric analysis (TGA), and N2adsorption-desorption isotherms. It was proved that ß-CD COFBPDA was provided with larger pore size and BET surface area. The ß-CD COFBPDA coating endowed the chiral stationary phase with superior three-dimensional orientation, and realized satisfactory separation with improved selectivity and column efficiency for a dozen racemic drugs. Under the optimized conditions, homatropine, ondansetron, metoprolol, terbutaline, tulobuterol, and promethazine were all baseline separated with resolution values of 2.24, 2.03, 1.65, 1.62, 1.60, and 1.58, respectively. The results indicate the high perspective of COF modified stationary in enantioseparation.

15.
Macromol Rapid Commun ; 41(20): e2000404, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32935899

RESUMO

Covalent organic frameworks (COFs) made their debut in 2005 and caused enthusiastic attention because of their ordered, crystalline structure. They are constructed with pure organic building blocks that are linked together by robust covalent linkages. COFs are applied in numerous fields due to their large surface area, architecture and chemistry stabilities, functional pore walls, and tunable frameworks. Incorporating COFs with chiral compounds can build chiral COFs (CCOFs), which have exhibited significant advantages in the chiral chemistry field. This review focuses on the applications of COFs for chiral catalysis, chiral separation, and chiral sensoring up to now. Furthermore, the synthesis and design strategies of CCOFs are also discussed in this article, since the COFs used in chiral chemistry are generally CCOFs. There also sums up the benefits and defects of COFs used in the chiral field and outlines future opportunities. The studies described in this review demonstrate not only the advantages of COFs in practical use but also novel solutions for the problems in the chirality area.


Assuntos
Estruturas Metalorgânicas , Catálise
16.
Opt Express ; 27(15): 20211-20220, 2019 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-31510119

RESUMO

Strong coupling between solid-state quantum emitters and microcavities paves the way for optical coherent manipulation of quantum state and provides opportunities for quantum information processing. However, it is still a challenge to realize strong coupling due to the spectral and spatial mismatch between quantum emitters and cavity modes. Here, we propose a scheme to tune the coupling between a single QD and a microdisk with 1D photonic crystal nanobeam cavity. Based on Finite-Difference Time-Domain (FDTD) method and Green's function expression for the evolution operator, we demonstrate that QDs with emission wavelengths +1.27 nm and -1.44 nm detuned from the bare microdisk mode can be coupled to the system strongly. Particularly, we observe simultaneous coupling between QD and two cavity supermodes, which enriches the optical coherent control methods of quantum states. By adjusting the distance between the two cavities, we can control the coupling between QD and photons. Furthermore, benefiting from the natural integration of nanobeam cavity to waveguide, such a system provides advantages for implementing quantum internet.

17.
Opt Express ; 26(3): 2740-2748, 2018 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-29401810

RESUMO

In this paper, we propose a new super-resolution imaging technique based on fluorescence blinking (SRFB). Contrary to structured illumination microscopy (SIM), SRFB considers the time-varying fluorescence distribution under a suitable density as the varying illuminated speckle pattern, and therefore, external speckle patterns or diffusers are not required. With several images recorded at different times, a super-resolution image can be obtained through an iterative algorithm modified from Fourier ptychography. Recorded image sequences in a microscopy imaging experiment based on photo switching or fluorescence blinking effects, such as STORM and SOFI, can be handled with SRFB and used to recover a super-resolution image. The simulation and experimental results confirm that the SRFB scheme can surpass the diffraction limit by a factor greater than two.

18.
Alcohol Clin Exp Res ; 2018 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-29870053

RESUMO

BACKGROUND: Prenatal alcohol exposure (PAE) is a leading cause of hyperactivity in children. Excitation of dopamine D1 receptor-expressing medium spiny neurons (D1-MSNs) of the dorsomedial striatum (DMS), a brain region that controls voluntary behavior, is known to induce hyperactivity in mice. We therefore hypothesized that PAE-linked hyperactivity was due to persistently altered glutamatergic activity in DMS D1-MSNs. METHODS: Female Ai14 tdTomato reporter mice were given access to alcohol in an intermittent access, 2-bottle choice paradigm before pregnancy, and following mating with male D1-Cre mice, through the pregnancy period, and until postnatal day (P) 10. Locomotor activity was tested in juvenile (P21) and adult (P133) offspring, and alcohol-conditioned place preference (CPP) was measured in adult offspring. Glutamatergic activity in DMS D1-MSNs of adult PAE and control mice was measured by slice electrophysiology, followed by measurements of dendritic morphology. RESULTS: Our voluntary maternal alcohol consumption model resulted in increased locomotor activity in juvenile PAE mice, and this hyperactivity was maintained into adulthood. Furthermore, PAE resulted in a higher alcohol-induced CPP in adult offspring. Glutamatergic activity onto DMS D1-MSNs was also enhanced by PAE. Finally, PAE increased dendritic complexity in DMS D1-MSNs in adult offspring. CONCLUSIONS: Our model of PAE does result in persistent hyperactivity in offspring. In adult PAE offspring, hyperactivity is accompanied by potentiated glutamatergic strength and afferent connectivity in DMS D1-MSNs, an outcome that is also consistent with the observed increase in alcohol preference in PAE offspring. Consequently, a PAE-sensitive circuit, centered within the D1-MSN, may be linked to behavioral outcomes of PAE.

19.
Addict Biol ; 23(2): 569-584, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28436559

RESUMO

Dopamine signals mainly through D1 receptors (D1Rs) and D2 receptors (D2Rs); D1R-expressing or D2R-expressing neurons contribute to distinct reward and addictive behaviors. Traditionally, transgenic mice expressing green fluorescent protein (GFP) under D1R or D2R promoters are used for fluorescent verification in electrophysiology studies, whereas Cre mice are employed for behavioral research. However, it is unknown whether the same neuronal populations are targeted in GFP and Cre mice. Additionally, while D1Rs and D2Rs are known to be expressed in different striatal neurons, their expression patterns outside the striatum remain unclear. The present study addressed these two questions by using several transgenic mouse lines expressing fluorescent proteins (GFP or tdTomato) or Cre under the control of D1R or D2R promoters. We found a high degree of overlap between GFP-positive and Cre-positive neurons in the striatum and hippocampus. Additionally, we discovered that D1Rs and D2Rs were highly segregated in the orbitofrontal cortex, prefrontal cortex, dorsal and ventral hippocampus, and amygdala: ~4-34 percent of neurons co-expressed these receptors. Importantly, slice electrophysiological studies demonstrated that D1R-positive and D1R-negative hippocampal neurons were functionally distinct in a mouse line generated by crossing Drd1a-Cre mice with a Cre reporter Ai14 line. Lastly, we discovered that chronic alcohol intake differentially altered D1R-positive and D2R-positive neuron excitability in the ventral CA1. These data suggest that GFP and Cre mice target the same populations of striatal neurons, D1R-expressing or D2R-expressing neurons are highly segregated outside the striatum, and these neurons in the ventral hippocampal may exert distinct roles in alcohol addiction.


Assuntos
Encéfalo/metabolismo , Neurônios Dopaminérgicos/metabolismo , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo , Tonsila do Cerebelo/citologia , Tonsila do Cerebelo/metabolismo , Animais , Encéfalo/citologia , Corpo Estriado/citologia , Corpo Estriado/metabolismo , Neurônios Dopaminérgicos/citologia , Proteínas de Fluorescência Verde/genética , Hipocampo/citologia , Hipocampo/metabolismo , Integrases/genética , Proteínas Luminescentes/genética , Camundongos , Camundongos Transgênicos , Modelos Animais , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/metabolismo
20.
Sensors (Basel) ; 18(7)2018 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-29933603

RESUMO

A highly sensitive nitrite (NO2−) electrochemical sensor is fabricated using glassy carbon electrode modified with Au nanoparticle and grapheme oxide. Briefly, this electrochemical sensor was prepared by drop-coating graphene oxide-chitosan mixed film on the surface of the electrode and then electrodepositing a layer of Au nanoparticle using cyclic voltammetry. The electrochemical behavior of NO2− on the sensor was investigated by cyclic voltammetry and amperometric i-t curve. The results showed that the sensor exhibited better electrocatalytic activity for NO2− in 0.1 mol/L phosphate buffer solution (PBS) (pH 5.0). The oxidation peak current was positively correlated with NO2− concentration in the ranges of 0.9 µM to 18.9 µM. The detection limit was estimated to be 0.3 µM. In addition, the interference of some common ions (e.g., NO3−, CO32−, SO42−, Cl−, Ca2+ and Mg2+) and oxidizable compound including sodium sulfite and ascorbic acid in the detection of nitrite was also studied. The results show that this sensor is more sensitive and selective to NO2−. Therefore, this electrochemical sensor provided an effective tool for the detection of NO2−.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA